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Abstract

In this work, we present a variational level set model with closed—form solution via combin-
ing with the fuzzy clustering method for robust and efficient image segmentation. For the
designed energy functional, the two region parameters are first quickly pre—computed by
means of the fuzzy c—means method and then embedded into a variational binary level set
framework. Unlike the traditional variational level set models and optimization algorithms,
our proposed model could directly obtain an exact closed—form solution of the level set
function without using any iterative calculations and it is thus the globally optimal solution.
Furthermore, we investigate the closed—form formula and achieve a significant property
of the solution. As a byproduct, the manual initialization of the level set function and the
sophisticated setting of time step in the process of numerical implementation are completely
eliminated and thus leads to more robust segmentation results. Numerical experiments on
both synthetic and real images verify the theoretical analysis of the proposed model and con-
firm the segmentation performance of the proposed method in terms of efficiency, accuracy
and insensitiveness to parameters tuning.
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1 Introduction

Image segmentation is one of the long—standing but challenging subjects in the communi-
ties of image processing and pattern recognition. The approaches of unsupervised image
segmentation can automatically divide an image domain into coherent regions according to
some computable visual attributes, such as the clustering method [1], superpixel/supervoxel
methods [18, 32, 33], Gaussian mixture model (GMM) [7], graph theoretic methods [6, 9,
34], discrete high-order energy method [29, 35] and active contour/level set methods [12,
37-39, 47]. By clustering image pixels with their similar properties into distinct groups,
image segmentation gives a concise profile of an image and extracts some compact and
useful image features for boosting the subsequent middle- or high-level image processing
tasks.

The general purpose of image segmentation is to yield a binary segmentation mask of the
original image by extracting the foreground objects from its background. On the one hand,
a vast number of literature on the work of graph-based approach have been proposed during
the past few decades, of which includes superpixel/supervoxel methods [18, 32, 33], Gaus-
sian mixture model (GMM) [7] and discrete high-order energy method [29, 35]. An given
image is usually transformed into an undirected graph with their vertices denoting image
pixels and the edges connecting pairs of vertices. Then, the image segmentation problem is
equivalent to partitioning the vertices into disjoint segments. These graph based approaches
can be formulated or solved by various algorithms, such as clustering [30], random walk
[6, 9, 34], submodular function optimization method [30, 31]. The graph-based algorithms
work well in aspect of adhering to boundaries but need to interactively scribble foreground
and background pixels and suffer from low efficiency, which makes them inappropriate for
automatic and real-time tasks. On the other hand, the variational level set (VLS) [4, 20-22]
methods can label the boundaries of object regions with acceptable accuracy and thus attract
significant attention. The core pith of VLS models is that they continuously delineate/locate
object boundaries of the given image by evolving a curve. More specifically, these VLS
methods drive an initial contour towards object boundaries under some constraints from
encountered image (external energy) and the curve itself (internal energy). One distinctive
significance of the level set approach [28] is that it has capability of automatically handling
complex deformation of topological structures.

With the help of the level set method, Chan and Vese designed a well-known VLS model
[4], named as CV model, which is a simplified variant of the classical Mumford—Shah model
[27]. The CV model mainly utilizes the global region statistic information of the image to
represent the data fitting energy and employs an alternative minimization (AM) method to
compute the two region parameters (piecewise constants) and the level set function consec-
utively. Starting from the CV model, tremendous other improved or well-designed versions
have been introduced [2, 3, 5, 8, 10, 11, 14-17, 26, 40, 41, 46]. Unfortunately, the CV model
mainly suffers from the drawback of contour initialization sensitiveness and parameters sen-
sitiveness due to its energy functional being non—convex, and thus different initializations or
parameter settings will yield totally distinct segmentation results for the same image. Until
now, many attempts to remedy the defect of initialization sensitiveness from the point of
convex relaxation [2, 3, 5] or functional modifying [14, 17, 40] have been put into effect.
For instance, inspired by the pioneering work [5], Bresson et al. [2] reported a convex relax-
ation method via introducing a fuzzy function and total variation (TV) regularization, which
makes the proposed model attain global segmentation performance. However, the conver-
gence rate of numerical scheme is very slow because of the utilization of TV regularization
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term. Thereafter, Brown et al. in [3] proposed an improved model and developed a fast
algorithm by transforming the TV norm into its dual formulation. From the view of func-
tional modifying, Lee and Seo [14] presented a modified version of the CV model (termed
as LS model in this paper), which multiplies the level set function and the shifted Heavi-
side functions to control the movement of the level set function such that it avoids trapping
into local minimum and restricts the value of level set function in a certain scope. Based
on the LS model, Li and Kim [17] presented a novel VLS model (referred to as LK model
in this paper) which utilizes a linear function as a substitute for the Heaviside function and
designed an unconditionally stable semi—implicit numerical scheme to solve the proposed
energy functional. Following the LK and LS models, we in [40] proposed a convex VLS
model (referred to as GCoV model) by combining the coefficient of variation (CoV) and
binary level set function. Although these VLS models outperform the CV model and are
less sensitive to the contour initialization, the problem of initialization sensitiveness and
parameter settings is remain unresolved completely.

