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Abstract
Nowadays medical imaging plays a vital role in diagnosing the various types of diseases
among patients across the healthcare system. Robust and accurate analysis of medical
data is crucial to achieving a successful diagnosis from physicians. Traditional diagnostic
methods are highly time-consuming and prone to handmade errors. Cost is reduced and
performance is improved by adopting computer-aided diagnosis methods. Usually, the
performance of traditional machine learning (ML) classification methods much depends
on both feature extraction and selection methods that are sensitive to colors, shapes, and
sizes, which conveys a complex solution when facing classification tasks in medical
imaging. Currently, deep learning (DL) tools have become an alternative solution to
overcome the drawbacks of traditional methods that make use of handmade features. In
this paper, a new DL approach based on a hybrid deep convolutional neural network
model is proposed for the automatic classification of several different types of medical
images. Specifically, gradient vanishing and over-fitting issues have been properly
addressed in the proposed model in order to improve its robustness by means of different
tested techniques involving residual links, global average pooling layers, dropout layers,
and data augmentation. Additionally, we employed the idea of parallel convolutional
layers with the aim of achieving better feature representation by adopting different filter
sizes on the same input and then concatenated as a result. The proposed model is trained
and tested on the ICIAR 2018 dataset to classify hematoxylin and eosin-stained breast
biopsy images into four categories: invasive carcinoma, in situ carcinoma, benign tumors,
and normal tissue. As the experimental results show, our proposed method outperforms
several of the state-of-the-art methods by achieving rate values of 93.2% and 89.8% for
both image- and patch-wise image classification tasks, respectively. Moreover, we fine-
tuned our model to classify foot images into two classes in order to test its robustness by
considering normal and abnormal diabetic foot ulcer (DFU) image datasets. In this case,
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the model achieved an F1 score value of 94.80% on the public DFU dataset and 97.3% on
the private DFU dataset. Lastly, transfer learning (TL) has been adopted to validate the
proposed model with multiple classes with the aim of classifying six different wound
types. This approach significantly improves the accuracy rate from a rate of 76.92% when
trained from scratch to 87.94% when TL was considered. Our proposed model has
proven its suitability and robustness by addressing several medical imaging tasks dealing
with complex and challenging scenarios.

Keywords Breastcancer .Diabetic footulcer .Wound.Deeplearning .Deepconvolutionalneural
network . Classification . Transfer learning .Medical imaging

1 Introduction

Deep learning (DL) technology applied to medical imaging may become the most disruptive
tool since the advent of digital imaging. Designing a DL model that can successfully classify
multiple types of medical images is a challenging task today [37]. Robust and accurate
classification of medical images is the first step towards a successful diagnosis that could
save many people’s lives. However, medical imaging-classification tasks require an effective
DL model to achieve high performance. Several issues need to be properly addressed when it
comes to effective DL model design and training, such as gradient vanishing, over-fitting,
model depth and width, lack of training data (due to the difficulty in collecting data and the
need for an expert to label it), and imbalanced data.

The major aim of this paper is to present a robust DL model that addresses these issues and
is able to improve the performance of various medical tasks. To validate the performance of
the proposed model, three medical imaging classification tasks were used: (1) breast cancer—
the automatic classification of hematoxylin and eosin (H&E)-stained breast biopsy images into
four classes: invasive carcinoma, in situ carcinoma, benign tumors, and normal tissue; (2)
diabetic foot ulcers (DFUs)—the automatic classification of foot skin images into two classes:
normal (healthy) skin and abnormal skin DFU classes; and (3) wound types—the automatic
classification of six types of wounds, including burns, hemangiomas, foot ulcers, leg ulcers,
pressure ulcers, and toe ulcers. We chose these applications based on their characteristic
differences. The main differences can be summarized as (1) different input sizes (224 × 224
and 512 × 512 pixels), (2) binary and multiple classes (two, four, and six) and (3) type of input
images (red-green-blue images, histopathology).

The more relevant aspects that motivated us to choose these applications were the
following: i) DL has been less employed in these medical imaging tasks; ii) achieving
high performance is crucial to accurate diagnosis, but traditional machine learning
(ML) methods in these applications have shown low performance; and iii) these tasks
are challenging, which will help us to demonstrate the robustness of the proposed
model. The rest of this section describes the target tasks, with the breast cancer
scenario as the first.

The American Cancer Society recently reported that breast cancer is the most widespread
cancer in the world [63]. According to DeSantis, approximately 40,000 breast cancer death
cases, more than 60,000 in situ breast cancer cases and about 250,000 new cases of pervasive
breast cancer were reported in 2017 [16]. Early diagnosis and treatment are required to
enhance patients’ quality of life and to reduce morbidity rates. For example, histopathology
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is still essential to the diagnostic process because it distinguishes between pervasive and in situ
carcinomas and between malignant and benign tissues [12]. Moreover, identification and
diagnostic processes for various subtypes of breast cancer usually include tissue biopsy
collection from identified masses using ultrasound imaging or mammography, followed by
histological analysis. In general, after having been stained with H&E, tissue samples are
visually assessed by pathologists via light microscopy. The complex nature of these tissues
makes visual assessment of tissue microstructure and organization of the nucleus in the
histological images highly subjective and time-consuming. Therefore, reducing the subjectiv-
ity of the disease classification process and enhancing diagnostic efficiency requires automated
computer-aided diagnostic systems, which also reduces specialists’ workloads. Histology is
the study of the microscopic structures of organic tissues. Histopathology deals with the
histological structure of diseased tissues. In traditional histopathology, a pathologist visually
examines tissue slides through a microscope, looking for specific structures and characteristics,
such as cells, nuclei, etc. [10].

