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Abstract
Collaborative filtering (CF) is a widely used method in recommender systems due to its sim-
plicity and efficiency. But most existing CF methods suffer from data scarcity, which arises
from the situation with only a limited number of interactions between users and items. One
solution to address is how to introduce Transfer Learning (TL)-based CF methods with het-
erogeneous feedbacks to deal with multi-source and heterogeneous data, such as rating vs.
clicks or rating vs. purchase. However, in some applications, extremely sparse (i.e., sparsity
level ≤ 0.1%) target data could cause under-transfer and negative transfer. To address the
above issue, we propose an Enhanced Knowledge Transfer for Collaborative Filtering with
Multi-Source Heterogeneous Feedbacks (EKT). Specifically, we first propose a weighted
collective matrix tri-factorization framework. The proposed framework constrains the aux-
iliary data and the target data to share the same latent factors of users and items as well as
partial cluster-level user-item rating pattern in order to enhance knowledge transfer and alle-
viate the under-transfer issue. Then, to alleviate the negative transfer issue, we integrate the
graph co-regularization terms into a proposed framework, which contains the neighborhood
structure information of users and items. At last, we simultaneously minimize the objec-
tive function of EKT, which consists of weighted collective matrix tri-factorization and the
graph co-regularization of user and item graphs. Since the EKT framework is a non-convex
optimization problem, we use an alternating optimization procedure to solve it and further
prove its convergence. The experimental results on two benchmark datasets show that our
proposed EKT method performs better than other baseline methods at almost all sparsity
levels except for the denser case of 1% on ML10M and Netflix.

Keywords Transfer learning · Collaborative filtering · Sparsity · Heterogeneous feedbacks

1 Introduction

Recommender systems are one of the most widely used applications by many on-line ser-
vices, such as E-commerce platforms, news portals, advertising, social media sites, etc [1]
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for information overload problem. Generally speaking, the mainly used recommendation
techniques are roughly classified as content-based and collaborative filtering-based. Since
the Collaborative Filtering (CF) method has no content restriction, it is more widely used
in both literature and industry [7, 8, 13, 36, 42]. In recommender systems, CF aims to pre-
dict the missing ratings for an item or a user based on the collected ratings from similar
items or like-minded users. [9, 14, 32, 40]. CF has become one of the most popular meth-
ods in recommender systems at present due to its simpleness and high-efficient [39, 41], but
it also faces major bottlenecks such as data sparsity [18]. The so-called data sparsity refers
to the fact that too few data is observed in the user-item rating matrix, which makes the
recommendation model suffers from overfitting and leads to low-quality predictions [30].

To cope with the sparsity issue, numerous improved CF methods have been proposed.
Among them, Matrix Factorization (MF) gains great success during the past ten plus
years. For example, Srebro, etc. [37] presented the Maximum Margin Matrix Factorization
(MMMF) method, whose goal is to learn a complete observed matrix with the minimum
trace norm by maximizing the prediction margin to approximate the target preference
matrix. Zhang et al. [45] presented a weighted nonnegative matrix factorization (WNMF)
method that decomposes the observed user-item rating matrix into two low-dimensional
nonnegative matrices, and then uses their product to predict the unobserved user-item rat-
ing. Gu et al. [11] extended the WNMF method by incorporating user and item graphs.
Chen et al. [6] applied Orthogonal Nonnegative Matrix Tri-Factorization (ONMTF) for col-
laborative filtering to alleviate the sparsity problem. Mnih et al. [24] proposed a probability
matrix factorization (PMF) method, which uses a probability model with Gaussian obser-
vation noise, with the goal of maximizing the conditional distribution on the observation
rating. The recommendation accuracy of these MF methods still largely depends on the
target rating matrix. However, when the observed target rating matrix is very sparse, the
recommendation performance would be degraded seriously.

Recently, transfer learning (TL) [25] methods have been introduced into collaborative
filtering for solving the data sparsity issue [15, 22, 35, 46]. The kernel thought behind it
is to extract the common latent knowledge from some dense auxiliary data via the latent
factorization model, then transfer it to sparse target data [3, 33]. The existing TL-based
CF methods mostly focus on selecting cluster-level codebooks [18, 19], or the latent tastes
of users/latent features of items [23, 33, 35] as common knowledge for transfer. They are
often limited to the transfer of homogeneous user feedbacks. However, heterogeneous user
feedbacks are more common in reality. To this end, several TL-based CF methods using
heterogeneous user feedback have been proposed to solve the data sparsity issue. For exam-
ple, Pan et al. [27, 30, 31] explore how to utilize dense binary preference data (“like” or
“dislike”) in the auxiliary domain to aid recommendations in the target domain with numer-
ical rating data (5-star rating). However, in practical scenarios, the target rating matrix is
often extremely sparse (e.g., sparsity level ≤ 0.1), at which point these methods are likely
to encounter the following two limitations. First, the under-transfer issue is likely to occur
as the extremely sparse target data requires more knowledge to be transferred from the aux-
iliary data. The so-called under-transfer means that the useful knowledge in the auxiliary
data is not fully transferred to the target data. Second, the latent factors extracted from the
auxiliary data are likely to transfer the negative information to the target data, resulting in
the negative transfer issue.

In this paper, we investigate how to transfer knowledge effectively from dense auxiliary
binary rating data to extremely sparse target numerical rating data to improve the predic-
tion accuracy of the recommender system. To address the problem mentioned above, we
proposed a new TL-based CF method, referred to as Enhanced Knowledge Transfer for
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Collaborative Filtering with Multi-Source Heterogeneous Feedbacks (EKT). First, we use
the proposed weighted collective matrix tri-factorization framework to extract the com-
mon latent factors of users and items as well as the common partial cluster-level rating
pattern, through which more knowledge can be transferred between domains. Second, we
incorporate the graph co-regularization of user and item graphs into the proposed weighted
collective matrix tri-factorization, which will preserve the intrinsic geometric structure in
each domain, thus alleviating the negative transfer issue. Simultaneously, when the target
data is extremely sparse, the neighborhood structure information of the auxiliary data can
be transferred to the target data, further enhancing the transfer of knowledge. The main
contributions of this paper are summarized as follows:

– We propose a new TL-based CF framework, which integrates weighted collective
matrix tri-factorization and graph co-regularization of user and item graphs in a uni-
fied framework. The proposed framework can alleviate the under-transfer and negative
transfer issues that may be caused by extremely sparse target data.

– For the proposed framework, we propose an alternative optimization procedure and
further prove its convergence.

– On two benchmark data sets, we demonstrate the effectiveness of proposed EKT
method at a variety of sparsity levels of 0.01% ∼ 1%, and the proposed EKT method
shows better performance compared to several state-of-the-art baseline methods when
the sparsity level is less than 1%.

The rest of the paper is organized as follows. We first review some related works briefly
in Section 2, then describe the proposed EKT method in detail in Section 3. After that we
show experiments conducted on two real-world data sets to verify the effectiveness of the
proposed EKT mehod in Section 4. Finally, we give the conclusion and directions for future
study in Section 5. The notations used through the paper are listed in Table 1.