As we all know, the CV model and all of the improved VLS models are typically solved
via the AM scheme by firstly updating the two region parameters for keeping the level
set function fixed and consecutively updating the level set function while keeping the two
region parameters fixed. Thus, the AM method utilized to minimize the underlying energy
functional may bring forth some essential drawbacks. Firstly, due to alternatively updating
the unknown variables, a foremost problem is how to give the suitable iteration numbers
for updating each class variables so that it achieves a trade—off between the segmentation
efficiency and performance. Secondly, the AM algorithm may have very high computational
overhead owing to alternatively computing the two class unknown variables. Thirdly, the
evolution equation of level set function deduced from the steepest descent method usually
needs to superpose an initial contour and to introduce a artificial time step, which indicates
that the involving models may be sensitive to contour initialization and time step to some
extent.

In an attempt to alleviate these limitations, we put forward a VLS model with closed—
form solution for robustly and efficiently segmenting image in this work. The philosophy
behind our method is that we first employ other efficient methods (such as fuzzy c-means
method) to quickly pre—estimate the two prototypes of cluster centers of the entire image
and then embed them into a variational binary level set framework. Different from the most
existing models and algorithms, the proposed model could directly obtain the closed—form
solution of the level set function without exploiting any iterative calculations and thus it
could get the globally optimal solution. Furthermore, we investigate the closed—form for-
mula and find a fascinating property of the solution. As a byproduct, the initialization of the
level set function and the setting of time step are free of need any more and result in more
robust segmentation performance. Experimental results on several synthetic and real images
verify the theoretical analysis and confirm the segmentation performance of the proposed
VLS method in terms of efficiency, accuracy and robustness against parameters tuning when
comparing with the related VLS models.

The contributions and advantages of this study to variation level set model are summa-
rized as follows:

1)  Since the two region parameters are pre—computed, resulting the proposed energy
functional reduced into an energy functional of signal variable, it is proved strictly
convex without posing any additional constraints.
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2)  The minimization of the energy functional no longer needs to be solved by alternatively
calculating the two region parameters and the level set function, the proposed method
therefore arrives a fast computation speed for extraction of object boundaries.

3) The proposed energy functional could directly obtain the exact closed—form solution
via variational calculus, which makes the proposed algorithm be free of setting initial
contours and time step and thus finally achieving automatic segmentation results.

The remaining parts of this paper are structured as follows. In Section 2, we briefly
review the related VLS models. Section 3 introduces the proposed VLS model and give a
theoretical analysis. We in Section 3.2 solve the proposed model by utilizing the variational
calculus and obtain the closed—form solution. Section 4 verifies the theoretical analysis of
the proposed model and assesses the segmentation performance of the proposed method via
numerical simulations on synthetic and real images. Finally, we discuss the proposed model
and draw conclusion to this paper in Section 6.

2 Related VLS models
2.1 CV model

Chan and Vese in [4] proposed a famous VLS model which predigests the Mumford—Shah
functional [27] via the level set function for the purpose of segmenting bimodal image. The
formulation of the Chan—Vese model can be depicted as the following energy functional:

Ecy (c1,c2,9) = M1 /Q (I (x) = 1)’ H (¢ (x))dx
—i—kz/Q (I (x) = c2)” (1 — H (¢ (x)))dx
-H/«/Q IVH (¢ (x))ldx, ey

where A1, A2 and p are three positive trade—off parameters, / (x) denotes the input image to
be segmented, ¢ is the level set function, and H (-) is the Heaviside function. Region param-
eters ¢ and c; represent the intensity mean values of the foreground and the background
regions, respectively.

