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Abstract
The variations among shapes, sizes, and locations of tumors are obstacles for accurate auto-
matic segmentation. U-Net is a simplified approach for automatic segmentation. Generally,
the convolutional or the dilated convolutional layers are used for brain tumor segmentation.
However, existing segmentation methods of the significant dilation rates degrade the final
accuracy. Moreover, tuning parameters and imbalance ratio between the different tumor
classes are the issues for segmentation. The proposed model, known as Residual-Dilated
Dense Atrous-Spatial Pyramid Pooling (RD2A) 3D U-Net, is found adequate to solve these
issues. The RD2A is the combination of the residual connections, dilation, and dense ASPP
to preserve more contextual information of small sizes of tumors at each level encoder
path. The multi-scale contextual information minimizes the ambiguities among the tissues
of the white matter (WM) and gray matter (GM) of the infant’s brain MRI. The BRATS
2018, BRATS 2019, and iSeg-2019 datasets are used on different evaluation metrics to val-
idate the RD2A. In the BRATS 2018 validation dataset, the proposed model achieves the
average dice scores of 90.88, 84.46, and 78.18 for the whole tumor, the tumor core, and
the enhancing tumor, respectively. We also evaluated on iSeg-2019 testing set, where the
proposed approach achieves the average dice scores of 79.804, 77.925, and 80.569 for the
cerebrospinal fluid (CSF), the gray matter (GM), and the white matter (WM), respectively.
Furthermore, the presented work also obtains the mean dice scores of 90.35, 82.34, and
71.93 for the whole tumor, the tumor core, and the enhancing tumor, respectively on the
BRATS 2019 validation dataset. Experimentally, it is found that the proposed approach is
ideal for exploiting the full contextual information of the 3D brain MRI datasets.
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1 Introduction

Gliomas can affect the normal working of the human brain. Gliomas can be categorized
into two grades: high-grade glioblastoma (HGG) and low-grade glioblastoma (LGG) [20],
in which each grade has the number of classes. Based on the grading system, it is cru-
cial to make the prediction and rate of the tumors. The MRI technique is mainly used
for an in-depth analysis of the brain structure. However, the unusual variations among the
shapes, size, and location of a tumor [23] in the MRIs are obstacles to developing an effi-
cient, accurate algorithm. Feature learning has the great potential to handle such kind of
problem. Classical existing methods also delivered excellent results. However, in the tra-
ditional approach, the unfeasible study of brain tumors makes impractical. In comparison
to them, the process of feature learning gives an abstract representation of data. Figure 1
shows the process of feature representation with the Alexnet architecture [28]. The mod-
ified Alexnet architecture has five convolution layers to learn features. A pooling layer is
employed between every pair of convolution layers to reduce the original input resolution.
Furthermore, two convolutional layers of kernel size of 1×1 are used to reduce the features.
The reduced features of the last convolution layer match the number of labels of a dataset.
Finally, the output reflects the probability distribution of different classes or labels by using
the softmax.

Figure 1 shows a 2D architecture in which each convolution layer, containing several
2D filters or kernels. Each filter yields the feature maps when applied to the channels of
the previous layer. For example, 24 filters in the first convolution layer after convolving the
input of 3 channels yield output feature maps 24 × 128 × 128. These output feature maps
then input to the next convolution layer and so on. To drive the generalized formula for the
output feature maps of each layer l, let Cl denoting the convolution filters or kernels and
pz

l−1 denoting the 2D array corresponding to the zth input. Then the output feature map of
each kernel of layer l is

qkernel
l = f

⎛
⎝

Cl−1∑
z=1

Weight
kernel,z
l � pz

l−1 + bkernel
l

⎞
⎠ (1)

where Weight
kernel,z
l denoting the weight of each kernel, bkernel

l denoting a bias, and �

representing convolution operation. f is a Leaky Rectified Linear Unit (Leaky ReLU) non-
linear activation function. It has α as an extra parameter to prevent the problem of zero
gradients during the training. Mathematically, it can be written as

f
(
xj

) = xj + αxj =
{

xj if xj > 0

αxj if xj ≤ 0
(2)

Fig. 1 Feature representation of the modified Alexnet architecture. Each convolution layer (green) is of a
kernel size of 3 × 3. A stride of size two is used with each pooling layer (yellow) to reduces the input
resolution. The last two convolution layers reduce the number of channels or features before the final output
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where xj denoting the input features and f
(
xj

)
representing the output features. The spa-

tial dimensions of the output feature maps of each convolution layer reduce by a pooling
layer. This spatial reduction is possible by using a stride of size 2 in the pooling layer.
Mathematical expression for each pooling layer can be

ykernel
l = max

(
qkernel
l

)
(3)

where ykernel
l denoting feature maps of pooling layer l for the kernelth input feature map(

qkernel
l

)
, max (.) denoting the max-pool operation. Finally, the softmax activation is per-

formed on the reduced feature maps of the last 1×1 convolution to generate the probability
distribution of different classes. Mathematically, the softmax activation is

Oc = exp
(
qc
L

)
∑C

c′=1 exp
(
qc′
L

) (4)

where the classes are denoting by the C and the last layer is representing by L.
Figure 1 reflects the deep Convolutional Neural Networks (CNNs). However layers in