Table 1 Notations
Notation Description

M #target (auxiliary) users

N #target (auxiliary) items

Dτ domain τ , τ ∈ {t, a}
d1 #latent tastes of users

d2 #latent features of items

c #shared cluster-level user-item rating pattern

Xτ M × N rating matrix of Dτ

Yτ M × N indicator matrix of Dτ

Uτ d1 latent tastes of users in Dτ

Vτ d2 latent features of items in Dτ

Bτ d1 × d2 cluster-level rating pattern matrix of Xτ

S shared cluster-level user-item rating pattern matrix

Sτ specific cluster-level rating pattern matrix of Xτ

λ tradeoff parameter

αu, αv graph regularization parameter in Dt

βu, βv graph regularization parameter in Da

αs, βs , γs regularization parameter of rating pattern matrix

θu, θv regularization parameter of latent factors

K #iterations
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2 Related work

This paper focuses on improving the recommendation accuracy of collaborative filtering
methods when rating data is extremely sparse. In this section, we will discuss the related
works.

Collaborative filtering is a simple and effective recommendation method, but when the
target data is very sparse, it is easy to obtain degraded prediction results [38]. In recent years,
transfer learning has been introduced for solving data sparsity problems in collaborative
filtering [12, 20, 33], which transfer knowledge from auxiliary data to target data. From
the content of the transfer, most of the existing transfer learning methods in collaborative
filtering are mainly considered from two perspectives. One is the cluster-level rating pattern
transfer, which transfers the cluster-level rating pattern from the auxiliary data to the target
data. For example, Bin Li et al. proposed Codebook Based Transfer (CBT) model [18] to
transfer knowledge of cluster-level rating behavior from auxiliary data of movies to target
data of books. A further extension of CBT is known as the Rating Matrix Generation Model
(RMGM) [19], which relaxes the hard membership constraint on user/item groups to soft
membership. Gao et al. [10] extended Bin Li at el.’s methods and proposed cluster-level
based Latent Factor Model (CLFM) that achieves knowledge transfer by sharing partial
cluster-level rating patterns across multiple domains. Qian Zhang et al. [44] believe that
the CBT method cannot ensure that the knowledge extracted from the auxiliary domain is
consistent with the target domain. To this end, they presented a cross-domain recommender
system with Consistent Information Transfer (CIT) method [44], which adopts a domain
adaptation strategy to make the distribution of latent factors in two domains as close as
possible, and then perform a codebook transfer. Cluster-level rating pattern transfer mostly
targets scenarios where there is no entity (user or item) correspondence between target data
and auxiliary data. Because of the size limitation of the cluster-level rating pattern, it cannot
transfer enough useful knowledge when the observed target data is quite sparse.

The other is latent factors transfer, which is to transfer user/item latent factors from
the auxiliary data to the target data. CMF [35] is a multi-task learning method, which
jointly factorizes the target rating matrix and item-side content matrix while sharing the
same latent factors of items. Similarly, Hao Ma et al. [23] proposed SoRec method, which
alternatively factorizes the target rating matrix and a user-side social network matrix while
sharing the same latent factor of users. Pan et al. proposed Coordinate System Transfer
(CST) model [30] and Transfer by Collective Factorization (TCF) [27, 31] to transfer the
latent factors of users and items from auxiliary dense binary rating data to sparse tar-
get numerical rating data. But the two models do not take into account the neighborhood
information between users and between items. Shi et al. [33] proposed twin bridge trans-
fer learning (TBT), which transfers knowledge from dense auxiliary data to sparse target
data by using latent factors and similarity graphs as twin bridges. Pan et al. [28] extended
the CMF method and proposed interaction-rich transfer by collective factorization (iTCF),
which not only constrains the sharing of the same item latent factors between target data and
auxiliary data, but also requires information interaction between user latent factors in the
two domains. Pan et al. [29] further extended the iTCF method and proposed Transfer by
Mixed Factorization (TMF) approach, which introduces a virtual user profile to model the
user’s implicit preference based on the iTCF method. The virtual user profile is composed
of latent factors of items that the user likes and dislikes in the target domain. Zhao et al.
[46] relaxed the assumption that there is an adequate set of entity correspondences across
domains and employed an active learning principle to construct entity correspondences
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across domains. Then the actively constructed entity correspondences are plugged into a
general transferred CF model to improve recommendation performance. Zhang et al. [43]
proposed a cross-domain recommender system based on kernel-induced (KerKT) in a sce-
nario where there are only partially overlapping entities between domains. kerKL exploits
domain adaptation technology to adjust the feature spaces between overlapping enti-
ties, and adopts kernel diffusion completion to correlate non-overlapping entities between
domains.

Pan et al. [26] gave a comprehensive survey of transfer learning for collaborative
recommendation with auxiliary data, which mainly consider the CRAD (Collaborative Rec-
ommendation with Auxiliary Data) problem from a transfer learning view, and then discuss
three knowledge transfer strategies for collaborative recommendation with different types
of auxiliary data. Most existing TL-based CF technologies can be summarized into these
three strategies, namely adaptive knowledge transfer, collective knowledge transfer, and
integrated knowledge transfer. According to the survey of Pan et al. [26], our proposed EKT
method belongs to collective knowledge transfer, which aims to jointly learn the shared
knowledge and unshared effect of the target data and auxiliary data simultaneously. The
advantage of collective knowledge transfer is that it can perform bi-directed knowledge
transfer, thus it has richer interactions similar to multi-task learning. Most of the previously
mentioned methods mainly focus on either latent factor transfer or cluster-level rating pat-
tern transfer. Different from the previously work, in this paper, we try to jointly transfer the
latent factors and the partial cluster-level rating patterns simultaneously, to enhance more
knowledge to transfer. In addition, to alleviate the possible negative transfer issue, we use
the graph co-regularization of user and item graphs to refine the latent factors of user and
item to preserve the intrinsic geometric structure.

3 Enhanced transfer learning for collaborative filtering
with multi-source heterogeneous feedbacks

In this section, we first define the problem setting, then propose Enhanced Knowledge
Transfer for collaborative filtering with Multi-Source Heterogeneous Feedbacks (EKT)
framework. Finally, we will show the optimization process of the proposed EKT method
and analyze its convergence.

3.1 Problem formulation

In the target data, suppose there are a user-item numerical rating matrix Xt = [(xt )ij ]M×N ∈
{1, 2, 3, 4, 5, ?}M×N (“?” denotes a missing value). Yt = [(yt )ij ]M×N ∈ {0, 1}M×N is the
indicator matrix, (yt )ij = 1 if user i has rated item j , and (yt )ij = 0 otherwise. Simi-
larly, in the auxiliary data, there are a user-item binary rating matrix Xa = [(xa)ij ]M×N ∈
{0, 1, ?}M×N , where “0” and “1” represent the observed “like” value and “dislike” value,
respectively. The question mark “?” represents the missing value. Ya = [(ya)ij ]M×N ∈
{0, 1}M×N is the corresponding indicator matrix. It is assumed here that users and items of
Xt and Xa are aligned, that is, one-to-one mapping. We aim to predict the missing values
in the target rating matrix Xt by transferring the rating knowledge in the auxiliary rating
matrix Xa . According to Li’s description of “domain” [17], Xt and Xa can be seen as com-
ing from different data domains. Denote Dτ as the τ domain, where τ ∈ {t, a} is the domain
index. Therefore, we can think of it as a cross-domain recommendation problem.

24249Multimedia Tools and Applications (2021) 80:24245–24270



3.2 EKT method

The proposed EKT framework incorporates two learning objectives into a uniform optimiza-
tion problem: weighted collective matrix tri-factorization and the graph co-regularization of
user and item graphs. The graph model is shown in Fig. 1.

3.2.1 Weighted collective matrix Tri-factorization

First, we proposed a Weighted Collective Matrix Tri-Factorization framework (WCMTF)
by extending the Collective Matrix Factorization (CMF) and Weighted Nonnegative Matrix
Tri-Factorization (WNMTF). Then we use WCMTF to extract the latent factors and cluster-
level rating pattern, which can narrow the data distribution between domains and transfer
more latent knowledge from the auxiliary domain to the target domain.