A commonly used method to minimize the energy functional (1) is to utilize the Euler—
Lagrange equations and alternatively updates c1, ¢ and ¢ with an artificial time variable as
follows:

Keeping the level set function ¢ fixed and minimizing the energy functional (1) with
respect to the constants c¢; and c; yields the following expressions for ¢ and ¢;:

Jo I () H (¢ (x))dx

_Jo I () (1= H($(x)dx
Jo H (¢ () dx '

C @O =TT H G () dx @

c1(p) =

Keeping the constants ¢ and ¢, fixed and minimizing the energy functional (1) with
regard to the level set function ¢ leads to the following evolution equation of level set:

0 v
P=sw [V (%) 2 (@) =) + ha(l () — c2>2] . 3)
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The CV model works well in handling images with low—level noise and in locating object
boundaries that can not depicted by gradients. However, the energy functional (1) is non—
convex and thus often gets stuck into local minima. Besides, it needs to meticulously tune
parameters A, A, and time step ¢ for some complex images in order to achieve satisfactory
results.

2.2 LS model

To overcome the non—convex shortcoming of the Chan—Vese model, Lee and Seo [14] cre-
atively designed a novel energy functional via multiplying the level set function and two
shifted Heaviside functions as follows:

Ers (@) = M /Q (I (x) = 1)’¢ (x) H (@ + ¢ (x))dx

—Kzfg (I (x) = 2)¢ (x) H (@ — ¢ (x))dx, “)

where A1 and A are two fixed positive weights, « is an arbitrarily given small positive
constant. In the designed energy functional, the authors multiply the level set function ¢
to avoid computing a local minimum and shift the Heaviside function H (+¢) by F« to
constrain the value of level set function ¢ in interval [—c«, o]. The minimization of the
energy functional (4) leads to the following level set evolution equation is obtained as:

0]
% _ M (x) = c)* (H (@ + ¢ (x)) + ¢8 (¢ + ¢ (x)))

ot
+ra(I (x) — 2)* (H (¢ — ¢ (x)) — $8 (¢ — $ (x))) . o)

As with the CV model, the two constants ¢ and ¢, remain computed by (2).

The LS model performs well on bimodal images due to it could compute a stationary
global minimum. However, it also needs to discreetly choose time step in the numerical
solving process because of just simply employing the explicit finite difference method [17].

2.3 LK model

To overcome the defect of LS model, Li and Kim [17] hired a linear function to substitute
the Heaviside function of the LS model and give the following energy functional:

Erg (@) = M /Q (I (x) = c1)’ (x) He (1 + ¢ (x))dx

—A2 /Q (I (x) = c2)°¢ (x) He (1 — ¢ (x))dx, (6)

where A1 and A are two fixed positive parameters and the linear function H, (z) is defined
by
1+z

H (2) = 7 @)

By minimizing the energy functional (6), the following level set evolution equation is
given by:

d
a—f:—M(I—cl)z(l+¢)+xz(1—cz)2(1—</>>. ®)
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The two piecewise constants ¢ and ¢, are updated as

Jo I () He (¢ (x)) dx e () = Jo I () (1= He (¢ (x))dx
Jo He (9 () dx Jo (= He (¢ ()))dx
The LK model can better deal with the segmentation of bimodal image and is also insen-

sitive to the time step due to it is solved via an unconditional stable semi—implicit numerical
algorithm.

c1(¢) = C))

2.4 GCoV model

In [40], we present a novel VLS model motivated by the aforementioned models via
integrating the CoV and the binary level function into the variational framework as follows:

1 — 2
Ewn (9) = X / O =) 2y + 1)
2 cq

(I () — )’
+ / (¢ (x) — 1)?dx, (10)
2 c5
where A is a positive weight, and c1, cp are two region parameters.
The minimization of the above energy functional with regard to ¢ results in the following
evolution equation of level set function:

I (I —c)? (I —c2)?
5__)LT(¢+1)_T(¢_I). (In

The two region constants ¢ and c¢; are updated by

Jo 1) - H (¢(x))dx _ JoI)? (1 — H ((x))) dx

Jo () - H @) dx @@= Jo I - (1= H @) dx (12

The GCoV model achieves good segmentation performance and has a fast convergence
speed because the large time steps can be chosen in the proposed numerical scheme. How-
ever, the proposed algorithm remain need to finely tune the parameter A for some complex
images and the time step can also not been set arbitrarily large.