the deep models have complex inter-connections for better learning. A Fully Convolutional
Neural Network (FCNN), especially, U-Net is very popular in biomedical image segmen-
tation [42, 55]. The U-Net architecture gains popularity due to skip-connections [39, 56].
Skip-connections perform the concatenation operation on the maps of the different parts of
a U-Net model. The potential of skip-connections can be understood from basic FCN archi-
tecture [30] (Fig. 2a) and different variations of U-Net models (Fig. 2b, and c). In Fig. 1, the
feature maps of each convolution layer are reduced by the max-pooling layer. Therefore, the
size of the output is smaller than that of the input. This problem can be resolved by applying
the upsampling layer. For example, on upsampling the last pooling layer (in Fig. 2a) at 32,
the resulting output size is equal to the input patch. Furthermore, the part with the pooling
layers is known as the encoder, while the upsampling part is the decoder. However, limited
contextual information is a critical issue in the deeper layers, which can be addressed by
combining the predictions of the different layers (see FCN − 8s in Fig. 2a). In this way,
the skip-connections combine in-depth, coarse, semantic information of the decoder part
with the encoder part’s shallow, adequate location information. The FCN architecture is
depicted in Fig. 2a. All the U-Net architectures, either with non-residual convolution blocks
(Fig. 2b) or with residual convolution blocks (Fig. 2c), are followed the basic design of the
FCN. However, the lack of non-linearities in the decoder part ruled out the use of FCN for
the medical image segmentation. In the meantime, U-Net is successfully resolving the defi-
ciency of the non-linearities by adding the convolution between the upsampling layers (see
lower part of Fig. 2b and c). Furthermore, U-Net models’ strength is improved with the con-
catenation operation instead of the simple addition operation (see FCN − 8s in Fig. 2a).
Simultaneously, depth is an essential criterion for U-Net models (for example, Fig. 2b) to
improve segmentation accuracy. However, the gradients may be vanishing with such deep
models. The vanishing gradients’ problem is resolved by adding the residual blocks in the
U-Net (Fig. 2c). Furthermore, a deep study of U-Net architectures for medical image seg-
mentation can be accessed by a recently published survey paper [29]. The mathematical
notations of convolutions and upsampling layers are defined in Section 3.

Traditional U-Net models either with the non-residual (see Fig. 2b) or residual (see
Fig. 2c) or dense blocks [22] perform a sequence of convolution and strided convolution
or max-pool operations on the original images, which can reduce the spatial dimensions
of input images and increase the receptive field size in the sub-sampling process. While
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Fig. 2 Outline of FCN and U-Net models for medical image segmentation. a FCN b U-Net without residual
block c U-Net with residual block

the upsampling operation recovers the reduced size of the input images; however, the pos-
sibility of losing the critical information of original images by the sub-sampling process
can not be completely ruled out. To prevent this loss, dilated convolutions [53] can be used
to learn more contextual information on the encoder path. The similarity between dilated
and ordinary convolutions is that the convolution core’s size is the same. At the same time,
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the dilated convolution increases the receptive field size; however, the number of training
parameters does not increase. Therefore, the dilated based models are not only limited to
the natural images, but they are also continuously improving the segmentation accuracy in
the medical domain [12, 13]. Furthermore, Devalla et al. [11] presented a U-Net model with
equal or larger rates of dilation in the different parts to learn more contextual information.
However, large or equal dilation rates introduces the gridding problem [54] (Fig. 3a). A sim-
ilar problem of large dilation rates also exists with atrous spatial pyramid pooling (ASPP)
[9]. ASPP in which multiple dilated layers have a parallel arrangement, information of these
multiple-scales, also known as multi-scale information, can further boost the segmentation
accuracy. Dilation rate increases the receptive field size by inserting the extra zeros between
the kernel elements. This gap is continuously widening when a series of convolution layers
have either similar or larger dilation rates. Here, the sparsed kernel of convolutions fails to
capture any local information. In this way, the result of the gridding problem is the local
information’s complete loss. This loss of local information may degrade the final accuracy.
However, the gridding effect can be minimized using different dilation rates [48] (Fig. 3b).
Moreover, in U-Net architecture, the mapping of information between encoder and decoder

Fig. 3 An instance of gridding problems. a depicts three convolution layers with equal dilation rates (r = 2)
with kernel size 3× 3. The pixels (receptive field, denoting by blue) contribute to calculating the center pixel
(representing by red). The similar dilation rates through three convolution layers reduce the local information
because zeros are inserting between pixels. This effect is diminished when b different dilation rates (r =
1, 2, 3) are used. These rates are preventing the checkerboard patterns, which are introducing due to equal
dilation in (see a) or large dilation rates in ASPP [9]. Source [48]
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parts is different, which arises the semantic gap in the architecture. It can reduce the func-
tionality of U-Net models. Zhou et al. [56] proposed to minimize the semantic gap by
improving skip-connections. However, this improvement increases the complexity due to
the multiple paths between the encoder-decoder sub-networks.

In the above discussion, U-Net architectures have followed 2D convolutions, while, sev-
eral researchers extended their works into 3D convolutions [1, 20, 46] with excellent results
to solve the problem of the brain MRI segmentation. In this work, we also add depth to a
3D U-Net model by employing the residual connections [15] to resolve the issue of van-
ishing gradients. However, residual connections used element-wise addition operations that
gives a limited improvement in the segmentation accuracy. At the same time, concatenation
operations are known to improve the width of the channels. Therefore, we also employed
concatenations to fuse the features of different sub-networks of a 3D U-Net and in atrous-
spatial pyramid pooling (ASPP) [9] blocks. However, to concatenate the features of multiple
scales in ASPP, we used the recently proposed dense connections [19]. While dense connec-
tions resolve the vanishing gradients problem, they also offered features reusability property
by concatenating all the layers’ feature maps. That means the input to a particular layer
simultaneously has the coarse, semantic information of the deeper layers, and shallow, ade-
quate location information of the lower layers. This information is further improved in the
deeper layers. Furthermore, using an appropriate growth-rate, dense connections reduce the
parameters generated by the residual networks. This reduction is essential to demonstrate
maximum accuracy with minimum learned parameters. Moreover, we adopt 3D dilated
convolutions and preventing the gridding problem by employing different rates of dila-
tions. Finally, we use dense ASPP blocks on the skip-connections’ output feature maps to
learn multi-scale features to improve the segmentation outcomes. This multi-scale learning
from the redesigned skip-connections also minimizes the semantic gap without introducing
complexity.

Inspired by the success of the residual and dense connections, dilation, and the ASPP
techniques, we have proposed a variant form of 3D U-Net with the combination of the resid-
ual connections, dilation, and dense ASPP. We have offered an RD2A (Residual-Dilated
Dense ASPP) 3D U-Net model. The key contributions of this study are given below:

– A variant form of 3D U-Net. We used combined approach of residual connections and
densely connected ASPP.