Given the target numerical rating matrix Xt and the auxiliary binary rating matrix
Xa , we can extract the latent factors of each rating matrix via Weighted Nonnegative
Matrix Tri-Factorization (WNTMF) [11]. In WNTMF, the nonnegative user-item rating
matrix Xτ can be decomposed into three low-rank matrices, Uτ , Bτ and Vτ , such that the

Fig. 1 Graphical model of Enhanced Transfer Learning for Collaborative Filtering with Multi-Source Het-
erogeneous Feedbacks. The target numerical rating matrix Xt and the auxiliary binary rating matrix Xa

are jointly decomposed. Note that the blue solid double arrow indicates that the two domains share the
same user/item’s latent factor. The blue dashed double arrow indicates that the two domains share the par-
tial cluster-level user-item rating pattern. The black dashed arrow indicates that the graph regularization
constraint is imposed on the latent factor of the user/item
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reconstruction error of matrix Xτ is minimized. WNMTF is equivalent to the following
optimization problem:

min
Uτ ,Bτ ,Vτ ≥0

∥
∥
∥Yτ �

(

Xτ − UτBτV
T
τ

)∥
∥
∥

2

F
, (1)

where � represents the element-wise product of matrices, and Yτ is the indicator matrix
denoting whether the rating in Xτ is observed or not. Uτ = [uτ

·1, u
τ
·2, · · ·, uτ·d1

] ∈ R
M×d1

represents the latent factor matrix of users, with each uτ
i· denoting the latent taste of user

i. Vτ = [vτ
·1, v

τ
·2, · · ·, vτ·d2

] ∈ R
N×d2 represents the latent factor matrix of items, with each

vτ
i· denoting the latent feature of item i. Bτ ∈ R

d1×d2 is the cluster-level user-item rating
pattern representing the association between Uτ and Vτ , τ ∈ {t, a}.

Since the users and items of the target numerical rating matrix and the auxiliary binary
rating matrix are aligned in our hypothesis, they share potential users tastes and item
features. We may improve prediction accuracy by sharing the common latent factors of
users and items underlying these two rating data. Similar to CMF [35], we extend the
basic WNMTF to decompose two relevant matrices simultaneously, resulting in a weighted
collective matrix tri-factorization

min
Ut ,Ua,Bt ,Ba,Vt ,Va≥0

∥
∥Yt � (

Xt − UtBtV
T
t

)∥
∥

2
F

+λ
∥
∥Ya � (

Xa − UaBaV
T
a

)∥
∥

2
F

s.t . Ut ≡ Ua ≡ U,Vt ≡ Va ≡ V,
(2)

where λ > 0 is a trade-off parameter used to balance the target data with the auxiliary
data. The above optimization problem can be further simplified into the following form

min
U,Bt ,Ba,V ≥0

∥
∥
∥Yt �

(

Xt − UBtV
T
)∥
∥
∥

2

F
+ λ

∥
∥
∥Ya �

(

Xa − UBaV
T
)∥
∥
∥

2

F
. (3)

Without considering the regularization terms, the form of formula (3) is similar to the
TCF framework [27, 31]. Note, however, that there are no non-negative constraints on the
variables U , Ba , Bt , and V in the TCF. The TCF method and formula (3) both only transfer
knowledge by sharing the same latent factors of users and items. However, when the target
data is extremely sparse, it is desirable to transfer more common knowledge from the auxil-
iary data to alleviate the sparsity of the target data. Therefore, we believe that the knowledge
transfer of them is likely to be insufficient. Gao et al. [10] proposed CLFM model, which can
not only learn the common rating pattern shared cross-domain, but also learn the domain-
specific rating pattern of users in each domain. The rating pattern matrix can be considered
as the probability that the user group rates the corresponding item cluster. Inspired by this,
we consider that the partial cluster-level user-item rating pattern can be used as a new bridge
for knowledge transfer. Although the rating form of the target data and the auxiliary data are
heterogeneous, i.e., {1, 2, 3, 4, 5, ?} and {0, 1, ?}, the rating form of the pre-processed tar-
get data and the auxiliary data is partially aligned, i.e., {0, 0.25, 0.5, 0.75, 1, ?} and {0, 1, ?}.
Therefore, we can further assume that the preprocessed target data and auxiliary data share
partial cluster-level user-item rating pattern.

To this end, we assume that the cluster-level rating patterns Bt and Bs in the formula
(3) can be expressed as [S, St ] and [S, Sa], respectively. Formally, the collective matrix
tri-factorization framework in (3) can be re-represented as follows

min
U,S,St ,Sa,V ≥0

∥
∥
∥Yt �

(

Xt − U [S, St ]V T
)∥
∥
∥

2

F
+ λ

∥
∥
∥Ya �

(

Xa − U [S, Sa]V T
)∥
∥
∥

2

F
, (4)
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where U and V denote the shared user latent factor matrix and item latent factor
matrix,respectively. S denotes the shared user-item rating pattern matrix. St and Sa denote
the specific rating pattern matrix of target data and auxiliary data, respectively.

In formula (4), we require that the latent factor matrices of users and items in both
domains are exactly the same. However, although the target domain and the auxiliary
domain are related, the latent user tastes and item features from two domains can still be
somewhat different due to the domain specific contexture. Therefore, here we relax the con-
straint that the latent factors for users and items in both domains are exactly the same, and
only require that they are similar, which can be achieved by adding the regularization terms
‖Ut − Ua‖2

F and ‖Vt − Va‖2
F in the framework (4). The objective function in framework

(4) can be further expressed as

min
Ut ,Ua,Vt ,Va,S,St ,Sa≥0

∥
∥
∥Yt � (Xt − Ut [S, St ]Vt

T )

∥
∥
∥

2

F

+ λ

∥
∥
∥Ya � (Xa − Ua[S, Sa]Va

T )

∥
∥
∥

2

F

+ θu ‖Ut − Ua‖2
F + θv ‖Vt − Va‖2

F , (5)

where Ut and Vt denote the latent factor matrix for users and items from target data,
respectively. Ua and Va denote the latent factor matrix for users and items from auxil-
iary data, respectively. θu, θv is the tradeoff parameter, representing the confidence in the
auxiliary data. The illustration of our proposed WCMTF framework can be found in Fig. 2.

In the formula (5), the useful knowledge from auxiliary data can be adequately trans-
ferred to the target data by sharing the user latent factors, item latent factors and partial
cluster-level user-item rating pattern. However, more knowledge transfer may also lead to
more serious negative transfer issue, that is, harmful information in auxiliary data is trans-
ferred to target data. Especially when the target data is extremely sparse, negative transfer
is more likely to occur. To do this, we need to find ways to alleviate the possible negative
transfer issue.

Fig. 2 Illustration of our proposed WCMTF framework
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3.2.2 Graph co-regularization of user and item graphs

We adopt the co-regularization of user and item graphs to refine the latent factors of the two
domains. In this way, we can achieve two benefits: (i) The respective intrinsic geometric
property within two domains can be preserved, which allows the learning model to care-
fully follow the domain-specific data distribution and fundamentally alleviate the negative
transfer problem. (ii) When the target data is extremely sparse, the neighborhood structure
information between entities (users or items) is inaccurate, while the relatively dense aux-
iliary binary rating data has relatively more accurate neighborhood structure information.
Transferring the neighborhood structure information of entities in the auxiliary data to the
target data can help the target data obtain more accurate neighborhood structure information
and further alleviate the under-transfer issue.