It should be noted that the above mentioned four models and most classical VLS models
usually alternatively update the two—class unknown variables, that is, they firstly update
the two piecewise constants while keeping the level set function fixed and subsequently
update the level set function for the two constants keeping fixed and until the zero level set
arrive at the object boundaries. Therefore, the involving algorithms inevitably encounter the
core problem of how to set appropriate iteration numbers for updating two—class unknown
variables. Additionally, the evolution equation of the level set derived from gradient descent
flow needs to set time step that is also a sophisticated technique.

c1(¢) =

3 Proposed method
3.1 Proposed model
In this section, we present a VLS model in which the prototype of two cluster centers is

pre—computed via the fuzzy c-means (FCM) method, and thus the proposed model turns
out to be an energy functional of single variable regarding the level set function.
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Define £2 C R? as a bounded connected open region with Lipschitz continuous bound-
ary, I : £2 — Rand ¢ : 2 — R denote the original image and the level set function,
respectively. The proposed energy functional can be formulated as follows:

E@) = mfg(l () — m)?(@ () + Ddx

o f (I () — m2)*(@ (x) — 12, (13)
2

where A, Ay are positive weighting parameters, m 1, m, are two prototypes of cluster centers
to be computed and ¢ € L? (£2). As for the proposed energy (13), the two prototypes of
cluster center could be previously estimated via other clustering methods such as k-means
[25], fuzzy c—means [1] and self—organizing maps (SOM) [36]. In this work, we utilize the
fuzzy c—means to compute the prototype value of two cluster centers owing to its accuracy
and convenience. Solving the energy functional (13) with respect to the level set function ¢
would gives birth to a optimal solution ¢* whose zero level set comes to be the contour line
that separates the object regions from background.

Since the proposed energy functional only involves the level set function, we present the
theoretical analysis (convexity) of the variational problem (13).

Theorem 1 Suppose I € L? (£2), the presented energy functional E (¢) is strictly convex.
Proof See Appendix A. O

The proposed energy functional in this work is similar but has a little difference with
our previous work [40] in details. We note that the two piecewise constants defined in
our previously proposed model are depended on the level set function, which iteratively
updates by following each evolution of the level set function. Thus, our previously proposed
model [40] could just be proved convex under the constraint that the two region parame-
ters are fixed. However, since the two region parameters in our proposed energy functional
are pre—obtained by the fuzzy c—means method, which makes the two piecewise constants
be independent of the level set function, the proposed energy functional is proved strictly
convex.

3.2 Closed-form solution

We from Theorem 1 in Section 3 know that our designed energy functional E (¢) has a
unique global optimum for any bimodal image I € L? (£2). To obtain the global optimum,
we deduce the Gateaux derivative of the energy functional E (¢) by using the theory of
variational calculus.

The Gateaux derivative of E (¢) at ¢ along the direction of a test function ¢ € C§° (£2)
can be expressed as

E @p = lig EO T E®

(@ =m)? @+ ) +020 = m @ =1, 0)

(14)

122y
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where (-, ) L2(2) denotes the inner product of L? (£2). Based on the Riesz representation
theorem, the Géteaux derivative E’ (¢) ¢ can be deemed as the unique element representing
the bounded linear functional E’ (¢) in L2 (£2) as follows:

E' @) ¢=(VE@®).¢)20) (15)

where VE (¢) means the gradient of E (¢) in L2 (£2). We could obtain the formulation of
VE (¢) by comparing (14) and (15) as follows:

VE(¢) = (I —m)* @+ 1)+ ral —m2)* (@ —1). (16)

In Theorem 2 below, we will prove that the proposed energy functional can directly
obtain the closed-form solution and thus it is globally optima.