Early detection and diagnosis play an important role in effective patient care and
treatment planning. To distinguish between malignant and benign lesions, breast tissue
biopsies are used during cancer screening. Conversely, there are many variations in
texture, heterogeneous structure, and appearance, which make the manual evaluation of
sizeable histopathological images challenging [40]. This evaluation is laborious, time-
consuming, and frequently dependent on one-sided human understanding. Therefore,
evolving computer-aided diagnostic systems are the answer to the accurate classification
of H&E-stained histological breast cancer images. Recently, DL outperformed up-to-date
techniques in different areas of medical image analysis and ML, such as computer-based
diagnosis [43], segmentation [36], detection [27], and classification [2]. In comparison
with other types of learners, DL’s merit is its capability to achieve better or similar
performance compared with humans. Feature extraction plays a crucial stage because the
performance of the classifier is completely dependent on the attributes of the extracted
high- and low-level features. In the medical field, DL has solved very challenging tasks
and achieved high performance [18, 36]. The breast cancer task is the first to test the
effectiveness of our model and to prove that it is able to achieve high performance in one
of the most complex image types—H&E-stained breast biopsy images.

To validate the performance of the proposed model on images of different types and
sizes, a DFU classification task was also considered. DFUs are open sores or wounds
that form on the bottom of the foot. Early detection of DFUs can prevent amputation in
many patients. To the best of our knowledge, there is a very limited number of DL
models that are employed for DFU classification, namely DFUNet [24] and
DFU_QUTNet [5]. Although these models achieve good results, the need to further
improve the performance of DFU classification is important to help doctors make clinical
decisions. Moreover, we trained and tested it on six different wound types in order to
challenge our model. This wound classification task is very challenging due to the
complex images. Other reasons to employ a wound-classification task were to test our
model’s robustness with more than four classes of breast cancer tasks and to show the
effect of adopting the same TL domain instead of a different one. The breast cancer,
DFU, and wound classification tasks were challenging due to several issues:

& A wide range of heterogeneous and complex image shapes, sizes, and colors.
& Low contrast between target objects and backgrounds.
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& The high inter-class likeness between classes.
& The requirement for an automatic and robust DL model to extract excellent features to

enable distinction between classes.
& Overlapped cells in the breast cancer task.
& Patients’ ethnicities in the DFU and wound tasks.

The following outlines the main contribution of the research conducted in our experimental
study:

& A hybrid deep convolutional neural network (DCNN) model has been designed based on a
combination of multi-branch parallel convolutional layers and residual links along with
global average pooling. We employed the proposed model in three challenging medical-
imaging tasks.

& The proposed model was employed to classify H&E-stained breast-biopsy images into
four classes. As the experiments revealed, we improved the accuracy performance of
breast cancer classification tasks and outperformed previous methods of the state-of-the-art
(SoTA). Our model achieved a classification rate of 93.2% when tackling unseen ICIAR
2018 images.

& The proposed model was also employed to classify foot images into two classes. It
achieved an F1-score value of 94.80% on the public DFU dataset.

& Transfer learning (TL) from same domain was employed. The knowledge gained by our
model’s learning from the first DFU dataset was transferred to improve the performance of
the second DFU dataset, achieving a F1-score of 97.3%. Additionally, the model’s
learning from both DFU datasets was transferred to classify six wound types, and this
approach achieved an accuracy rate value of 87.94%. To the best of our knowledge, this is
the first attempt to classify six types of wounds.

& Testing on several challenging scenarios within the field of medical imaging has empir-
ically demonstrated that our model is effective and robust.

& As described, a concise review of the previous DL architectures and breast cancer
classification methods was carried out.

& Lastly, the image- and patch-wise classification models were adopted for this paper, as will
be explained in forthcoming sections, when facing breast cancer tasks.

The rest of the paper is organized as follows: Section 2 reviews the related work, Section 3
explains the proposed methodology, Section 4 presents the results, and Section 5 draws
conclusions.

2 Related work

In this section, we first review DL architectures, followed by the breast cancer classifi-
cation task. We have not reviewed the DFU classification methods due to the limited
number of research (only two articles: [5, 24]). Goyal et al. [24] employed a novel
convolutional neural network (CNN) architecture named DFUNet to classify foot images
into two classes, namely abnormal (DFU) and normal (healthy skin). In a similar manner,
Alzubaidi et al. [5] proposed a novel CNN architecture for binary classification of foot
images. Although both methods proposed a novel CNN architecture and achieved good
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results, the need for a better CNN architecture that produces excellent results is
necessary.

2.1 Deep learning

DL is the cornerstone of current progress in the field of ML and is responsible for recent
breakthroughs in several medical classification tasks, such as magnetic resonance imaging,
heartbeats, and breast cancer. Recently, DL has become a major diagnostic element in several
medical image tasks [31, 41] and has been effectively used to solve several challenging
biomedical image-analysis tasks, such as breast ultrasound lesions [64], Parkinson’s disease
[52], melanoma recognition [65], and sickle cell anemia [3].

Traditional ML methods require many steps to finalize the classification task—preprocess-
ing, feature extraction, feature selection, training, and classification. These methods are
sensitive to different sizes, complex shapes, and colors, and their effective performance relies
on the selected features. However, DL has overcome the limitations of ML methods. It can
simultaneously and automatically extract the features and achieve classification [38]. Although
DL has greatly contributed to advancements in solving different medical imaging tasks [31,
41], the study and design of a better network model are crucial to improving performance [42].