User Graph Regularization From geometric perspective, the data point is usually sampled
from a low dimensional manifold embedded in a high-dimensional ambient space [4, 5].
By the manifold assumption [2], if two users xτ

i· and xτ
j · are close in the intrinsic geome-

try of the data distribution, then their embedding uτ
i· and uτ

j · are also close to each other.
This geometric structure of scattered data can be effectively encoded by p-nearest neighbor
graphs. Consider a user graph Gτ

U = (Vτ
U , Eτ

U ), whose vertex set Vτ
U corresponds to users

{xτ
1·, · · · , xτ

M·}. The symmetric adjacency matrix of Gτ
U can be defined as

(Wτ
U )ij =

{
sim(xτ

i·, xτ
j ·), if xτ

j · ∈ N (xτ
i·) or xτ

i· ∈ N (xτ
j ·)

0, otherwise,
(6)

where N (xτ
i·) denotes the k-nearest neighbor of xτ

i·. sim(·, ·) is an appropriate sim-
ilarity function for calculating similarities between users. sim can be cosine similarity,
Pearson correlation coefficient or the radial basis function (RBF) measurement, etc. In our
experiments, for the convenience of calculation, we used the following cosine similarity

measurement: sim(xτ
i , xτ

j ) = xτ
i ·xτ

j

‖xτ
i ‖‖xτ

j ‖ . We use Euclidian distance to measure the closeness

between each pair of embeddings uτ
i· and uτ

j ·, i.e.,‖uτ
i· − uτ

j ·‖2
2. According to Cai et al. [4],

using the graph Gτ
U to maintain the geometry structure in domain Dτ can be accomplished

via the user graph regularization as follows

R(Uτ ) = 1

2

∑

i,j

∥
∥
∥uτ

i· − uτ
j ·

∥
∥
∥

2

2

(

Wτ
U

)

ij
=

∑

i,j

uτ
i·
(

Wτ
U

)

ij
uτT

i· −
∑

i,j

uτ
i·
(

Wτ
U

)

ij
uτT

j ·

=
∑

i

uτ
i·
(

Dτ
U

)

ii
uτT

i· −
∑

i,j

uτ
i·
(

Wτ
U

)

ij
uτT

j · = tr
(

UT
τ

(

Dτ
U − Wτ

U

)

Uτ

)

= tr(UT
τ Lτ

UUτ ), (7)

where Dτ
U = diag(

∑

j

(Wτ
U )ij ) is a diagonal matrix, and Lτ

U = Dτ
U − Wτ

U is the graph

Laplacian matrix of user graph.

Item Graph Regularization Similar to user graph regularization, by the manifold assump-
tion [2], if two items xτ·i and xτ·j are close in the intrinsic geometry of the data distribution,
then their embedding vτ

i· and vτ
j · are also close to each other. Consider an item graph
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Gτ
V = (Vτ

V , Eτ
V ), whose vertex set Vτ

V corresponds to items {xτ
·1, · · · , xτ·N }. The symmetric

adjacency matrix of Gτ
V can be defined as

(Wτ
V )ij =

{
sim(xτ·i , xτ·j ), if xτ·j ∈ N (xτ·i ) or xτ·i ∈ N (xτ·j )
0, otherwise.

(8)

According to Cai et al. [4] using the graph Gτ
V to preserve the geometry structure in

domain Dτ can be achieved by the item graph regularization as follows

R(Vτ ) = 1

2

∑

i,j

∥
∥
∥vτ

i· − vτ
j ·

∥
∥
∥

2

2

(

Wτ
V

)

ij
=

∑

i,j

vτ
i·
(

Wτ
V

)

ij
vτT
i· −

∑

i,j

vτ
i·
(

Wτ
V

)

ij
vτT
j ·

=
∑

i

vτ
i·
(

Dτ
V

)

ii
vτT
i· −

∑

i,j

vτ
i·
(

Wτ
V

)

ij
vτT
j · = tr

(

V T
τ

(

Dτ
V − Wτ

V

)

Vτ

)

= tr(V T
τ Lτ

V Vτ ), (9)

where Dτ
V = diag(

∑

j

(Wτ
V )ij ) is a diagonal matrix, and Lτ

V = Dτ
V − Wτ

V is the graph

Laplacian matrix of item graph.
We call the graph regularization terms in (7) and (9) the graph co-regularization of user

and item graphs (GCRUI). On the one hand, GCRUI is to maintain the intrinsic geomet-
ric structure on users and items simultaneously for alleviating the negative transfer issue.
On the other hand, when the target data is extremely sparse, relatively dense and accurate
neighborhood structure information between entities in auxiliary data can be transferred to
the target data, to further alleviate the under-transfer issue.

3.3 Optimization framework

In order to further improve the predictive performance of cross-domain recommenda-
tions, we should consider these two learning objectives together. The reasons are: (i) with
weighted collective matrix tri-factorization, the common latent factors of users and items
and the common partial cluster-level rating pattern are extracted, through which more
knowledge can be transferred between domains. However, while enhancing the knowledge
transfer, negative information of the auxiliary data may also be introduced into the target
data, resulting in a negative transfer issue. (ii) with GCRUI, the intrinsic geometric structure
of each domain can be preserved to alleviate negative transfer issue. In addition, when the
target data is extremely sparse, the neighborhood structure information in the auxiliary data
will be transferred to the target data to help it obtain more accurate neighborhood structure
information, thereby further alleviating the under-transfer issue.

Based on the above considerations, we seamlessly integrate the weighted collective
matrix tri-factorization and GCRUI into a unified framework, and obtain the following
objective function

min
Ut ,Ua,Vt ,Va,S,St ,Sa≥0

∥
∥
∥Yt � (Xt − Ut [S, St ]Vt

T )

∥
∥
∥

2

F

+ λ

∥
∥
∥Ya � (Xa − Ua[S, Sa]Va

T )

∥
∥
∥

2

F

+ θu ‖Ut − Ua‖2
F + θv ‖Vt − Va‖2

F

+ αutr(U
T
t Lt

UUt ) + αvtr(V
T
t Lt

V Vt )

+ βutr(U
T
a La

UUa) + βvtr(V
T
a La

V Va), (10)
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where αu and αv are the graph regularization parameters of the user graph and item graph
from the target data, respectively. βu and βv are the graph regularization parameters of the
user graph and item graph from the auxiliary data, respectively.

Finally, we impose the Frobenius norm on S, St and Sa to avoid overfitting. We end up
with the following minimization problem for EKT

min
Ut ,Ua,Vt ,Va,S,St ,Sa≥0

J =
∥
∥
∥Yt � (Xt − Ut [S, St ]Vt

T )

∥
∥
∥

2

F

+ λ

∥
∥
∥Ya � (Xa − Ua[S, Sa]Va

T )

∥
∥
∥

2

F

+ θu ‖Ut − Ua‖2
F + θv ‖Vt − Va‖2

F

+ αutr(U
T
t Lt

UUt ) + αvtr(V
T
t Lt

V Vt )

+ βutr(U
T
a La

UUa) + βvtr(V
T
a La

V Va)

+ αs ‖St‖2
F + βs ‖Sa‖2

F + γs ‖S‖2
F , (11)

where αs , βs and γs are the regularization parameters for controlling the strength of
regularization.