– To avoid possible loss of information during training in the proposed model, we choose
appropriate rates of dilation layer to gain the proper size of the receptive field on
BRATS datasets. Additionally, we used dense connections among the multiple sizes of
the receptive field in ASPP on the feature maps of a residual-dilated 3D U-Net model
for exploiting the full contextual information of the 3D brain MRIs datasets.

– We have worked on BRATS 2018 and BRATS 2019 datasets, where the proposed model
achieved state-of-the-art performances compared to other recent methods in terms of
both parameters and accuracy.

– We have worked on iSeg-2019 datasets and achieved the best scores on the testing
dataset against the best method of the iSeg-2019 validation dataset.

2 Related work

U-Net [39] introduces the concept of skip-connections. Such connections are useful to pre-
serve the original information at each level of the encoder. At the decoder, the information
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concatenates with its predecessor’s level information. These connections open the door of
a deep network to better understand biomedical images’ complex structure by using local
and global contextual information. Marcinkiewicz et al. [33] used cascaded U-Net for brain
segmentation, in which they used the first step works as a detection while the second as a
multi-class classifier. Hu et al. [17] proposed a fusion method to concatenate the features of
three 2D U-Net networks. Chen et al. [10] replaced the block of a residual 3D U-Net with
the inception block. Two layers replace each 3D layer in a block: one for spatial informa-
tion and the other for channel representation [50]. Chen et al. [10] presented their work with
the parameters reduction of a 3D convolution. However, huge parameters exist due to the
increased number of layers. Kermi et al. [26] proposed a 2D FCN to resolve the high mem-
ory demands of 3D brain MRI. Residual connections are used to build a profound network;
therefore, the resulting model generates many parameters during training. A combination
of two cost functions was used to balance the different classes. Isensee et al. [20] proposed
a residual encoder-decoder architecture with a 3D UpSampling layer on the resulting maps
of different blocks at decoder sub-network to extract the deeper features. Xu et al. [51] pro-
posed a segmentation task with the combination of three 3D encoder-decoder models. The
output of the first model worked like the input of the next architecture. Wang et al. [46]
proposed similar approach to Xu et al. [51] without end-to-end networks. Mehta et al. [34]
proposed a 3D U-Net similar to Isensee et al. [20], they used transposed convolution instead
of the UpSampling layer. Roy et al. [40] implemented large dilation rates in ASPP. However,
the complexity was a major problem with the combined orthogonal networks. Ensembling
of different models was also proposed to improve the segmentation results. Kori et al. [27]
and Kamnitsas et al. [23] implemented the idea of ensembling on different models with a
majority voting scheme.

As mentioned earlier, the profound variations of U-Net architectures can learn signif-
icant features about unhealthy brain structures. Hence, the most straightforward strategy
with deep U-Net architectures is residual learning. The residual networks have several
direct connections between layers to prevent the problem of vanishing gradients. Therefore,
nearly all the above-discussed methods used residual connections. However, the genera-
tion of huge parameters is a severe problem with residual networks. Furthermore, designing
skip-connections with the traditional approach hinders U-Net architectures’ potential from
learning sophisticated information. Moreover, the system’s complexity increases with the
combination of various architectures, such as cascaded U-Nets, ensembling, etc. In our
work, we also used the residual network for the encoder sub-part. Here, dilated convolu-
tional layers are employed. In this way, our redesigned encoder sub-network can learn more
contextual information from input brain MRIs than the traditional U-Net architectures. Fur-
thermore, we used dense ASPP blocks to design the skip-connections to allow our network
to learn more fine-grained multi-scale features. The dense connections reduced the param-
eters and offered more scaling [52] to each dilated convolution by improving the channels’
width. This scaling factor in multi-scale features minimizes the semantic gap. In this way,
our proposed architecture without adding any complexity can solve all the previously pro-
posed methods’ problems. Furthermore, a comparison between the proposed dense ASPP
blocks and the architecture of Zhou et al. [56] is depicted in Fig. 4.

3 RD2A (residual-dilated dense ASPP 3D U-Net)

Figure 5 shows our proposed architecture. The combined approach of the residual connec-
tions, dilation, and dense ASPP consists of a Residual-Dilated and Dense ASPP blocks.
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Fig. 4 Outline of skip-connections variations, a illustrates the proposed dense ASPP blocks on the skip-
connections. Conv in an oval shape denoting the standard convolution layers. Simultaneously, the solid red
and blue lines represent the pooling and the upsampling operations while their dashed forms denote the
repetitive pooling and the upsampling processes in b. In the meantime, the concatenation operations are
indicating in gray. Furthermore, small circular shapes (blue) representing the different dilation rates of the
convolutions, and the black oval shapes denoting the 1 × 1 × 1 convolutions. The concatenated operations
of multiple dilated convolutions deduced more fine-grained multi-scale features from high and low-level
input resolutions (indicating by the encoder). These multi-scale features further improved in the decoder part.
b illustrates the UNet++ in detail. The numbers represent the concatenation operations between multiple
encoder-decoder sub-networks, which will be continuously increasing by adding depth to the network. As a
consequence, redesigned skip-connections in UNet++ increases complexity. Moreover, the solid orange line
in a and b represent the output