Several DL architectures have been proposed in the last ten years [1, 32]. AlexNet was
considered the first network to significantly improve CNNs [35]. Its major improvements were
the introduction of the rectified linear unit (ReLU) activation function, a non-linear function
that helps to prevent vanishing gradient issues, and the introduction of the idea of dropout as
regularization. Dropout is a technique in which neurons are haphazardly activated to avoid
over-fitting issues, thereby forcing data to obtain new pathways and giving the network the
ability to generalize in a better way. Additionally, data augmentation was introduced, which
means that when fed to the network, images are shown with random translation, rotation, and
crop, forcing the network to be more aware of image attributes, rather than of the images
themselves. Lastly, it stacked more convolutional layers before pooling layers, which im-
proved classification accuracy.

Later, the VGGNet network was introduced [51]. Its major improvement, and the main
difference, was the addition of more layers to improve accuracy. Following this, the
GoogleNet network was introduced [55], in which the idea of using parallel convolutional
layers with different filter sizes was employed. This idea showed great improvement in terms
of feature extraction. The ResNet network developed the idea of residual links, in which every
two layers concatenate with a short connection to help avoid gradient vanishing issues [26].
The DenseNet network proposed a more complex structure of entire blocks of layers connect-
ed to one another [28]. Several other networks were later designed, with their design ideas
deriving from the main models mentioned above [54, 56, 57, 66].

These models trained and tested on a large ImageNet dataset consisting of natural images,
such as pens, animals, and humans [49]. They were fine-tuned by transferring the ImageNet
dataset learning to solve several computer vision and pattern recognition tasks [39, 45, 61].
The performance of these tasks has significantly improved because their features are similar to
those of the ImageNet dataset. For example, applying TL to the ImageNet dataset for face, car,
and object detection can enhance the performance of these tasks. However, the ImageNet
dataset does not contain medical images; therefore, in medical imaging tasks, a model trained
from scratch performs almost as well as standard ImageNet transferred models (such as
GoogleNet, ResNet, etc.) [47].
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Based on the study of the advantages of previous models, we designed our proposed
model with more improvements. It combines the idea of parallel convolutions and
residual connections as well as global average pooling and has proved to be very
beneficial for gradient propagation because it has multipath propagation. The proposed
structure enables the model to have better feature representation since it employs multi-
branch parallel convolutional layers.

2.2 Breast cancer classification

In this section, we describe some of the SoTA breast cancer classification methods
(binary and multi-class), which are classified as either traditional ML or DL methods.
The objective of the nucleus morphology analysis is to discriminate between malignant
and benign tissues. Based on this objective, numerous researchers use stained microsco-
py images to extract nuclei-based features in order to discriminate the tissues into two
classes: malignant and benign (i.e., binary classification) [20, 21]. The circular Hough
transform method was used by Filipczuk et al. [20] as an early detection process to select
the nuclei candidates in the first step. The second step was the discrimination process
between correct and incorrect nuclei candidates, using a support vector machine (SVM)
technique. In [21], George et al. used a watershed technique to refine the nuclei contour
and in [34], four clustering algorithms were tested for nuclei segmentation. Belsare et al.
[11] utilized the spatial-color-texture segmentation technique for epithelial cells sur-
rounding the lumen segmentation. They then extracted texture features to compare the
linear discriminant analysis classifier performance and the SVM and k-Nearest Neigh-
bors classifier performances.

Many researchers regard breast histology image classification as a multi-class problem,
rather than as a binary problem (malignant or benign). Zhang [67] classified the images into
three classes, namely invasive carcinoma, in situ carcinoma, and normal by using a mixture of
two random subspace classifier collections—one is founded on multiple layer perceptrons, the
other comprises SVM classifiers. Considering the feature extraction process, Zhang [67]
combined the Curvelet transform with local binary pattern texture analysis. However, metas-
tases detection in whole-image slides and histological image classifications are currently
challenging tasks. In recent years, several studies have introduced automated approaches to
address these challenges. For example, Kothari et al. [33] examined the classification of
histological renal tumor images by employing organically decodable shape-based features in
a multi-class classification model; the authors identified the tissue structure’s distribution in
each image. Doyle et al. [17] introduced an automatic system for differentiation between high
and low breast cancer grades from H&E-stained histology images. They used the features
captured from a considerable number of images as well as spectral clustering to lower the
feature-space dimensionality. Subsequently, the lowered feature set was used to train the SVM
classifier to distinguish between high and low breast cancer grades and infected and non-
infected cancer images. Wang et al. [62] proposed another framework based on the detection
of cancer metastases in images of breast sentinel lymph nodes, using DL for classification of
the whole slide.

More recently, the popularity of DL models has become widespread. Therefore, the
authors take advantage of CNNs to classify breast histology images. The whole-slide
images are employed by Cruz-Roa et al. [13] for invasive carcinoma detection based on
the DL approach. This approach used a sizeable amount of tissue patches (each 100 ×
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100 pixels in size) for the CNN training. Because the extracted features enclose infor-
mation about the tissue arrangement as well as the nuclei, the approach performs better
than other up-to-date techniques. Spanhol et al. [53] developed a CNN model to
categorize histopathological breast cancer images into two classes, malignant or benign.
Araujo et al. [53] introduced a CNN model for the classification of H&E-stained breast
histology images with an imperfect training-sample number. The classification process
categorized the tissue condition into four classes: invasive carcinoma, in situ carcinoma,
benign, and healthy. The features extracted via the CNN were employed to train
classifiers of the SVM type. The achieved accuracy was 83.3% for carcinoma/non-
carcinoma classification and 77.8% for four-class classification. In 2018, some re-
searchers employed DL models to train on ICIAR 2018 breast histology image datasets
to differentiate four different classes of histopathological breast cancer, namely normal,
benign, in situ, and invasive carcinomas. Some researchers fine-tuned the pre-trained
models and trained them on ICIAR 2018 datasets, while others designed their models for
the task [6, 9, 19, 25, 30, 46, 50, 58].