3.4 Learning the EKT

In order to facilitate the optimization of the EKT method, we rewrite the (11) as

min
Ut ,Ua,Vt ,Va,S,St ,Sa≥0

J =
∥
∥
∥Yt � (Xt − UtSV T

t0
− UtStV

T
t1

)

∥
∥
∥

2

F

+ λ

∥
∥
∥Ya � (Xa − UtSV T

a0
− UtSaV

T
a1

)

∥
∥
∥

2

F

+ θu ‖Ut − Ua‖2
F + θv ‖Vt − Va‖2

F

+ αutr(U
T
t Lt

UUt ) + αvtr(V
T
t Lt

V Vt )

+ βutr(U
T
a La

UUa) + βvtr(V
T
a La

V Va)

+ αs ‖St‖2
F + βs ‖Sa‖2

F + γs ‖S‖2
F , (12)

where Ut , Ua ∈ R
M×d1 , Vt = [Vt0 , Vt1 ] ∈ R

N×d2 , Va = [Va0 , Va1 ] ∈ R
N×d2 , S ∈ R

d1×c,
St ∈ R

d1×(d2−c), Sa ∈ R
d1×(d2−c). The optimization of our proposed EKT method can be

solved by an alternating minimization algorithm. Specifically, we optimize a variable and
compute its update rule while fixing the remaining variables. The procedure is repeated until
convergence.

Learning S , Sa and St Fix other variables to solve S, then we can rewrite the objective
function in (12) as

min
S≥0

J (S) =
∥
∥
∥Yt � (Xt − UtSVt0 − UtStV

T
t1

)

∥
∥
∥

2

F

+ λ

∥
∥
∥Ya � (Xa − UaSVa0 − UaSaV

T
a1

)

∥
∥
∥

2

F
+ γs ‖S‖2

F .

The derivative of J (S) in regard to S is as follows

∂J (S)

∂S
= 2UT

t (Yt � (−Xt + UtSV T
t0

+ UtStV
T
t1

))Vt0

+ 2λUT
a (Ya � (−Xa + UaSV T

a0
+ UaSaV

T
a1

))Va0 + 2γsS.
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Utilizing the Karush-Kuhn-Tucker(KKT) complementary condition for the non-
negativity of S and letting ∂J (S)

∂S
= 0, we can get

[2UT
t (Yt � (−Xt + UtSV T

t0
+ UtStV

T
t1

))Vt0 + 2γsS

+2λUT
a (Ya � (−Xa + UaSV T

a0
+ UaSaV

T
a1

))Va0 ] � S = 0.

Then we can obtain the updating rule for S as follows

S ← S �
[

UT
t (Yt � Xt) Vt0 + λUT

a (Ya � Xa)Va0

]

[A + B] (13)

A = UT
t (Yt � (UtSV T

t0
+ UtStV

T
t1

))Vt0

B = λUT
a (Ya � (UaSV T

a0
+ UaSaV

T
a1

))Va0 + γsS,

where [·]
[·] denotes element-wise division. Similarly, we can obtain the following updating

rules for learning St and Sa

St ← St � [UT
t (Yt � Xt) Vt1 ]

[UT
t ((Yt � (UtSV T

t0
+ UtStV

T
t1

))Vt1 + αsSt ]
(14)

Sa ← Sa � [λUT
a (Ya � Xa)Va1 ]

[λUT
a (Ya � (UaSV T

a0
+ USaV T

a1
))Va1 + βsSa] . (15)

Learning Ut , Ua , Vt and Va Similarly, fix other variables to solve Ut , then we rewrite the
objective function in (11) as

min
Ut≥0

J (Ut ) =
∥
∥
∥Yt � (Xt − Ut [S, St ]Vt

T )

∥
∥
∥

2

F

+ θu ‖Ut − Ua‖2
F + αutr(Ut

T Lt
UUt ).

The derivative of J (Ut ) with respect to Ut is as follows

∂J (Ut )

∂Ut

= 2(Yt � (−Xt + Ut [S, St ]V T
t ))Vt [S, St ]T + 2θu(Ut − Ua) + 2αuL

t
UUt .

Using the Karush-Kuhn-Tucker(KKT) complementary condition for the nonnegativity of
Ut and letting ∂J (Ut )

∂Ut
= 0, we can get

[(Yt � (−Xt + Ut [S, St ]V T
t ))Vt [S, St ]T + θu(Ut − Ua) + αuL

t
UUt ] � Ut = 0.

Since Lt
U may take any signs, we decompose it as Lt

U = Lt+
U - Lt−

U , where Lt+
U = 1

2 (|Lt
U |+

Lt
U ), Lt−

U = 1
2

(∣
∣Lt

U

∣
∣ - Lt

U

)

, then

[(Yt � (−Xt + Ut [S, St ]V T
t ))Vt [S, St ]T + θu(Ut − Ua) + αuL

t+
U Ut

−αuL
t−
U Ut ] � Ut = 0.

We obtain the updating rule for learning Ut as follows

Ut ← Ut � [(Yt � Xt) Vt [S, St ]T + θuUa + αuL
t−
U Ut ]

[(Yt � (

Ut [S, St ]V T
t

))

Vt [S, St ]T + θuUt + αuL
t+
U Ut ]

. (16)

The latent factor Ua , Vt and Va can be learned in the similar way as for constrained
optimization. We can get the updating rule for learning Ua , Vt and Va as follows:

Ua ← Ua � [λ (Ya � Xa) Va[S, Sa]T + θuUt + βuL
a−
U Ua]

[λ (

Ya � (

Ua[S, Sa]V T
a

))

Va[S, Sa]T + θuUa + βuL
a+
U Ua]

(17)
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Vt ← Vt �
[

(Yt � Xt)
T Ut [S, St ] + θvVa + αvL

t−
V Vt

]

[(

Yt � (

Ut [S, St ] V T
t

))T
Ut [S, St ] +θvVt + αvL

t+
V Vt

] (18)

Va ← Va �
[

(Ya � Xa)
T Ua [S, Sa] + θvVt + βvL

a−
V Va

]

[(

Ya � (

Ua [S, Sa] V T
a

))T
Ua [S, Sa] +θvVa + βvL

a+
V Va

] , (19)

where La
U = La+

U −La−
U , La+

U = 1
2 (|La

U |+La
U ), La−

U = 1
2 (|La

U |−La
U ), Lt

V = Lt+
V −Lt−

V ,
Lt+

V = 1
2 (|Lt

V | + Lt
V ), Lt−

V = 1
2 (|Lt

V | − Lt
V ), La

V = La+
V − La−

V , La+
V = 1

2 (|La
V | + La

V ),
La−

V = 1
2 (|La

V |−La
V ). Note that Vt0 = Vt (:, 1 : c), Vt1 = Vt (:, c + 1 : d2), Va0 = Va(:, 1 : c),

Va1 = Va(:, c + 1 : d2).

Theorem 1 Updating S, St , Sa , Ut , Ua , Vt and Va sequentially by (13)∼ (19) will
monotonically decrease the objective function in (11) until convergence.

We will prove Theorem 1 in Section 3.5. The learning algorithm for EKT is summarized
in Algorithm 1.
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3.5 Convergence analysis

We can adopt the auxiliary function approach [4, 16, 21] to prove Theorem 1. For simplicity,
we will only prove that the objective function J in (11) decreases monotonically under the
update rule for Ut in (16). We can prove the convergence of the other update rules in a
similar way. The definition of auxiliary function is described as follows

Definition 1 [16] Q(p, p′) is an auxiliary function for F(p) if the conditions

Q(p, p′) ≥ F(p) and Q(p, p) = F(p)

are satisfied for any given p, p′ .