Residual-Dilated blocks are in the first part of the RD2A 3D U-Net model and the applica-
tion of dense ASPP on the feature maps of the Residual-Dilated blocks. The residual-dilated
block shares a common idea of a dilated convolutional layer. Figure 6 shows the design of
the residual-dilation block. To learn more contextual information, we have used dilated con-
volutional with the rates 1 and 2 in each residual-dilation block. Unlike Wang et al. [46], we
implement the different dilation rates within each residual-dilation block because the same
rates introduce the gridding problem [48]. In the proposed architecture, we have used 4
residual-dilation blocks. After each block, strided convolutional is used to reduce the input
resolution. The dense ASPP block is applied to the feature maps of the first three residual-
dilation blocks before the sub-sampling layers. Therefore, the reduced size of feature maps
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Fig. 5 Proposed architecture. RD2A 3D U-Net model is divided into a lower part (encoder sub-network) and
a higher part (decoder sub-network). The lower part has the residual-dilated blocks (red). For each residual-
dilated block (Fig. 6), two different rates of dilated convolutional layers are used. The dense ASPP blocks
(purple) are employed after each upsampling layer (violet) on the maps of the lower part in the higher part
before each concatenation operation (symbol C in an oval shape). For each Dense ASPP block (Fig. 7), dense
connections are used among the three different parallel dilated convolutional layers

is processed via the multiple parallels dilated layers on different rates with dense connec-
tions to exploit the multi-scale contextual information, and non-dilated layer implemented
to deduce global contextual information. Figure 7 exhibits the dense ASPP block of our
proposed architecture. Here, we used four different dilated layers with rates of 1, 2, 3, and
5. The residual-dilation and dense ASPP blocks exist at the encoder part of our proposed
architecture. In the decoder path, the input resolution at the corresponding level’s predeces-
sor of encoder path recovers by using a 3D UpSampling layer of size 2 × 2 × 2. In our
proposed approach, each level of the encoder path preserves more contextual information
with the concatenation of generated features at each level of the decoder path.

We divide the proposed architecture into two parts: residual-dilation blocks at encoder
RE and the upsampling process at decoderRU . We use 3D convolutional filters or kernels to
transform the 3D raw brain MRIs into our architecture features. For the first convolutional
layer, when a kernel of size 3×3×3 (denoting byWeight

1,4
1 ) is applied to the input patch of

Fig. 6 Residual-dilation block. The two different dilation rates are used to enhance the sizes of the receptive
field in each block
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Fig. 7 Outline of a dense ASPP block, a illustrates a dense ASPP block in detail, b demonstrate the idea of
the concatenation operations (denoting by a symbol c in oval shape) in the parallel dilated layers. The input
feature maps to a layer is the combination of output feature maps of all previous layers. For example, the
input to a last dilated convolution (blue) includes the output feature maps, x−1, x0, x1 and x2 because of the
dense connections

size 128×128×128 (representing by [IF ]−1), then feature map of size 1×128×128×128
is extracted. 4 are the number of modalities or channels which are used to extract the input
patches. Since 24 filters (denoting by

∑4
z=1 Weight

24,4
1 ) are in use. Hence, 24 × 128 ×

128×128 (denoting by [IF ]0) will be the final size of the features for the first convolutional
layer. Mathematically, the procedure of features extraction for the first weighted layer can
be written as

[IF ]0 = f

⎛
⎝

4∑
z=1

Weight
kernel,z
1 � [IF ]−1 + bkernel

1

⎞
⎠ (5)

where bkernel
1 is bias term. � representing convolution operation. f is a Leaky Rectified

Linear Unit (Leaky ReLU) non-linear activation function which was defined in (2).

27078 Multimedia Tools and Applications (2021) 80:27069–27094



[IF ]0 will be input to our first RE to generate the feature maps [RE]F0 in (6). Since RE

denoting a residual-dilated block of two convolutional layers. Hence, for each layer of RE ,
we use a similar idea of feature extraction, which was explained in (5).

[RE]F0 =

⎧⎪⎨
⎪⎩

f
(∑24

z=1 Weight
kernel,z
2 � [IF ]0 + bkernel

2

)

f
(∑24

z=1 Weight
kernel,z
3 � [IF ]1 + bkernel

3

) (6)

where Weight
kernel,z
2 and Weight

kernel,z
3 are the filters of the second and third convolu-

tional layers, respectively. [IF ]0 and [IF ]1 are the input features of sizes 24× 128× 128×
128.

By taking inspiration from (6), the generalized formula of the feature maps for the
remaining RsE of the encoder sub-part can be written as

[RE]FD
= f

⎛
⎝

Cl−1∑
z=1

Weight
kernel,z
l � [RE]F(D−1) + bkernel

l

⎞
⎠ (7)

where D = 1, 2, 3 denoting the current RE of the encoder. For each RE , Cl representing
number of filters of a layer l where l=1, 2, bkernel

l representing the bias term of layer l, and
[RE]FD

denoting feature maps. In the meantime, [RE]F(D−1) representing the input maps of
previous RsE .

After the feature extraction from the encoder part, we perform the up-sampling operation
RU in the decoder part. Here, the final input resolution of encoder path upsamples to its
predecessor’s input size. To explain the currentRU , consider a tensor of the shape 192×16×
16 × 16 representing the previous convolutional layer’s feature maps. These feature maps
are resized on applying an UpSampling layer of factor 2× 2× 2. After this step, the size of
feature maps at currentRU is twice than that of its correspondingRE , i.e., 192×32×32×32
at RU and 96× 32× 32× 32 at RE . To exactly matches the sizes of features at both ends, a
3D convolution with filter size 3× 3× 3 is applied on RU . After then, a dense ASPP block
of three parallel dilated layers is applied on RE . Finally, two tensors (one of RU and other
of RE) of the shapes 96× 32× 32× 32 are concatenated. A 3D convolutional layer is then
applied to the combined tensor of the shape 96× 32× 32× 32 for the remaining RsU . The
general formula for each level of RU can be summarized in (8a)

[R]UD
= UpSampling3D (2 × 2 × 2) ([RE]FD

) (8a)

[R]UD
= f

⎛
⎝

Cl−l∑
z=1

Weight
kernel,z
l � [RE]F(D−1) + bkernel

l

⎞
⎠ (8b)