Theorem 2 The optimization of energy functional E (¢) in (13) has the closed-form
solution

o MU =m)? = —ma)?

; (17
MU —m1)? + aa (I —mo)?
and it holds
lo* ()| <1, xe . (18)
Proof See Appendix A. O

3.3 About the regularization

For the proposed model, we do not pose any regularization to the level set function, hence
the proposed model may not handle well complex images with non-regular object edges
or outliers. To make up this deficiency, a natural method is that we can utilize a Gaussian
filtering [45] to further smooth the level set function as the closed—form solution of level set
function obtained. The formulation of Gaussian regularized level set is described as follow:

¢y =Go * 9", 19

where ¢™* is the level set function obtained form (23), G, denotes the Gaussian kernel with
scale o. By this way, the Gaussian filtering regularization can prevent the oscillation of level
set when encountering non-regular object edges or outliers.

In Fig. 1, we provide a test experiment to verified the performance of the proposed model
with or without Gaussian filtering process when dealing with complex images. The first
column of Fig. 1 shows four images which has non-regular object boundaries or suffer from
outliers. The segmentation results obtained by the proposed model without and with regu-
larization are shown in the second column and third column, respectively. We can clearly
see that the segmentation results obtained by the proposed model without filtering process
are unsatisfactory. Conversely, the proposed model with additional filtering process extracts
the objects acceptably. Therefore, it is remarked that we can further take the smoothness of
the level set function as an additional step of the proposed algorithm in order to get better
segmentation results.

We finally list the algorithm steps in detail to conclude the proposed method as
Algorithm 1.
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Fig. 1 Segmentation results by the proposed model without and with using regularization for four images
with non-regular object boundaries or outliers. First column: original images; Second column: segmentation
results of the propose model without using any regularization; Last column: segmentation results of the
proposed model with smooth regularization

4 Numerical experiments

This section implements the proposed variational segmentation model by using the MAT-
LAB 2018b software in a personal computer with intel(R) Core(TM) i7-7700, CPU
3.60GHZ and memory 16.00GB and performs a series of different numerical experiments
on both synthetic and real images for the aim of verifying the theoretical analysis of the
proposed method and assessing the segmentation performance when comparing with the
related models such as CV model [4], LS model [14], LK model [17] and GCoV model
[40]. Since the proposed model is insensitive to the setting of two parameters A1, Ay which
would be justified in Fig. 8, we fix A; = Ay = 1 in our method for all our experiments.

4.1 Performances of proposed method

In the following, different types of numerical experiment are designed to demonstrate the
performance of the proposed model and algorithm.
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Algorithm 1 Pipeline of the proposed model for image segmetation.

Input: Original image /, parameters A1, A, the fuzziness degree m and tolerance error €.

Output: Binary segmentation map ¢;.

: Cluster center m(lo), mg)) are initialized randomly;

1

2: k=1;

3: repeat
4

Using cluster center m(lkfl)

to calculate the membership matric U® by:

X 1
uj j) < PR
ZZ d([_,- M )
i=1 d([_,-,m}k_b)
5: Using the membership matric U®, cluster center mgo) is update by:

M
N (k) .
6 Zj:l (”ij ) 1;

,i=1,2
! N o\ M
j=1 \4ij

6: k=k+1
7. until max(jm' — m V1 mE — V) > €
8: Using the obtained m, m>, the solution of level set function ¢* is computed by:

(I —mp)® = do(l —m2)
(I =mp)? + ol —m)*
9: Smooth the level set function ¢* by:

¢ =Go*¢"

¢" =

Theorem 1-2 in Sections 3 and 3.2 told us that the proposed model could get an exact
closed-form solution and the value of which is restricted in the range [—1, 1] for any
bimodal image. To verify these theoretical results of the proposed method, we illustrate
in Fig. 2 two simple experimental results with our proposed model segmenting an ideal
binary image and a real bimodal image. The second column and the third column of Fig. 2
show the segmentation results and 3D—plots of level set function for the proposed model,
respectively. We observe from the last column of Fig. 2 that the value of the level set func-
tion is indeed within the range [—1, 1] for the tested images, which is consistent with the
theoretical analysis.