Lemma 1 [16] If Q is an auxiliary function for F , then F is decreasing under the update

p(k+1) = arg min
p

Q
(

p, p(k)
)

. (20)

Proof
F(p(k+1)) ≤ Q(p(k+1), p(k)) ≤ Q(p(k), p(k)) = F(p(k)).

Next, by constructing an appropriate auxiliary function, we will demonstrate that (16)
is exactly the update rule of Lemma 1. For any element uij in Ut , Fij is used to represent
the part of J that is only relevant to uij . We compute the corresponding first and second
derivatives of Fij in regard to uij as follows

F ′
ij =

[

2
(

Yt �
(

−Xt + Ut [S, St ]Vt
T
))

Vt [S, St ]T

+ 2θu(Ut − Ua) + 2αuL
t+
U Ut − 2αuL

t−
U Ut

]

ij

F ′′
ij = 2(Yt )ij

((

[S, St ]Vt
T
)

Vt [S, St ]T
)

jj
+ 2θu + 2αu

(

Lt+
U

)

ii
− 2αu

(

Lt−
U

)

ii
.

Lemma 2 Function

Q(u, u
(k)
ij ) = Fij (u

(k)
ij ) + F ′

ij (u
(k)
ij )(u − u

(k)
ij )

+
(

2
(

Yt � (

Ut [S, St ]Vt
T
))

Vt [S, St ]T + 2θuUt + 2αuLt+
U Ut

)

ij

u
(k)
ij

· (u − u
(k)
ij )2 (21)

is an appropriate auxiliary function for Fij (u).

Proof It is straightforward that Q (u, u) = Fij (u), and hence we only need verify that

Q
(

u, u
(k)
ij

)

≥ Fij (u). To achieve this, we use Taylor series to expand Fij (u)

Fij (u) = Fij

(

u
(k)
ij

)

+ F ′
ij

(

u
(k)
ij

) (

u − u
(k)
ij

)

+
(

2(Yt )ij

((

[S, St ]Vt
T
)

Vt [S, St ]T
)

jj
+ 2θu

+ 2αu

(

Lt+
U

)

ii
−2αu

(

Lt−
U

)

ii

) ·
(

u − u
(k)
ij

)2
.
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Through algebra operations, we can get two inequalities:

Fij (u) = Fij

(

u
(k)
ij

)

+ F ′
ij

(

u
(k)
ij

) (

u − u
(k)
ij

)

+
(

2(Yt )ij

((

[S, St ]Vt
T
)

Vt [S, St ]T
)

jj
+ 2θu

+ 2αu

(

Lt+
U

)

ii
−2αu

(

Lt−
U

)

ii

) ·
(

u − u
(k)
ij

)2
.

(

Lt+
U Ut

)

ij
=

∑

q

u
(k)
qj

(

Lt+
U

)

iq
≥ u

(k)
ij

(

Lt+
U

)

ii
.

By jointly comparing the above two inequalities, we have

(

2
(

Yt � (

Ut [S, St ]V T
t

))

Vt [S, St ]T + 2θuUt + 2αuL
t+
U Ut

)

ij

u
(k)
ij

≥ 2(Yt )ij

((

[S, St ] V T
t

)

Vt [S, St ]
T
)

ij
+ 2θu + 2αu

(

Lt+
U

)

ii
− 2αu

(

Lt−
U

)

ii
.

Further, we can get Q
(

u, u
(k)
ij

)

≥ Fij (u), and Lemma 2 holds.

Proof of Theorem 1 According to Lemmas 1 and 2, we can obtain the update rule for Ut by

minimizing Q
(

u
(k+1)
ij , u

(k)
ij

)

. Setting
∂Q

(

u
(k+1)
ij ,u

(k)
ij

)

∂u
(k+1)
ij

= 0, we get

u
(k+1)
ij = u

(k)
ij −

u
(k)
ij F ′

ij

(

u
(k)
ij

)

(

2
(

Yt � (

Ut [S, St ]V T
t

))

Vt [S, St ]T + 2θuUt + 2αuL
t+
U Ut

)

ij

= u
(k)
ij

(

(Yt � Xt) Vt [S, St ]T + 2θuUa + αuL
t−
U Ut

)

ij
((

Yt � (

Ut [S, St ]Vt
T
))

Vt [S, St ]T + 2θuUt + αuL
t+
U Ut

)

ij

.

This above update rule is uniform with (16). For each iteration of updating, we can obtain

J
(

U
(0)
t

)

= Q
(

U
(0)
t , U

(0)
t

)

≥ Q
(

U
(1)
t , U

(0)
t

)

≥ Q
(

U
(1)
t , U

(1)
t

)

= J
(

U
(1)
t

)

≥ · · · ≥ J
(

U
(T )
t

)

.

Therefore, J (U) is monotonically decreasing during iterations. Since the objective
function in (11) is obviously bounded below, we prove the convergence of Theorem 1.

3.6 Analysis

When θu = θv = 0, αu = αv = 0, βu = βv = 0, EKT reduces to CLFM [10], which does
not involve the similarity constraints of latent factor and the co-graph regularization of user
and item graphs. When c = 0, θu = θv = 0, βu = βv = 0, EKT reduces to GWNMTF [11],
which focuses on learning the latent factors of users and items and user-item rating pattern
using only target rating data. When c = 0, θu = θv = 0, βu = βv = 0, αu = αv = 0, EKT
reduces to WNMTF, which does not involve the user and item graphs. Therefore, our EKT
is generic and absorbs CLFM, GWNMTF and WNMTF as special cases.
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Table 2 Description of subset of ML10M data (M=N=5000) and subset of Netflix data (M=N=5000)

Date set Form Sparsity

ML10M target(training) {0.5, 1, 1.5, · · ·, 5, ?} ≤ 1%

(subset) target(test) {0.5, 1, 1.5, · · ·, 5, ?} 7.04%

auxiliary {0, 1, ?} 2%

Netflix target(training) {1, 2, 3, 4, 5, ?} ≤ 1%

(subset) target(test) {1, 2, 3, 4, 5, ?} 16.2%

auxiliary {0, 1, ?} 2%

4 Experiments

4.1 Data sets and evaluation metrics

4.1.1 Data sets

We evaluate our proposed method using the subset of two movie rating data sets Movie-
Lens10M1 (denoted as ML10M) and Netflix2. The ML10M rating data contains more
than 107 rating with values in {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, which are given by more
7.1 × 104 users on around 1.1 × 105 movies. Similar to the experimental methods of Pan
et.al. [31], we randomly extract a 5000 × 5000 dense rating matrix R from ML10M data,
and then R is randomly split into training set RT and test set RE each with a 50% rat-
ings. RE remains unchanged, while target training data Xt with different sparse ratings of
0.01%, 0.05%, 0.1%, 0.5% and 1% are constructed by randomly sampling corresponding
numbers of observed rating of 2500, 12500, 25000, 125000 and 250000 from RT . The aux-
iliary data Xa is constructed by randomly sampling 100 observed ratings on average from
RT for each user. A pre-processing approach[34] is adopted by relabeling ratings with value
less than 4 in Xa as 0 (dislike), and then ratings with value greater than or equal to 4 as 1
(like). The overlap between Xt and Xa are 0.0015%, 0.0075%, 0.015%, 0.075% and 0.15%
correspondingly.

The Netflix rating data contains more than 108 ratings with values in {1, 2, 3, 4, 5}, which
are given by more than 4.8 × 105 users on around 1.8 × 104 movies. The data set employed
in the experiments is constructed in the same way as the ML10M data. The final data sets
are summed up in Table 2.