[R]UD
= f

⎛
⎝

C0∑
z=1

Weight
kernel,z
l � [RE]F(D−1) + bkernel

l

⎞
⎠ (8c)

where [R]UD
denoting current RU and [RE]FD

representing current RE , at D=1, 2, 3.
Equation (8a) denoting a upsampling process of size 2×2×2 onRE . [RE]F (D−1) represent-
ing the previous RE . Equation (8b) representing a dense ASPP block of three parallel layers
where layer l=1, 2, 3. Equation (8c) denoting a single convolution layer after the concatena-
tion layer. Finally, the last RU is reduced to match the brain MRIs’ labels, followed by the
softmax activation. The shape of the tensor after the softmax function is 3×128×128×128.
After resampling, this shape is changed to the size of the original MRI for the submission
purpose.
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4 Experiments

We have used three benchmark datasets to validate our proposed architecture: BRATS 2018
and 2019 datasets [3–6, 35], and the six-month infant brain MRI iSeg-2019 dataset [44].
BRATS dataset is for brain tumor segmentation and the iSeg dataset for infant brain tissue
segmentation. The difference for each subject among the BRATS and the iSeg datasets is
the number of modalities; BRATS datasets have four different modalities, while the iSeg-
2019 dataset has two different modalities. The description of BRATS datasets is discussed
in the Section 4.1.1. The information of the iSeg-2019 dataset is given in the Section 4.2.1.
The essential metrics used by the organizers in the MICCAI BRATS and iSeg competitions
are explained in Section 4.4. Furthermore, we have worked on quantitative and qualitative
analysis of BRATS and iSeg-2019 datasets.

4.1 Brain tumor segmentation challenge

4.1.1 Data description

BRATS 2018 and 2019 training sets contain 285 and 335 patients, respectively. According
to the gliomas classification, both high-grade and low-grade patients are available in the
BRATS training sets. We used 210 high-grade and 75 low-grade patients from the BRATS
2018 training dataset. In the meantime, 259 patients of high-grade and 76 patients of low-
grade are selected from the BRATS 2019 training set. Each patient has four types of MRI:
native (T1), post-contrast T1-weighted (T1ce), T2-weighted (T2) and Fluid Attenuated
Inversion Recovery (FLAIR). The organizers performed different pre-processing steps on
the entire data, such as skull-stripping, re-calculation to the equal 1mm3 resolution, and all
the scans of each case were co-registered to magnify the unhealthy tissues. The code of all
pre-processing steps is now publicly available1. The manual segmentation of the entire train-
ing dataset was performed by the experts and provided by the organizers. 240×240×155 is
the dimension of each MRI modality. For each subject, the annotated labels has the values
of 1 for the necrosis and non-enhancing tumor (NCR/NET), 2 for peritumoral edema (ED),
4 for enhancing tumor (ET), and 0 for background. The segmentation accuracy is mea-
sured by several metrics, where the predicted labels are evaluated by merging three regions,
namely whole tumor (Whole Tumor or Whole: label 1, 2 and 4), tumor core (Tumor Core
or Core: label 1 and 4), and enhancing tumor (Enhancing Tumor or Enhancing: label 1). We
have evaluated our proposed model on validation datasets, 66 patients in the BRATS 2018,
and 125 patients in BRATS 2019. Each patient in the validation datasets has no truth label.

4.2 Infant brain MRI segmentation challenge

4.2.1 Data description

In the MICCAI 2019 infant brain MRI competition, each team has access to three different
datasets. 10 subjects are available in the iSeg-2019 training set. The validation dataset con-
tains 13 subjects of one location, while 16 cases of three sites are available in the testing set.
Each subject consists of two different MRI modalities: T 1 and T 2. The ground truth values
are available with the training dataset. The dimension of each modality is 144× 192× 256.

1https://cbica.github.io/CaPTk/preprocessing brats.html
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For each subject, the annotated labels has the values of 1 for the cerebrospinal fluid (CSF), 2
for gray matter (GM), 3 for white matter (WM), and 0 for background. At around 6 months
of age, the intensity ranges of voxels in GM and WM in structural MRI images are largely
overlapping (especially around the cortical regions), leading to the ambiguities creating the
most challenge for tissue segmentation. The subjects of the validation and testing sets have
no truth labels.

4.3 Implementation details

In this work, bias field correction and normalization steps are performed on each training
dataset. During training, we performed the five-fold validation on each dataset. 4 × 128 ×
128 × 128 is the input size for BRATS datasets while 2 × 32 × 32 × 32 is the size for the
iSeg-2019 dataset. The batch size for the BRATS training datasets is 1, while the batch size
is 4 for the iSeg-2019 dataset. We used Keras to build the proposed architecture. We have
used Adam optimizer with 4× 10−5 learning rate and a weight decay of 1× 10−5. We train
our architecture for 60000 iterations with the BRATS training datasets. In contrast, 112800
iterations with the iSeg-2019 training dataset. Data augmentation have been undertaken on
the fly for each patch, including flipping horizontally and rotating a random 90◦ to avoid the
over-fitting problem during training. We used the Leaky ReLU non-linearity during training.
We implemented instance normalization [20] because of a small batch size. The loss func-
tion is an important hyper-parameter during the training process. It helps balance the classes;
in the BRATS and the iSeg training datasets, healthy tissues are bigger than unhealthy tis-
sues. Different loss functions were previously proposed [14, 21, 24, 41]. We found that
cross-entropy loss is not ideal with such kind of highly unbalanced datasets. Multi-label
dice loss function has shown the remarkable results in highly imbalanced datasets [20, 36,
46]. We have used the loss function [36], while the number of samples per batch is one. (9)
shows the mathematical representation of loss function.

Loss = −2
∑
d∈D

∑
j predj,d truthj,d + r∑

j predj,d + ∑
j truthj,d + r

(9)

where predj,d and truthj,d are the prediction obtained by softmax activation and ground
truth at voxel j for class d, respectively. D is the total number of classes.