Although all the above-mentioned approaches achieved good image-wise accuracies,
the need for high-performance breast cancer diagnosis is indispensable. Furthermore, most
of the CNNs employed in this research area were divided into shallow or deep networks.
Shallow networks are sufficient for some applications; however, the multi-class breast
cancer histology image classification task, which involves heterogeneous cells, complex
shapes, noises, and colors, demands a network with a more complex graph structure and
better feature extraction. Deep networks are those previously trained on nature images
from the ImageNet dataset and then fine-tuned for breast cancer classification. However,
their domain classifications differ, therefore, using the knowledge learned from the
ImageNet nature images does not significantly improve performance. In medical imaging
applications, a network trained from scratch could perform at the same level as networks
pre-trained on the ImageNet dataset [4, 47].

3 Methodology

The next subsections detail the adopted methodology in this contribution and consist of the
following:

& Datasets.
& Image-wise classification.
& Patch augmentation of the training set.
& Proposed model.
& Training process.

3.1 Datasets

As previously stated, in this work we employed four different datasets differing in image type,
number of classes, and shape. The first consists of H&E-stained breast biopsy images, the
second and third refer to foot skin images, and the last corresponds to wound images. Next, we
describe each one.
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& BACH 2018: the ICIAR 2018 Grand Challenge provided the dataset [8]. The uncom-
pressed, high-resolution images (2040 × 1536 pixels) consisted of H&E-stained breast
histology microscopy images, labeled as either normal tissue, benign lesion, in situ
carcinoma, or invasive carcinoma, as shown in Fig. 1. The labeling stage was achieved
by two medical steps, using identical acquisition cases, with an enlargement of 200. A total
of 400 images were used (100 samples in each class) with a pixel scale of 0.42-mm–0.42-
mm. These images were chosen so that the pathology recognition could be independently
distinguished from the visible organization and the tissue structure. The dataset was
divided into 300 images for the training set and 100 for the testing set. The original image
was divided into 12 non-overlapping patches of 512 × 512 pixels in size. The label of each
patch is inherited from the original image.

& DFU dataset (DFU 1): this dataset consisted of 1679 ft-image patches [24]. These patches
were classified into two classes, normal and abnormal. The normal class had 641 images,
while the abnormal class had 1038 images. The images were different sizes; therefore, to
ensure a fair comparison, we resized all images to 224 × 224 pixels, which is similar to the
input size of the SoTA approach on the same dataset. Furthermore, this size is halfway
between the smallest and largest sizes, thus reducing deformation. Some samples of the
dataset are shown in Fig. 2.

& DFU dataset (DFU 2): this dataset consisted of 754 images of patients’ feet [5]. These
images were manually labeled by an expert in the field as either normal or abnormal
(DFU). The normal and abnormal patches were extracted from the images at a size of
224 × 224 pixels. The total number of patches was 1609, with 542 normal and 1067
abnormal (DFU). Previous research was conducted on this dataset by the authors of this
article; therefore, the dataset was used even though it is a private dataset. A sample of the
dataset is shown in Fig. 3.

& Wound dataset: this dataset was a combination of Google search images and those of the
Medetec dataset [23, 44]. Originally, thirteen types of images were collected for the
wound-classification task. We then chose six classes out of the thirteen due to an
imbalanced number of images. There were 71 burn images, 73 hemangioma images,
106 ft-ulcer images, 207 leg-ulcer images, 220 pressure-ulcer images, and 106 toe-ulcer
images. To avoid this imbalance, we collected more images from a Google search for the
burn, hemangioma, foot-ulcer, and toe-ulcer classes and also rotated some images from
these classes at a 90-degree angle. As a result, they had approximately the same number of
images as the leg- and pressure-ulcer classes. All images were resized to 224 × 224 pixels.
Padding was used to avoid stretching or squashing the images. Lastly, all images were
double-checked by an expert in the field to confirm the labels. Some samples of this
dataset are shown in Fig. 4.

Fig. 1 Samples of BACH 2018 dataset classes
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3.2 Image-wise classification of breast cancer task

In this work, we considered the image classification process to be more suitably implemented
in two stages. In the first stage, a patch-wise classifier was used to classify various patches, and
in the second, the final image-wise classification was obtained by combining the classification
results of image patches. Classification of breast cancer histology images into one of the four
classes was based on the feature extraction correlated to the whole tissue organization as well
as the extraction of the nuclei-correlated features. The information of the whole tissue structure
was required for discrimination between invasive and in situ carcinomas. In contrast, the nuclei
features—which involved information on a single nucleus-like shape or color in addition to the
features of the nucleus organization, such as variability or density—helped discriminate

Fig. 3 Samples of DFU 2 dataset classes

Fig. 2 Samples of DFU 1 dataset classes. The first row shows the abnormal class; the second row shows the
normal class
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Fig. 4 Samples of wound dataset classes. The first row shows the burn class, the second row shows the
hemangioma class, the third row shows the foot-ulcer class, the fourth row shows the leg-ulcer class, the fifth
row shows the pressure-ulcer class, and the sixth row shows the toe-ulcer class
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between non-carcinoma and carcinoma. Therefore, the classification process relied on features
varying in size from smaller than a nucleus to multiple nuclei wide.