4.1.2 Evaluation metrics

We employed the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) as
the evaluation metrics

MAE =
∑

(u,i,xui )∈RE

∣
∣xui − x̂ui

∣
∣ / |RE | (22)

RMSE =
√

∑

(u,i,xui )∈RE

(

xui − x̂ui

)2
/ |RE |, (23)

1http://grouplens.org/datasets/movielens/
2http://www.netflix.com.
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where x̂ui and xui represent the predicted and true ratings, respectively, and |RE | represents
the number of test ratings. When the required number of observed ratings are generated
from RT , we run 5 randomised trials, and report the average results.

4.2 Baselines and parameter settings

4.2.1 Baselines

In our experiments, we compare our proposed EKT with the following seven closely related
baseline algorithms:

– WNMTF (Weighted Nonnegative Matrix Tri-Factorization) is a single-domain recom-
mendation method that decomposes the target user-item rating matrix into the product
of three low-rank non-negative matrices, which are then used to predict the rating and
provide a recommendation.

– GWNMTF (Graph Regularized Weighted Nonnegative Matrix Tri-Factorization) [11]
is a non-transfer learning method based on graph regularization. In this model, two
graphs are constructed on user side and item side to utilize the internal information and
external information.

– PMF (Probabilistic Matrix Factorization) [24] adopts a probabilistic model with Gaus-
sian observation noise to learn the latent features of users and items by maximizing the
conditional distribution of the latent feature matrix of users and items over the observed
target ratings. It learns on the target domain only.

– TCF (Transfer by Collective Factorization) [30] is based on transfer learning method
using binary auxiliary data. In this model, the shared latent space U and V are
constructed in a collective manner, and the data-dependent effect is captured via learn-
ing inner matrices B, B̃ separately. In TCF, there are two variants namely CMTF
(Collective Matrix Tri-Factorization) and CSVD (Collective SVD).

– iTCF (Interaction-rich Transfer by Collective Factorization) [28] is an efficient trans-
fer learning algorithm in collaborative filtering with heterogeneous user feedbacks. In
iTCF, Richer interactions are introduced by sharing both item-specific latent features
and the predictability in two heterogeneous data in a smooth manner.

– TMF (Transfer by Mixed Factorization) [29] is a generic mixed factorization based
transfer learning framework for collaborative recommendation with heterogeneous
explicit feedbacks. TMF unifies two transfer methods in one optimization frame-
work: instance-based transfer by intergrative factorization and feature-based transfer by
collective factorization.

– WNMTF-TL (Weight Nonnegative Matrix Tri-Factorization based on Transfer Learn-
ing). Active Transfer Learning for Cross-System Recommendation [46] method is
proposed to construct cross-domain entity correspondences and then the actively con-
structed entity correspondences plugged into a general matrix factorization model. In
our problem formulate, cross-domain entities are one-to-one correspondence, therefore
we removed the active learning module in the originally proposed method. In addition,
for a fairer comparison with our EKT method, we adopt WNMTF as the matrix fac-
torization model, and then use the entity similarity learned from the auxiliary binary
rating data as a prior to constrain the entity similarity in the target domain. We name
the method as WNMTF-TL.

Our EKT (Enhanced Knowledge Transfer for Collaborative Filtering with Multi-Source
Heterogeneous Feedbacks) method seamlessly integrates the weighted collective matrix
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tri-factorization and graph co-regularization of user and item graphs into a unified frame-
work that can simultaneously enhance knowledge transfer and alleviate negative transfer.

4.2.2 Parameter settings

For all methods, different numbers of latent factors d1, d2 ∈ {5, 10, 15, 20} are tried. For
EKT, different number of shared latent user-item rating patterns c ∈ {0, 1, · · · , d2} are tried.
Note that when c = 0, there is no shared user-item rating pattern between the auxiliary
data and the target data, and when c = d2, the latent user-item rating pattern is fully shared
between the auxiliary data and the target data. For GWNMTF, different trade-off parameters
λ = μ ∈ {0.01, 0.1, 1, 10, 100} are tried. For PMF, different trad-off parameters λU = λV ∈
{0.01, 0.1, 1} are tried. For TCF (CMTM), β is fixed as 1, and different tradeoff parameters
αu = αv ∈ {0.01, 0.1, 1}, λ ∈ {0.01, 0.1, 1} are tried. For TCF (CSVD), different trade-
off parameters λ ∈ {0.01, 0.1, 1} are tried. For iTCF, we fixed the trade-off parameter λ =
1, ρ = 0.5, and different trade-off parameters αu = αv ∈ {0.01, 0.1, 1}, βu = βv ∈
{0.01, 0.1, 1} are tried. For TMF, we fixed the trade-off parameter λ = 1, ρ = 0.5, δP =
δN = 1, wp = 2, wN = 1, and different trade-off parameters αu = αv ∈ {0.01, 0.1, 1},
βu = βv ∈ {0.01, 0.1, 1, 10, 100} are tried. For WNMTF-TL, different trade-off parameters
λC ∈ {0.01, 0.1, 1, 10, 100} are tried. For EKT, λ, αs , βs and γs are fixed as 1, different
trade-off parameters of αu = αv ∈ {0.01, 0.1, 1}, βu = βv ∈ {0.01, 0.1, 1}, θu = θv ∈
{0.1, 0.5, 1, 5, 10} are tried. Further analysis of the parameters is provided in Section 4.5.
Note that for EKT, to alleviate the heterogeneity between the target data and the auxiliary
data, the target rating matrices from ML10M or Neflix for training are preprocessed by
letting (Xt )ui = ((Xt )ui − 0.5)/4.5 or (Xt )ui = ((Xt )ui − 1)/4, respectively. For iTCF
and TMF, follow Pan et al. [28, 29], “0 (dislike)” and “1 (like)” in auxiliary binary rating
data are replaced with numerical values of “1 (dislike)” and “5 (like)”, respectively. For all
baseline methods and our EKT method, each of them is run 1000 iterations, and the best
results are reported.

4.3 Experimental results

The experimental results on ML10M and Netflix are shown in Tables 3 and 4, respectively.
From these results, we can make the following observations:

(1) For the non-transfer learning methods, we can see that GWNMTF consistently outper-
forms WNMTF at all sparsity levels. In addition, GWNMTF is better than PMF when
the sparsity is higher (e.g. ≥ 0.5% for ML10M and ≥ 0.1% for Netflix). However,
when the sparsity is lower (e.g. ≤ 0.1% for ML10M and ≤ 0.05% for Netflix), the
prediction performance of GWNMTF is worse than PMF. The reason is that when the
target rating matrix is denser, the neighborhood structure information between entities
(users or items) obtained is more accurate. Conversely, when the sparsity is lower, the
neighborhood structure information between entities obtained may be inaccurate.

(2) Transfer learning technology is an effective method to solve the sparsity issue in
collaborative filtering.

(a) We can see that Transfer-based methods consistently outperform the non-transfer
method at all sparsity levels. Prove the effectiveness of TL-based CF methods.

(b) The proposed transfer learning methods of EKT performs better than all baseline
methods at almost all sparsity levels except the denser 1% case, and the average
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prediction performance of our EKT method is significantly better than all base-
line methods. In addition, it is interesting to see that, the sparser the target data is,
our EKT method has more performance improvement than the baseline methods.
The reason is that when the target data is extremely sparse, other baseline meth-
ods based on transfer learning are likely to encounter under-transfer and negative
transfer issues, resulting in rapid degradation of performance. Our EKT method
considers these two issues simultaneously in a unified framework, which not only
can transfer more knowledge from the auxiliary data, but also effectively alleviate
the negative transfer issue.