4.4 Evaluationmetrics

For evaluating the BRATS and the iSeg datasets, we use the various metrics: the Dice Sim-
ilarity Coefficient (DSC), the sensitivity, the specificity, the Hausdorff95 distance or mod-
ified Hausdorff distance (H95), and the average surface distance (ASD). Mathematically,
each metric can be written as:

DSC = 2T P

2T P + FP + FN
(10)

Sensitivity = T P

T P + FN
(11)

Specif icity = T N

T N + FP
(12)

H95 = max
{
max
y∈G

d (y, S) ,max
y∈S

d (y,G)
}

(13)
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ASD = 1

|G|
∑
x∈S

d (x, S) (14)

where T P , FP , T N , and FN are the number of true positive, false positive, true negative,
and false negatives voxels, respectively. For both of H95 and ASD, G and S are truth and
segmented sets of voxels, respectively. For H95, d(y, S) is point-to-set distance defined by:
d(y, S)=min

x∈s
‖y − x‖, with ‖.‖ denoting euclidean distance. We use the similar notation of

H95 for ASD and |.| denoting the cardinality of a set.
In the BRATS and the iSeg challenges, the ranking of the teams depends on the dice

scores. We also report the best method based on the highest average dice scores in our
work. DSC, sensitivity, and specificity evaluate the voxel-wise overlap between the truth
and the segmented MRIs. H95 and ASD are the spatial distance-based metrics. The earlier
is used for the BRATS datasets while the last one is used for the iSeg datasets. Further-
more, another name of metric H95 is modified hausdorff distance, commonly used in iSeg
competitions.

5 Quantitative analysis

5.1 Brain tumor segmentation challenge

To check the capability of proposed architecture, we build four different architectures
based on our proposed model. For the first architecture, Residual 3D U-Net, we replaced
the residual-dilated blocks with residual blocks. Also, the dilated convolutional layers
are replaced with non-dilated convolutions within each block. Moreover, the dense ASPP
blocks are removed from the proposed architecture. For the second architecture, Residual-
Dilated, we keep the residual-dilated blocks and remove the dense ASPP blocks from
our proposed architecture. For the third architecture, Residual-Dense-Dilated, we imple-
ment the dense connections within each residual-dilated block and remove the proposed
architecture’s dense ASPP blocks. For the fourth architecture, Residual-Dilated-ASPP, we
keep the residual-dilated blocks and remove the dense connections from the ASPP blocks.
Table 1 depicts the details of the different models, including the proposed architecture.
All the architectures are trained and validated with the BRATS 2018 datasets. To train
each architecture, we used the BRATS datasets’ training schemes, which were explained
in the implementation details Section 4.3. The best fold of each architecture is used on
the full training and the validation sets for the predicted MRIs. These predicted MRIs are
then submitted to the organizers2 for final scores. Each architecture’s scores are based
on several metrics: the Dice Similarity Coefficient, the sensitivity, the specificity, and
the Hausdroff95 distances (H95). These metrics were explained in the evaluation metrics
Section 4.4.

Table 2 depicts the results of all the models that include our proposed architecture. The
number of parameters with the Residual-Dense-Dilated model is lowest compared to the
algorithms: Residual 3D U-Net, and Residual-Dilated. We do not reach the Residual-Dense-
Dilated model in terms of parameters with our proposed model and Residual-Dilated-ASPP
architecture due to the presence of three parallel dilated convolutional layers in ASPP. Our
proposed model’s number of parameters is reduced compared to the Residual-Dilated-ASPP

2https://ipp.cbica.upenn.edu
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architecture by introducing the dense connections with a growth rate of 12 in ASPP. For
the Residual-Dilated model, the dice scores of the three types of cancer tumors increase (on
validation dataset) compared to the Residual 3D U-Net model. The increased dice scores
reaffirm the potential of the dilation blocks with residual connections. For Residual-Dilated-
ASPP and Residual-Dense-Dilated models, the whole tumor’s scores for the sensitivity and
the H95 distances increase, and the specificity decreases; thereby, the occurrence of the
false positives increases.

The Residual-Dilated model compared to the models: Residual-Dense-Dilated and
Residual-Dilated-ASPP, the sensitivity scores and the H95 distances of the whole tumor
decrease, and the specificity increases; thereby, the occurrence of false negatives increases.
Our proposed model can balance the events of false positives and false negatives based on
the combined approach of the residual network, dilation, and dense ASPP. For the Residual-
Dilated, Residual-Dense-Dilated, and Residual-Dilated-ASPP models, the tumor core’s dice
scores and enhancing tumor increases. Also, the sensitivity and the H95 distances decrease
for the tumor core and enhance tumor but increase the specificity. Thus, the aggregation
process improves the dice scores of the tumor core and the enhancing tumor. In comparing
our proposed architecture, the Residual 3D U-Net model obtained the Dice similarity coef-
ficient’s low scores, a deciding metric for the best methods in BRATS competitions. The
combined approach of the residual connections, dilation, and ASPP gives excellent results,
as shown in Table 2 in terms of parameters.

5.1.1 Comparison with the best methods

Table 3 shows the comparison of our proposed work with the state-of-art methods of
the BRATS 2018 validation dataset [2, 7, 8, 10, 14, 17, 18, 25, 27, 32, 33, 37, 38,
43, 45, 47, 49]. Here, we compared the results based on the dice scores. The proposed
architecture secures best average scores against all the other algorithms, even obtained
the higher scores than the ensembling of several architectures [2, 25, 27]. Furthermore,
our work can save the time which is spent in performing the complex post-processing
Conditional Random Field (CRF) Chandra [ResNet + CRF, V-Net + CRF] et al. [8]
and test-time augmentations (TTA) Wang [3D UNer + TTA, Multi-class WNet + TTA]
et al. [47], common strategies for removing the false-positive voxels. Based on the
higher dice scores, our proposed model is more generalized on the unseen validation
dataset.