To assess the performance of our proposed method in handling images without or with
noise, we demonstrate the segmentation results of three images in Fig. 3. The first column of
Fig. 3 shows two synthetic images with Guassian noise (zero mean and variance 0.005 and
0.01, respectively) and a real plane image. The second and third columns of Fig. 3 display
the corresponding segmentation results the proposed method and 3D-plots of final level set
functions, respectively. As can be observed, the proposed model works well on these images
as the noise level is not high.

As the last numerical example in this subsection, the proposed model is applied to
tackle images with blurry boundaries. In Fig. 4, we show three original images with weak
edges in the first column and the final segmentation results of our proposed model in the
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Fig.2 Segmentation results of the proposed model for two bimodal images. First column: original images;
Second column: segmentation results; Last column: 3D—plots of final level set function

second column, respectively. It can be clearly observed that the proposed method achieves
satisfactory segmentation performance for these tested images.

4.2 Comparison with FCM

The proposed model is very related with the FCM method due to the two region parameters
are computed by FCM. To compare the segmentation performance of our proposed method
and the FCM method, we in Fig. 5 demonstrate the segmentation results of two competing
methods for four real images. The top row of Fig. 5 shows the original image, the middle
and bottom rows illustrate the corresponding segmentation results of the FCM method and
our proposed method, respectively. We can observe from the middle row that the FCM
algorithm obtain unsatisfactory segmentation results, in which either existing non-smooth
object boundaries or appearing some noise points around the objects. On the contrary, our
proposed method can extract the desired objects acceptably. In addition, we list the CPU
runing times of the FCM and the proposed model in Table 1. We can observe that the CPU
times of the FCM is longer than that of our proposed model.

4.3 Comparisons with related VLS models

In this subsection, real images selected from different modalities are employed to compare
the proposed model with other related VLS models in terms of the efficiency, the accuracy
and the robustness against parameters.

In practice, the computation efficiency is important for image segmentation system,
which is usually determined by the segmentation scheme. We give detailed analysis of
computation complexity for our proposed algorithm and compare with other related VLS
algorithms [4, 14, 17, 40]. Assume a gray image with size of M x N. Our proposed algorithm
consists of two stages involving the computation of two region parameters and the final
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Fig.3 Segmentation results by our method for images without or with noise. First column: original images.
Second column: corresponding segmentation results; Last column: 3D—plots of final level set function

level set closed-form solution by the FCM and (23), respectively. For the FCM algorithm,
the computation complexity is O (M NkT) [1], where k is the number of cluster center, and
T denotes the iteration number. For the computation of closed-form solution, the computa-
tion complexity is O (M N) according to the (23). Thus, the total computation complexity
of our proposed algorithm is O (M NkT). Table 2 lists the compared results of computation
cost with other related VLS algorithms [4, 14, 17, 40]. In Table 2, Ty, T>, T3 and T4 rep-
resent different iteration numbers for corresponding segmentation algorithms, and they are
determined by the convergence speed of their corresponding segmentation algorithms.

To evaluate the efficiency comparison of the proposed model and other four contrastive
models, we illustrate the segmentation results by four compared models and our model
for three plane images and four other real images in Fig. 6, and we observe that all of
models obtain the satisfied segmentation results. Furthermore, we in Table 3 display the
corresponding computational CPU times (in seconds) for each of the five compared mod-
els. The proposed model is faster than the CV model and the LS model, but slower than the
LK model and the WH model. However, we observe that the high computational overhead
is mainly concentrates on estimating two values of cluster centers via the fuzzy c—means
method (Stage 1), which is shown in Table 4, and the final closed-form solution of level
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Fig.4 Segmentation results by our method for three real images with blurry boundaries. First column: orig-
inal images. Second column: corresponding segmentation results; Last column: 3D—plots of final level set
function

Fig. 5 Segmentation results by the FCM method and our proposed method for four real images. Top row:
original images; Middle row: segmentation results of the FCM algorithm; Bottom row: our proposed method
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Table 1 CPU times (in seconds)
of FCM and our algorithm for Images Imagel Image2 Image3 Image4
four images in Fig. 5

FCM 1.57 1.83 2.37 1.72
Ours 1.38 1.34 1.19 1.07

set function (Stage 2) has low computation consuming. A good trick to alleviate this lim-
itation is that we can pre—obtain the clustering centers for all of images to be segmented
through parallel computing and then solve the energy functional of level set function. By
this way, the proposed method is applicable to modularize and further easily integrated into
the automatic segmentation system.