(c) CSVD performs better than CMTF at all sparsity levels of Netflix, which is con-
sistent with the results reported in [31]. In addition, when the target data sparsity
level is 1%, CSVD achieves slightly better prediction performance than our EKT
methods, indicating that when the target data is not very sparse, the orthogonal
constraint in CSVD can reduce noise, thereby improving the prediction perfor-
mance. However, on ML10M, when the sparsity level is less than or equal to 0.1%,
CSVD performs worse than the CMTF, which shows that when the sparsity level
is lower, CSVD may be unstable and positive transfer may not be guaranteed.

(d) TMF performs better than iTCF at all sparsity levels, which is consistent with the
results reported in [29]. In addition, at 1% sparse level of ML10M, TMF achieve
slightly better predictive performance than our EKT method. The reason is that
TMF utilizes the virtual user profile from the target data by combining the user
liked items latent features and disliked items latent features. Therefore, when the
target data is relatively denser, TMF can perform better.

(e) TMF performs better than CSVD at almost all sparsity levels except the denser
case of 1% and 0.5% on Netflix. TMF performs better than CSVD when the spar-
sity is lower, because TMF introduces the global average preference scores, the
user preference biases and the item preference biases into the prediction rules,
which may help for an extremely sparse rating matrix.

(f) WNMTF-TL is significantly better than non-transfer learning methods of
WNMTF and GWNMTF, which shows that transferring the similarity between
entities estimated in the auxiliary data to the target data can improve the predic-
tion performance of WNMTF and GWNMTF. However, we can see that EKT
performs better than WNMTF-TL in all cases. The possible reason is that when
the target data is extremely sparse, the collective knowledge transfer way used
by EKT may perform better than the adaptive knowledge transfer way used by
WNMTF-TL, since the collective behavior can introduce richer interactions when
bridging two data sources [31].

4.4 Complexity analysis

The total time complexity of the proposed EKT method is O(K(MNd1 + MNd2 + (M +
N)d1d2+M2d1+N2d2)+M2N+NM2) if the time cost of the similarity graph construction
is taken into account, It can be greatly reduced if the input data is sparse. We have also
listed in Table 5 the time taken for each method to complete the task of target data sparsity
level of 0.1% on the Netflix dataset. This experiment is conducted on a computer 16-GB
memory and 1.6-GHz Intel Core i5. From Table 5, we can observe that the non-transfer
methods are faster, because they are generally simpler and do not need to consider auxiliary
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Table 5 Elapsed time Comparison on the subset of Netflix

Method Non-transfer Cross-domain

WNMTF GWNMTF PMF TCF(CMTF) TCF(CSVD) iTCF TMF WNMTF-TL EKT

Time(s) 4.56 27.47 14.01 116.28 28.87 33.78 43.31 694.27 174.17

data. Among the cross-domain methods, WNMTF-TL is the slowest, because it needs to
solve two objective functions, and it also needs to calculate the similarity matrix of entities
(users/items).

4.5 Parameter analysis

In this section, we test how the parameters affect the performance of EKT. There are 13
parameters in the proposed EKT: λ, d1, d2, c, αu, αv , βu, βv , θu, θv , αs , βs and γs . λ

is a tradeoff parameter that balances the target data and auxiliary data. d1 and d2 are the
latent feature number of users and items, respectively. c is the shared rating pattern number.
αu and αv are the graph regularization parameters of target data. βu are βv are the graph
regularization parameters of auxiliary data. αs , βs and γs are the regularization parameters.
To simplify the problem, we fixed the parameters λ = 1, αs = βs = γs = 1, d1 = d2 = 10
and let αu = αv = α, βu = βv = β, θu = θv = θ , focusing only on how the parameters
c, α, β and θ affect the performance of EKT. For simplicity, only the result for the subset
of Netflix has been included. Data sets with five sparsity levels are used to test the four
parameters. MAE and RMSE are used as evaluation metrics. Since MAE and RMSE are
similar, we only show the results of RMSE.

For the parameter c, we search for the grid {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} to find the best
parameter value. For the parameters α and β, we search for the grid {0.01, 0.05, 0.1, 0.5, 1}
to find the best parameter value. For the parameter θ , we search for the grid
{0.1, 0.5, 1, 5, 10} to find the best parameter value. The best parameter settings for these
four parameters at different sparsity levels are listed in Table 6. To analyze the parameter
c, we fix α, β and θ to the best parameter values for different sparsity levels, as shown in
Table 6. In Fig. 3a, we can see that for target data with different sparsity levels, setting the
proper c value can help improve the accuracy of the prediction. For target data with sparsity
levels of 1% and 0.5%, the highest accuracy can be achieved by setting c = 4, and for target
data with sparsity levels of 0.1%, 0.05% and 0.01%, the highest accuracy can be obtained
by setting c = 1. That is, when the target data is more sparse, the number of rating patterns
shared by auxiliary data and target data is less, therefore c should be set smaller to avoid
negative transfer. Likewise, to analyze the parameter α, β or θ , we fix the remaining param-
eters to the best parameter values for different sparsity levels, as shown in Table 6. In Fig. 3b
and c, we can observe that when the target data sparsity is higher than 0.1%, better perfor-
mance improvement can be achieved by setting the proper α (α = 0.01) and β (β = 0.01).
However, when the target data sparsity is equal to or lower than 0.1%, α has little effect on
the performance improvement, and β has a greater impact on prediction performance. The
reason is that when the target data is extremely sparse, the neighborhood structure informa-
tion in the target data is difficult to be accurately obtained. At this time, by setting with the
proper β (β = 0.1), we can see that the prediction performance can be improved. A rea-
sonable explanation is that the neighborhood structure information of the auxiliary data is
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Table 6 The best parameter setting of c, α, β and θ at different sparsity levels

Data set Parameters Sparsity

0.01% 0.05% 0.1% 0.5% 1%

The subset c 2 2 2 4 4

of Netflix α 0.1 0.1 0.1 0.01 0.01

β 0.1 0.1 0.1 0.01 0.01

θ 10 5 5 5 5

transferred to the target data to help refine the latent factors of the target data. In Fig. 3b, we
can see that the sparser the target data is, a larger θ is required to obtain better prediction
performance. The reason is that the sparser the target data needs to transfer more knowledge
from the auxiliary data. However, when choosing a higher θ value, it will take more time
to run the algorithm. To tradeoff between an acceptable running time for the algorithm and
relatively high predictive performance, in our experiments, we set θ = 5 (sparity≥ 0.05%)
and θ = 10 (sparity= 0.01%).

Fig. 3 Result of RMSE with different parameter settings on the subset of Netflix
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5 Conclusions and future work

We proposed an Enhanced Knowledge Transfer for Collaborative Filtering with Multi-
Source Heterogeneous Feedbacks (EKT), which transfers more useful knowledge from
auxiliary data with explicit binary ratings, reducing the sparsity of the target numerical data.
By sharing latent user preferences, latent item feature and partial user-item rating pattern
between target data and auxiliary data, EKT method can achieve more complete knowl-
edge transfer, while alleviating negative transfer issue by integrating graph co-regularization
of user and item graphs into the weighted collective matrix tri-factorization. Experimental
results on two benchmark datasets verify the effectiveness of the presented EKT method.
And in the case of extremely sparse target data, our EKT method can still achieve relatively
good prediction performance.

For future work, our main interest is to extend our EKT method to heterogeneous
feedback scenarios with multiple heterogeneous auxiliary sources.
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