The nuclei radius sizes ranged from approximately 1.26 to 4.62 m (3–11 pixels).
Following the first observation, we assumed that the patch size of 224 × 224 pixels
should be sufficient to cover the structures of the relevant tissue. Nevertheless, the whole
images in the dataset were assigned labels of 2040 × 1536 pixels each, meaning that there
was no guarantee that the small regions would contain related diagnostic information.
This encouraged the use of larger image patches (512 × 512 pixels in size) to guarantee
that an additional dependable label was maintained in the whole-image patches [7]. The
classification process of one image is described in the following steps. Initially, the
original image was partitioned into 12 non-overlapping patches of 512 × 512 pixels in
size. The model was trained with these patches and the probabilities of patch classes
were then calculated by the proposed trained model classifier. The second step included
ensuring the accuracy of image-wise classification by using one of the following
techniques related to patch probability fusion: i) sum of probabilities—the probabilities
of each class patch are summed, then the class with the highest value is set for the test
image; ii) maximum probability—the image label is decided by the patch with the
highest class probability, and iii) majority voting—the most common patch label is
selected to be the image label.

3.3 Patch augmentation of the training set

DL models are heavily determined by the training data volume. Higher complexity models
demand more training images to perform well and prevent the problem of over-fitting. Lack of
training data is the main problem in the medical field. In the case of breast histology images,
the images had extremely large sizes, about 2040 × 1536 pixels each. To overcome the
problems of lack of data and large image sizes, each image was partitioned into patches and
augmented in a dataset using a set of robust transformations, which enriched and boosted the
total number of images in the training set. Data augmentation techniques help to overcome the
over-fitting issue. Then, we enhanced our proposal by applying different image processing
techniques: i) rotation by angles of 45, 90, 135, 180, 225, 270, and 315 degrees, as illustrated
in Fig. 5; ii) flipping in two directions—horizontal and vertical; iii) contrast and brightness of
51 and 81 degrees; iv) two-way zooming of the images—in and out; and v) color space by
isolating a single color channel such as R, G, or B. In the breast cancer task, each training
image was divided into 12 patches of 512 × 512 pixels, and each patch was duplicated 18 times
using augmentation techniques. In the DFU task, we applied the same augmentation tech-
niques and each patch was duplicated 18 times.

3.4 The proposed model

To enhance the extraction of significant features for breast cancer classification and DFU
tasks, we present the hybrid DCNN architecture. It combines the key aspects of the CNN
structure, which include parallel convolutional layers and residual connections. The two
main motivators for us to use this type of network were i) that adding more layers to a
model to improve the performance is good up to a certain point, but this could lead to a
drop in performance due to gradient diminishing issues, so we focused on increasing the
width of the model, and ii) a shallow network with a simple structure of layers is suitable
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for some tasks. However, the breast cancer histology images and DFU classification tasks
demand a network with a more complex graph architecture. The major aim of designing
the proposed model was to provide the field with a robust model that is able to improve the
performance of several SoTA methods when dealing with various medical tasks by means
of addressing past issues and pitfalls related to crucial elements of DL, e.g., gradient
vanishing, over-fitting, and feature extraction.

Specifically, gradient vanishing makes the network difficult to train because of the use of
certain types of activation functions, such as sigmoid. These activation functions reduce the
input size from large to small. Hence, big differences in the input will lead to small differences
in the output. To address this problem, we employed the ReLU function, which does not reduce
the input size. Residual connections and batch normalization layers were also employed in our

Fig. 5 Augmentation process with rotation
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model architecture to avoid problems. Residual links help to expedite the convergence of the
network, helping to prevent gradient diminishing issues. Lastly, faster hardware was another
solution, and we trained with GPU. Moreover, over-fitting occurs when the model learns a
certain pattern from the training images and not from new data. We solved this problem by
using image augmentation techniques. We also employed dropout and global average pooling
layers (both explained later) to prevent this problem. Finally, parallel convolutional layers were
applied for the extraction of good features to discriminate between classes. This included using
four convolutional layers with four different filter sizes of 1 × 1, 3 × 3, 5 × 5, and 7 × 7. Each
filter extracts different features, and by using different sizes, both small and large objects in the
image can be detected. The proposed architecture is outlined as follows:

& Generate several base networks, including shared parameters.
& Optimize the information flow.
& Enhance the training process of the deep network.
& Allow the model to have an improved representation of features.
& Improve the success rate of gradient propagation.

Our model’s architecture consists of a list of layers, as follows:

& Input layer: this layer has three channels of 512 × 512 pixels. All input images were
partitioned to 512 × 512 pixels then fed to our model for the patch-wise classification.

& Convolutional layer (C): the main function of this layer is to extract the features by
convolving the output of the prior layer with a group of learnable filters [59]. Three
main parameters determine the output: depth (number of filters), zero-padding
(adding zeros around the borders), and stride (number of pixels that the filter jumps).
We employed 29 convolutional layers with different filter sizes (1 × 1, 3 × 3, 5 × 5,
and 7 × 7).

& Batch normalization layer (B): this layer was added after each convolutional layer. It
normalizes every input channel via a mini-batch. It is used to expedite the training process
of CNN models and diminish the sensitivity to network initialization [29]. It helps to avoid
gradient vanishing problems.

& Rectified linear unit (R): this function was added after each batch normalization layer. It
filters data by using max (0, x) where x is the input to the neuron [15].

& Global average pooling layer (G): this layer is employed to reduce the spatial dimensions
from a three-dimensional tensor to a one-dimensional tensor. Average and maximum
pooling layers use a sliding window (such as 2 × 2 or 3 × 3) to reduce the size. However,
the global average pooling layer performs a more extreme kind of dimensionality reduc-
tion by turning the whole size into one dimension [14], as illustrated in Fig. 6. This layer is
more robust to spatial translations and helps to avoid over-fitting.

& Fully connected layer (F): fully connected means that all the neurons of the first layer link to
all the neurons of the second layer. The fully connected layer integrates the features to classify
the breast cancer patches into four classes. Three fully connected layers were employed, and
between them, dropout layers were inserted to avoid the problem of over-fitting.