In Fig. 7, we compare the segmentation accuracy of our model with other four competing
models. Three real images are shown in the first column of Fig. 7, and the corresponding
segmentation results of the CV model, the LS model, the LK model, the WH model and
our proposed model are demonstrated in the second column to the last column, respectively.
We can see from the second column to the fourth column that the CV model, the LS model
and the LK model perform weak and give uncorrect segmentation results. The segmentation
results of the WH model shown in the fifth column are visually better than the ones of
other three models, but there still exist some inaccurate edges delineation. However, it is
clearly illustrated that our proposed model yields the best segmentation results than other
four models.

Next, we test the parameters robustness of the proposed model and other four com-
pared models. In Fig. 8, we present the segmentation performance for a real image with
two boats by five competing models with setting four pair different parameters A1 and A;.
In this experiment, we choose (A1, A2) = (1,2), (A1, A2) = (2, 1), (A1, A2) = (2,3) and
(X1, 22) = (3, 2), respectively, for each row of Fig. 8, and we demonstrate the segmenta-
tion results and corresponding final 3D-plot of level set function obtained by five models
from the left column to the right column, respectively. It is clearly observed that the four
comparing models obtain different segmentation performance for different parameters set-
ting, which indicates that these methods are sensitive to the selection of parameters A; and
M2, that is, one need to finely tune the parameters in order to yield the best results, and thus
these methods are inapplicable to automatic segmentation process. Conversely, we from the
last column can conclude that our proposed method gets the visually identical segmentation
results for different parameters.

Since the numerical scheme presented for the LK model and WH model is proved
to be unconditionally stable, we just need to compare the insensitiveness of the pro-
posed model and other two models to the time step. Figure 9 displays the segmentation
results of a real image by three competing models with choosing five different time steps
t = 0.01,0.05, 0.1, 0.5, 1, respectively, from the left column to the right column for every
row. The second row and third row depict the segmentation results and the corresponding
3D-plots of level set function yielded by the CV model. The fourth row and fifth row give

Table 2 Complexity analysis of different segmentation algorithms

Algorithms CvV LS LK GCoV Ours

Complexity O(MNT) O(MNT>) O(MNT3) O(MNTy) O(MNEKT)
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Fig.6 Segmentation results by five competing models for seven real images. First column: original images;
From the second column to the last column: segmentation results of CV model, LS model, LK model, GCoV
model and ours model, respectively

y

= |
1|

Table 3 CPU times (in seconds) of five competing algorithms for seven images in Fig. 6

Images Images1 Images2 Images3 Images4 Images5 Images6 Images7
Ccv 0.5343 1.0797 1.1518 0.9644 1.0725 0.8175 1.0231
LS 0.5691 1.2554 1.2628 1.1146 1.2746 0.9015 1.2665
LK 0.3747 0.4338 0.4086 0.3820 0.3976 0.3498 0.3883
GCoV 0.3439 0.4781 0.5161 0.4705 0.5011 0.4163 0.5052
Ours 0.4838 0.8570 0.8428 0.8285 0.7497 0.6386 0.7152

Table 4 CPU times (in seconds) of two stages in our algorithm for seven images in Fig. 6

Images Imagesl Images2 Images3 Images4 Images5 Images6 Images7
Stage 1 0.2188 0.6162 0.5699 0.5228 0.4526 0.4014 0.4921
Stage 2 0.2650 0.2408 0.2729 0.3057 0.2971 0.2372 0.2231
Total 0.4838 0.8570 0.8428 0.8285 0.7497 0.6386 0.7152
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Fig.7 Segmentation results by five competing models for three real images. First column: original images;
From the second column to the last column: segmentation results of CV model, LS model, LK model, GCoV
model and ours proposed model, respectively