We choose three different algorithms from Table 3 to justify our proposed approach of
the residual connections, dilation, and dense ASPP. These three algorithms are: Chen et al.
[10], Sun [DFKZ Net] et al. [43], and Chandra et al. [8]. Chen et al. [10] performed the divi-
sion operation on a 3D weighted layer within each block of a residual network; the resulting
layers were increased the number of parameters. Our proposed architecture scores exhibit
the necessity of a 3D Convolutional layer to process the 3D brain MRIs. Sun [DFKZ Net]
et al. [43] used a residual-based 3D U-Net model of Isensee et al. [20] with BRATS 2018
datasets; non-dilated convolution layers were used in the first part of the architecture. To
reaffirm the potential of enhanced sizes with the residual part, we removed the dense ASPP
blocks from our proposed architecture; the resulting architecture became a Residual-Dilated
model (see row number 2 of Table 2). Its scores reaffirm our contribution of implement-
ing the different dilation rates to preserve more information about the tumor’s small sizes.
Chandra et al. [8] enhances the sizes of the receptive field to extract the complete informa-
tion of an image [31] just before the softmax activation. For this, an atrous spatial pyramid
pooling (ASPP) was used. The number of parameters was increased as three residual U-Nets
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Table 3 Performance evaluation of different architectures on the validation dataset (BRATS 2018)

Architectures Whole tumor Tumor core Enhancing tumor

Albiol [Ensemble] et al. [2] 88.10 77.70 77.30

Carver et al. [7] 88.00 77.00 71.00

Chen et al. [10] 89.35 83.09 74.93

Chandra [ResNet] et al. [8] 86.80 80.10 74.00

Chandra [ResNet + CRF] et al. [8] 87.20 79.90 74.10

Chandra [V-Net] et al. [8] 89.90 81.00 76.60

Chandra [V-Net + CRF] et al. [8] 90.10 81.30 74.93

Feng [Model 1] et al. [14] 90.15 82.37 76.88

Feng [Model 2] et al. [14] 90.66 82.48 76.77

Feng [Model 3] et al. [14] 90.40 83.06 76.95

Feng [Model 4] et al. [14] 89.90 81.04 77.07

Feng [Model 6] et al. [14] 89.17 81.49 76.16

Hu et al. [17] 88.00 74.00 69.00

Hua et al. [18] 90.48 83.64 77.68

Kao [Average scores of three 3D U-Net
models] et al. [25]

89.40 77.50 76.40

Kori [3D Dense U-Net (Model 1)] et al. [27] 85.00 74.00 71.00

Kori [2D Dense U-Net (Model 2] et al. [27] 87.00 73.00 71.00

Kori [3D Hierarchical Architecture (Model
3] et al. [27]

85.00 73.00 71.00

Kori [Ensembling (Model 1 + Model 2 +
Model 3)] et al. [27]

89.00 76.00 76.00

Ma [Complementary fusion] et al. [32] 87.20 77.30 74.30

Ma [Ordinary fusion] et al. [32] 85.10 75.10 70.90

Marcinkiewicz et al. [33] 89.80 81.18 75.19

Nuechterlein et al. [37] 85.50 78.20 66.50

Rezaei et al. [38] 84.00 79.00 63.00

Sun [DFKZ Net] et al. [43] 89.31 82.46 76.77

Tuan et al. [45] 81.87 69.98 68.25

Wang [3D UNet] et al. [47] 86.38 76.58 73.44

Wang [3D UNet + TTA] et al. [47] 87.31 78.32 75.43

Wang [Multi-class WNet] et al. [47] 89.98 72.53 75.70

Wang [Multi-class WNet + TTA] et al. [47] 89.56 73.04 77.07

Weninger et al. [49] 88.90 75.80 71.20

RD2A (Proposed) 90.88 84.46 78.18

For comparison, only DSC scores are shown. The best scores are highlights in bold
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Table 4 The results of the proposed architecture are based on different evaluation metrics

Dataset Metrics Whole Core Enhancing

BRATS 2019 Training DSC 92.533 90.295 78.108

Sensitivity 93.576 90.855 87.207

Specificity 99.466 99.729 99.830

H95(mm) 3.480 3.522 3.026

BRATS 2019 Validation DSC 90.357 82.348 71.934

Sensitivity 91.578 80.807 80.098

Specificity 99.446 99.781 99.819

H95(mm) 4.690 7.088 3.316

The mean score of each metric is obtained after evaluating the predicted MRIs (of the BRATS 2019 training
and validation datasets) via the online web portal https://ipp.cbica.upenn.edu. Our team name is Tyagi for the
BRATS 2019 datasets in the competition

were used. Moreover, Chandra et al. [8] used the big rates of dilation, thereby introducing
the gridding problem; the vital local information was lost. Our proposed architecture scores
with only 4.53 M of parameters exhibit the combined residual-dense connections’ necessity.

In summary, our proposed architecture achieved excellent results in all types of tumors.
Furthermore, all the predicted MRIs of the BRATS 2019 datasets were submitted to
the organizer’s webpage3 for the online evaluation. The evaluation scores are shown
in Table 4.

5.2 Infant brain MRI segmentation challenge

To ensure the proposed architecture’s capability, we also validate our architecture on the
iSeg-2019 datasets. The training dataset (10 subjects) is divided into five-folds. In each
fold, 8 subjects are selected for the training and remaining for the validation. We have cho-
sen the best fold to evaluate the iSeg-2019 validation (13 subjects) and the testing datasets
(16 subjects). Table 5 shows the results of all methods for iSeg-2019 validation and testing
datasets. The scores without brackets are related to the validation dataset while the remain-
ing to the iSeg-2019 testing dataset. The average score of each metric, especially DSC, is
best with our proposed model than the MASI (baseline), long, and UBC001 methods. In
the meantime, the CSF average scores for the metrics DSC and the ASD are lower with our
presented work compared to the lyh and the tiantian methods. Furthermore, the scores of
the Brain Tech method are higher than our proposed work. In short, the Brain Tech method
is best with the iSeg-2019 validation dataset. At the same time, we secure the best scores on
the testing dataset than the validation dataset’s top method. The validation dataset subjects
belong to only one site, while the 16 subjects of the testing dataset are collected from three
different locations. Our proposed model can perform better generalization on the unseen
dataset of two or more sites based on the higher testing scores. Furthermore, the best testing
dice scores are successfully distinguishing the contrast between the gray matter (GM) and
white matter (WM) tissues.