Finally, on top of the fully connected layers, the softmax function was applied for classification
in the softmax layer. This function was employed to map the non-normalized output of the
model to a probability distribution of the predicted output classes. It is more robust to multi-
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class tasks than other activation functions. The total number of units in the softmax layer was
equivalent to the number of classes that we aimed to classify. Thus, since we had four breast
cancer classes, the softmax layer had four units. Figure 7 and Table 1 show the structure of the
proposed model.

3.5 Training process

The proposed model was trained and tested with four datasets. The training scenarios for
each dataset are described next. The general training and testing pipeline are described in
Fig. 8. For all datasets, the training process was achieved using stochastic gradient
descent with momentum set to 0.9. The mini-batch size was 64 and MaxEpochs was
100, with a learning rate initially set to 0.001. We implemented our experiments with
Matlab 2019 software and an Intel (R) processor Core TM i7-5829K CPU @ 3.30 GHz,
32 GB RAM, and 8 GB GPU.

3.5.1 Breast Cancer training

The proposed model was first trained on the BACH 2018 Grand Challenge dataset with two
different training scenarios implemented: scenario#1, using original images, and scenario#2,
using original plus augmented images (see Section 3.3).

To verify and examine what the proposed model had learned, we fed it some images. The
learnable kernels of the first six convolutional layers (C1, C2, C4, C5, C6) are shown in
Figs. 9, 10, 11, 12, and 13, respectively.

3.5.2 DFU 1 training

Next, we trained on the DFU 1 dataset. To prove that our model is robust, effective, and
generic, we fine-tuned it to classify two classes of foot patches—normal and abnormal (DFU).
The process for this task is explained as follows:

& All images were resized to 224 × 224 × 3 pixels and we divided the data into 80% for
training and 20% for testing.
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Fig. 6 Example of the average, maximum, and global average pooling layers
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& All training images were augmented by the various techniques mentioned in Section 3.3.
(patch augmentation of the training set).

Table 1 Our model architecture

Layer Number Filter Size (FS) and Stride (S) Activations

Input layer – 512×512×3
C1, B1, R1 FS=3×3, S=1 512×512×16
C2, B2, R2 FS=5×5, S=2 256×256×16
C3, B3, R3 FS=1×1, S=1 256×256×16
C4, B4, R4 FS=3×3, S=1 256×256×16
C5, B5, R5 FS=5×5, S=1 256×256×16
C6, B6, R6 FS=7×7, S=1 256×256×16
CN1 Five inputs 256×256×80
B1x Batch normalization layer 256×256×80
C7, B7, R7 FS=1×1, S=2 128×128×32
C8, B8, R8 FS=3×3, S=2 128×128×32
C9, B9, R9 FS=5×5, S=2 128×128×32
C10, B10, R10 FS=7×7, S=2 128×128×32
CN2 Four inputs 128×128×128
B2x Batch normalization layer 128×128×128
C11, B11, R11 FS=1×1, S=1 128×128×32
C12, B12, R12 FS=3×3, S=1 128×128×32
C13, B13, R13 FS=5×5, S=1 128×128×32
C14, B14, R14 FS=7×7, S=1 128×128×32
CN3 Five inputs 128×128×256
B3x Batch normalization layer 128×128×256
C15, B15, R15 FS=1×1, S=2 64×64×64
C16, B16, R16 FS=3×3, S=2 64×64×64
C17, B17, R17 FS=5×5, S=2 64×64×64
C18, B18, R18 FS=7×7, S=2 64×64×64
CN4 Five inputs 64×64×272
B4x Batch normalization layer 64×64×272
C19, B19, R19 FS=1×1, S=1 64×64×128
C20, B20, R20 FS=3×3, S=1 64×64×128
C21, B21, R21 FS=5×5, S=1 64×64×128
C22, B22, R22 FS=7×7, S=1 64×64×128
CN5 Six inputs 64×64×800
B5x Batch normalization layer 64×64×800
C23, B23, R23 FS=1×1, S=2 32×32×256
C24, B24, R24 FS=3×3, S=2 32×32×256
C25, B25, R25 FS=5×5, S=2 32×32×256
C26, B26, R26 FS=7×7, S=2 32×32×256
C27, B27, R27 FS=7×7, S=8 32×32×16
C28, B28, R28 FS=5×5, S=4 64×64×16
C29, B29, R29 FS=3×3, S=2 64×64×16
CN6 Five inputs 32×32×1024
B6x Batch normalization layer 32×32×1024
G1 Size=32×32, S=1 1×1×1024
F1 100 FC (Fully Connected) 1×1×100
D1 Dropout layer with learning rate: 0.5 1×1×100
F2 60 FC 1×1×60
D2 Dropout layer with learning rate: 0.5 1×1×60
F3 4 FC 1×1×4
O (softmax function) Invasive, in situ, benign, normal 1×1×4

C =Convolutional layer, B = Batch normalization layer, R = Rectified linear unit layer, CN=Concatenation
layer, G =Global average pooling layer, D =Dropout layer, and F = Fully connected layer.
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& The proposed model was fine-tuned by changing the input size and number of classes. We
trained the model on original plus augmented images.

Figure 14 shows some learnable filters from our model’s first convolutional layer.