Fig. 8 Robustness comparison to parameters A and A, for five models. First column: original images. Sec-
ond column to Last column: segmentation results and corresponding 3D—plots of level set function of CV
model, LS model, LK model, GCov model and ours method, respectively, for different parameters choosing
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Fig.9 Robustness comparison to time step ¢ for CV model, LS model and our model. First row: test images;
Second row and Third row: segmentation results and corresponding 3D—plots of level set function by CV
model with different time step; Fourth row and Fifth row: segmentation results and corresponding 3D—plots
of level set function by LS model with different time step; Last row: segmentation result and corresponding
3—plot of level set function by our method

the segmentation results and the corresponding 3D-plots of level set function obtained by
the LS model. As can be seen, these two models obtain inconsistent segmentation perfor-
mance for different parameters setting. Nevertheless, we from the last row can state that our
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model achieves better segmentation performance due to it is completely free of setting time
step.

5 Discussion

It is worthy mentioning that our proposed method is only built on the simple intensity
features computed from images by the FCM method. Actually, complex images in the
real-world such as inhomogeneous images and natural images need more high-level fea-
tures to represent, the proposed model thus cannot handle such images well in its current
form. Recently, Convolutional Neural Networks (CNNs) as a type of powerful visual mod-
els of learning features from data has witnessed a new trend of development [13, 19, 23,
24, 42]. CNNs emphasizes the importance of automatic hierarchical feature extraction and
end-to-end task learning, which can yield more high-level features by assembling low-level
features layer by layer. Provided with enough training data, deep learning architectures have
been shown impressive performance on a diverse set of visual tasks, involving the global
scale image classification [13], semantic segmentation [23, 24, 44], video tracking [19] and
salience prediction [43]. In the future work, we would investigate more the integration of
the level set method with other machine learning methods or deep learning technology to
obtain the salient features of image and design high-performance model so that handle well
the images under more complex situation.

6 Conclusions

By combining the advantage of fuzzy c—means method, we in this paper propose a very
robust and efficient VLS model for segmenting the bimodal image. Unlike the conven-
tional VLS methods utilizing alternating minimization scheme, we first harness fuzzy
c—means algorithm to obtain an approximate cartoon structure of the encountered image
and from which we can previously estimate the intensity average values of foreground and
background regions. Then the two obtained prototype values are integrated into the vari-
ational binary level set framework, which leads to an energy functional of single variable
with regard to the level set function. By this way, the proposed model could be proved
strictly convex and produce a global segmentation result with a closed—form solution. The
numerical simulations perform on both synthetic and natural images confirm the compu-
tation effectiveness, segmentation accurateness and parameters robustness of the proposed
method, yielding excellent segmentation performance when comparing with other related
VLS models.
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Appendix A

Proof of Theorem 1
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Proof Ym,n > 0 with m + n = 1. For given ¢, ¢ € L? (£2) and ¢; # ¢, we have

(me1 +ngp +1)* = (m (g1 + 1) +n(d2 + 1))?
= m*(¢1 + D* +n* (g2 + D* + 2mn (¢1 + 1) (¢2 + 1)

< m2 @1+ 12+ (@ + 1%+ mn (@1 + 17 + @2+ 1)

= m(m+n) (¢1 + 1’ +n(n+m) (¢ + 1)
= m(p1 + 1>+ n(ps + )% (20)
Analogous with (20), we obtain
(mg1 +ngy — 1> = (m(¢p1 — 1) +n (g2 — 1))’
< m(@1 — 1)* +n(p2— 1) 1)
combining (20) and (21), we get the relation
E (mé1 +nd2) <mE (¢1) +nkE (¢2).
Hence, E (¢) is strictly convex in L2 (£2). The proof is completed. O

Proof of Theorem 2

Proof According to Theorem 1, we know that the proposed energy functional (13) has
unique global minimum ¢*. Therefore, we from the expression (16) can directly derive the
following relation:
M =m)? (6% +1) + 22 —m2)* (6% — 1) =0. (22)
Then we get the closed—form solution by explicitly solving the (22) as follows:
M —mp)? = r(I —m)?
o = — 1( m1)2 2( m2)2. 23)
M —m)” + (I —m2)
At the meantime, we can obtain the following relation

MU —mp)? —ra(I —ma)?
M = mp)? A+ aa —my)?
_ MU =m)?| 45 [ —mo)?|
T M| =m)? [+ a0 [ = ma)?|
= 1. (24)

j¢*| =

This completes the proof. O
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