3https://ipp.cbica.upenn.edu/
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Table 5 The results of our proposed architecture, along with all methods

Methods Metrics CSF GM WM

MASI(baseline) DSC 67.100(67.000) 53.600(60.700) 64.500(68.100)

Hausdorff95(mm) 14.405(18.013) 30.831(20.375) 14.695(10.153)

ASD 0.912(1.332) 1.310(1.033) 1.561(1.308)

long DSC 89.800(78.80) 84.900(73.500) 81.700(76.200)

H95(mm) 10.369(9.503) 7.595(9.140) 8.335(9.853)

ASD 0.290(0.565) 0.548(0.663) 0.636(0.828)

lyh DSC 92.200(79.200) 86.700(70.500) 84.130(69.900)

H95(mm) 12.477(62.194) 22.807(18.795) 11.666(13.660)

ASD 0.211(0.632) 0.501(0.775) 0.583(1.110)

Brain Tech DSC 96.100(79.500) 92.800(69.400) 91.100(78.000)

H95(mm) 8.873(11.421) 5.724(9.516) 7.114(9.237)

ASD 0.108(0.626) 0.300(0.735) 0.347(0.886)

UBC001 DSC 87.700(69.900) 86.800(66.000) 81.900(63.500)

H95(mm) 9.370(9.806) 9.736(9.886) 8.964(13.865)

ASD 0.333(0.838) 0.547(0.961) 0.689(1.693)

tiantian DSC 91.200(79.600) 85.400(71.300) 82.500(64.200)

H95(mm) 10.760(101.137) 10.698(20.358) 9.414(16.117)

ASD 0.237(0.862) 0.530(0.802) 0.628(1.288)

(Proposed) DSC 90.020(79.804) 86.900(77.925) 84.800(80.569)

H95(mm) 9.463(11.626) 6.339(8.131) 7.111(8.752)

ASD 0.263(0.611) 0.509(0.655) 0.576(0.735)

These models are evaluated on 13 and 16 subjects of the iSeg-2019 validation and testing datasets. The
mean scores of each metric of the validation dataset are shown without brackets, while brackets have the
testing scores. Our team name for the MICCAI iSeg-2019 competition is Legand. The best scores of the
validation and testing datasets are respectively highlights in blue and bold. The scores can be accessed via
http://iseg2019.web.unc.edu/evaluation-results/

6 Qualitative analysis

6.1 Brain tumor segmentation

The segmentation results of our proposed architecture are shown in Fig. 8. We choose two
different patients from the BRATS 2018 training dataset. For these two patients, we only
visualize the T1ce modality with ground-truth and prediction. Figure 8a and b represent the
ground-truth and prediction with the T1ce modality of one patient, respectively. Figure 8c
and d of another patient represents the T1ce modality with the ground-truth and predic-
tion, respectively. Moreover, Fig. 8a and c exhibit the variations among the shape, size, and
location of the tumors in different patients. As depicted by the predicted T1ce modality in
Fig. 8d, our proposed algorithm has the potential to segment the big size of the whole tumor
and the small size of the tumor core.
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Fig. 8 Segmentation results using our proposed architecture. a and b represent the ground-truth and predic-
tion on T1ce modality, respectively. c and d denote the ground-truth and prediction on the T1ce modality
of another patient, respectively. Each color represents a different tumor: red for Tumor core, green for the
Whole tumor, and yellow for Enhancing tumor

Our proposed algorithm failed for some patients of the BRATS 2018 training dataset. A
case of wrong segmentation is depicted in Fig. 9. We only visualize the T 1ce modality with
ground-truth and the prediction. A long orange arrow in Fig. 9b exhibits the instance of the
wrong segmentation, in which our proposed algorithm wrongly predicted the background
label as a tumor core. We will investigate to solve the wrong prediction in the future work
through the combined loss functions.

6.2 Infant brain MRI segmentation

Figure 10 shows the segmentation results of our proposed architecture. We choose a subject
from the iSeg-2019 training dataset. We demonstrated ground-truth and prediction of the
selected subject on a T 1 modality. Figure 10a and b represent the ground-truth and predic-
tion, respectively. Predicted visualization exhibits the potential of the proposed algorithm
for infant brain MRI segmentation.

Fig. 9 An instance of wrong segmentation results. a and b represent the ground-truth and prediction on
T 1ce modality of a patient, respectively. b represents an instance of the wrong segmentation; our proposed
algorithm is wrongly predicted the background label as a tumor core that is shown by a long orange arrow
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Fig. 10 Training segmentation results using our proposed architecture. a and b represent the ground-truth
and prediction on T1 modality, respectively. Different colors represent brain tissues: red for CSF, green for
GM, and blue for WM

7 Discussion and conclusion

We have proposed a model with the combination of the residual connections, dilation, and
dense ASPP. Different atrous rates are chosen in the residual-dilation blocks to avoid the
gridding problem. In the meantime, dense connections are employed to reduce the parame-
ters. Dense ASPP blocks exploit the multi-scale information to avoid the ambiguities among
brain MRIs’ labels and tissues. The multi-label cost function is used to prevent the imbal-
anced data problem. Augmentation techniques such as flipping and rotations are used to
avoid the over-fitting problem during training. Finally, the combined approach achieved
outstanding results with different brain MRI datasets.

We cannot train our network on big patch sizes due to memory limitations, espe-
cially with the BRATS datasets. Chen et al. [9] implemented ASPP on a big patch
size with improved results. In the future, we will try our proposed approach on multi-
ple medical imaging problems, especially for the kidney tumor segmentation using big
patch sizes. Kidney tumor segmentation is a very challenging problem due to lack of
information from only one modality in the MICCAI KiTS 2019 dataset [16]. In our
work, we experimentally proved that the parameters could be efficiently reduced with
improved results. Our proposed architecture has the potential to solve the problem of
other medical imaging tasks. Furthermore, we will propose an architecture with weighted
majority schemes and the study on the different normalization layers with varying batch
sizes.
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