3.5.3 DFU 2 training

Here, the training was conducted on the DFU 2 dataset. It was trained and tested on the DFU 2
dataset in three different scenarios: scenario#1 used all the images of the DFU 2 dataset for
testing the proposed model trained on the DFU 1 dataset (trained on scenario#2); in scenario#2
our model was trained from scratch on the DFU 2 dataset plus augmented images. We divided
the DFU 2 dataset into 80% for training and 20% for testing; and in scenario#3 we fine-tuning
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Fig. 8 Illustration of our training and testing pipeline
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the proposed model that trained on the DFU 1 dataset then re-trained the model with the DFU
2 dataset. In this third case, we divided the DFU 2 dataset into 80% with augmented images for
training purposes and the remaining 20% for testing.

3.5.4 Wound training

Finally, we trained and tested the wound dataset in the following two scenarios: in scenario#1
we trained our model from scratch on the wound dataset and divided the wound dataset into
80% for training and 20% for testing; in scenario#2, we first transferred the learning from the
proposed model trained on the DFU 1 and DFU 2 datasets (the output-trained network from
training on the DFU 2 dataset section in scenario#3 in 3.5.3 above) the model was fine-tuned
for the task of wound classification. In this second scenario, the dataset was divided into 80%
for training and the remaining 20% for testing.

TL is about leveraging the knowledge gained by training a DL model for a particular task and
applying that knowledge to a different task. It simply works by training a base model on a base
dataset and task, and then reusing the learned features, or transferring them, to a second target

Fig. 9 Sample of a learnable kernel from the first convolutional layer (the color image is the original, and the
gray-scale image is the filter)

Fig. 10 Sample of a learnable kernel from the second convolutional layer (C2) (the color image is the original
and the gray-scale image is the filter)
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model to be trained on a target dataset and task. Currently, one of the biggest limitations of TL is
the problem of negative transfer. When the base dataset is different from the target dataset, this is
called negative transfer. Having a few images for TL in the same domain as the target dataset is
better than having a large number of images in a different domain [4, 47]. In this work, the large
dataset was the DFU data with augmented images, which was in the same domain as the target
dataset, the wound dataset. Therefore, this type of TL significantly enhanced the wound classi-
fication performance, unlike using TL from natural images. The fine-tuning process is described
in Fig. 15. The last fully connected layers were changed; Fig. 16 shows some learnable filters from
the first convolutional layer of our model trained on wound classification.

Fig. 11 Samples of learnable kernels from the fourth convolutional layer (C4)

Fig. 12 Samples of learnable kernels from the fifth convolutional layer (C5)
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4 Experimental results

This section describes the results obtained dealing with the breast cancer classification task and
those of the DFU dataset.

4.1 Results of the breast cancer classification task

The proposed model’s accuracy was assessed. This evaluation process was implemented in
two phases, patch-wise and image-wise, both for our model and for pre-trained models on
unseen images.

& Patch-wise classification results: we calculated the accuracy as illustrated in Eq. 1, where
TP refers to true positives, TN refers to true negatives, FP refers to false positives, and FN
refers to false negatives.

Fig. 13 Samples of learnable kernels from the sixth convolutional layer (C6)

13308 Multimedia Tools and Applications (2022) 81:13289–13317



Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ ð1Þ
Patch-wise accuracies of the BACH 2018 dataset from our model and previous working
methods are listed in Table 2. Our model, trained with the BACH 2018 dataset in scenario#1,
achieved an accuracy of 84.7%. In scenario#2, the classification rate increased to 89.8% and
outperformed previous SoTA methods.

& Image-wise classification results: we used the three previously described evaluation
techniques—the sum of probabilities, maximum probability, and majority voting—to
measure the image-wise accuracy. The majority voting showed the highest results
compared to other techniques; therefore, we considered these, as reported in Table 3.
In the same scenarios as those used to evaluate the patch-wise results, data augmenta-
tion techniques helped improve the model’s accuracy from 85.9% when trained on
original images (scenario#1) to 93.2% when trained on original plus augmented images
(scenario#2).

Our model surpassed the considered SoTA methods that used the majority voting
technique on the BACH 2018 dataset. Most of these methods (e.g. GoogleNet and
ResNet-101) dealing with small BACH 2018 datasets, are summarized in Table 3.
These models are very deep, requiring more training images to perform well. Another
issue is that these models were previously trained on natural images from the
ImageNet dataset then fine-tuned for medical tasks, which are from a different domain.

Fig. 14 Samples of learnable kernels from the first convolutional layer trained on the DFU 1 dataset
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In medical imaging tasks, training a model from scratch is as good as using pre-trained
models [4, 47].

4.2 Results of the DFU classification task (DFU 1 dataset)

We tested our model with the following evaluation metrics: recall (Eq. 2), precision (Eq. 3),
and F1 score (Eq. 4). The results are reported in Table 4.

Recall ¼ TP= TPþ FNð Þ ð2Þ
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Precision ¼ TP= TPþ FPð Þ ð3Þ

F1score ¼ 2�
�
Precision� Recallð Þ= Precisionþ Recallð Þ ð4Þ

The total number of test images was 345. We obtained values for TP, FP, FN, and TN of
210, 11, 12, and 112, respectively. As reported in Table 4, our model achieved a higher
precision, recall, and F1 score than DFUNet [24] by obtaining 95.1%, 94.5%, and 94.8%,
respectively. However, DFUNet [24] achieved a precision of 94.5%, a recall of 93.4%, and an
F1 score of 93.9%. To the best of our knowledge, DFUNet [24] is the SoTA network on the
DFU 1 dataset. However, our model achieved results that were higher than DFUNet’s results.

Fig. 16 Samples of learnable kernels from the first convolutional layer trained on the wound dataset

Table 2 Patch-wise accuracies of the BACH 2018 dataset from our model and previous working methods

Method Patch-wise accuracy (%)

Golatkar et al. [22] 79
Roy et al. [48] 77.4
Wang et al. [60] 87
Our model (scenario#1) 84.7
Our model (scenario#2) 89.8
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Furthermore, our model classified very challenging foot images, including wrinkled skin.
Lastly, we have measured the testing time for the proposed model in this task. It needed 57 s to
produce the results on test set images.

4.3 Results of the DFU classification task (DFU 2 dataset)

By transferring our model’s learning from the DFU 1 dataset and training it on the DFU 2
dataset, in scenario#3 our model achieved the highest precision, recall, and F1 score compared
with other scenarios, obtaining 98.2%, 96.5%, and 97.3%, respectively. These results were
calculated based on the values of TP, FP, FN, TN, which were 223, 4, 8, and 92, respectively.
The total number of test images was 327. Additionally, the precision, recall, and F1 score for
scenario#2 were 95.4%, 94.2%, and 94.7%, respectively. Lastly, although all images from the
DFU 2 dataset were used for testing in scenario#1, the results were still competitive: precision
of 88.2%, recall of 85.4%, and F1 score of 86.7%. The results of all scenarios are listed in
Table 5. In scenario#3 our model outperformed the SoTA methods on the DFU 2 dataset [5],
as reported in Table 6. Lastly, we have measured the testing time for the proposed model in
this task. It needed 49 s to produce the results.

Table 3 Comparative image-wise accuracy results on the BACH 2018 dataset from our model and the latest
working methods

Methods Majority voting accuracy (%)

Nawaz et al. [46] 81.25
Awan et al. [9] 83.33
Guo et al. [25] 87.50
Vang et al. [58] 87.50
Sarker et al. [50] 89.00
Alzubaidi et al. [6] 89.40
Ferreira et al. [19] 90.00
Kassani et al. [30] 92.50
Our model (scenario#1) 85.90
Our model (scenario#2) 93.20

Table 4 Our model’s evaluation results from the DFU 1 dataset

Network Precision (%) Recall (%) F1 score (%)

DFUNet [24] 94.50 93.40 93.90
Our model 95.10 94.50 94.80

Table 5 Evaluation results of our model on the DFU 2 dataset

Network Precision (%) Recall (%) F1 score (%)

Our model (scenario#1) 88.2 85.4 86.7
Our model (scenario#2) 95.4 94.2 94.7
Our model (scenario#3) 98.2 96.5 97.3
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Our model’s results from the DFU 2 dataset prove that it is robust in the feature extraction
and classification stages. It can handle various images for different medical imaging classifi-
cation tasks and the advantage of adjusting to work on different tasks. Therefore, we employed
it in the wound classification task to test its robustness.

4.4 Results of the wound classification task

There is a significant improvement in the results of scenario#1 and scenario#2 due to the TL
technique, as reported in Table 7. Our model trained with scenario#1 achieved a precision of
77.4%, a recall of 73.9%, F1 score of 75.6%, and an accuracy of 76.92%. By transferring our
model’s learning from the DFU 1 and DFU 2 datasets, our model trained with scenario#2
obtained a precision of 88.1%, a recall of 84.8%, an F1 score of 86.4%, and an accuracy of
87.94%.

Lastly, we have measured the testing time for the proposed model in this task. It needed
76 s to produce the results. The wound classification task was very challenging due to noisy,
complex, and different color images; however, the proposed model overcame these challenges
and proved that it is robust in different tasks. The achieved results in all tasks are used by
doctors as a “second opinion” to aid definitive decision-making.

5 Conclusions

We proposed a hybrid deep CNN model as a tool for the automatic and robust classification of
complex images within the field of medical imaging. The addressed classification tasks are
challenging due to the different sizes, complex shapes, various colors, and variety of image
types. The proposed model for classification combined several ideas, including parallel
convolutional layers, residual connection, and global average pooling layer. The architecture
of the proposed model has been proven to address three well-known pitfalls of DL, including
gradient vanishing, over-fitting, and providing an improved representation of features. We first
trained our model on the original images of the BACH 2018 Grand Challenge dataset (ICIAR
2018) to classify H&E-stained breast biopsy images into four classes: invasive carcinoma, in
situ carcinoma, benign tumor, and normal tissue. To handle the small number of BACH 2018

Table 6 Comparison of our results with the SoTA results on the DUF 2 dataset

Network Precision (%) Recall (%) F1 score (%)

DFU_QUTNet [5] 94.2 92.6 93.4
DFU_QUTNet + KNN [5] 93.8 92.7 93.2
DFU_QUTNet + SVM [5] 95.4 93.6 94.5
Our model (scenario#3) 98.2 96.5 97.3

Table 7 Evaluation results of our model on the wound dataset

Network Precision (%) Recall (%) F1 score (%) Accuracy (%)

Our model (scenario#1) 77.4 73.9 75.6 76.92
Our model (scenario#2) 88.1 84.8 86.4 87.94
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images for training, in this study we applied several data augmentation techniques to the
original images. These enhancements improved the performance of our method and achieved a
classification rate of 93.2% and 89.8% for image-wise and patch-wise classification,
respectively.

Specifically, the proposed method outperformed SoTA methods when dealing with the
BACH 2018 dataset. Moreover, our method was trained and tested on two different DFU
datasets in order to classify two classes of foot skin—normal and abnormal. The exper-
imental results reported it achieved outstanding results when compared to SoTA networks
tackling the DFU classification task. Additionally, our proposal achieved an F1 score of
94.8% on the first addressed DFU dataset and a value of 97.3% on the second addressed
DFU dataset. To further test its effectiveness, the proposed model was used to classify six
classes of wounds, and it achieved an outstanding performance of 87.94%. Moreover, we
believe the methods proposed in this work can be used as a pre-trained model to classify
images in the same domain. We plan to adopt the proposed model for other medical
imaging tasks as future work.
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