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Abstract
Chaotic systems are widely used in various fields, but under the finite precision device,
chaotic systems would fall into a cycle and subsequently the performance degrade. Thus,
the suppression method of the dynamic degradation of digital chaos is receiving increasing
attention. This paper proposes a new improvement model to suppress the dynamical
degradation under finite computing accuracy equipment. By using the difference between
two maps of the same type but with different initial values, and the state feedback function
to improve the performance of the digital chaotic map and extend the time before the
chaotic map enters the cycle. Take the 1D Logistic map and x-dimensional of Baker map
as examples to prove the effectiveness of the improvement model. Then we proposed a
new key selection method, in what part of information of the image would be selected by
using a chaotic map to generate a special value. The special value would be used as part of
the key. Based this method, a new image encryption algorithm was proposed. The
information entropy of the image encrypted by our encryption algorithm is 7.9972, the
NPCR and UACI are 0.996095 and 0.334635, respectively, what both are very close to
ideal values. The experimental simulation results show that the image encryption scheme
exhibits good performances and high security and effectively resists various attacks.

Keywords Chaotic dynamical degradation . Image encryption . Image seed . Feedback

1 Introduction

In the era of rapidly increasing information, people are paying increasing attention to the
privacy and security of information. The senders and the receivers of the information trans-
mission do not want the information to be accessed by unauthorized third parties; thus, two
most obvious solutions are provided to protect information privacy: encryption [3, 16, 26, 31,
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38–40] and steganography [1, 2]. Encrypting information transforms the information to a
noise-like data which is observable but difficult to recover for the attackers. The main problem
of encryption is that the result is a noise-like data, telling the attackers almost directly that there
is important information here. The steganography technology conceals the existence of secret
information by hiding in mundane communication that does not attract unwelcome snooping.
In the digital steganography, the secret information is hidden in an ordinary carrier without
changing the appearance of the carrier, resulting in other people cannot find which carrier the
secret information is hidden in. That is to say, it should be impossible to tell whether a secret
message has been added to a carrier by senses or by computer analysis. The general problems
of steganography that need to be addressed are: the quality of the steganography, message
detectability, payload capacity, and the robustness of the steganography against distortion
attacks [2]. In this paper, we consider about the information encryption.

Information is widely divided into text, image, and video information. Among them, the
image information is widely used and intuitive and vivid. Chaotic systems are widely used in
the field of cryptography because of their inherent ergodicity, randomness, and extreme
sensitivity to initial values, which are highly consistent with the requirements of cryptographic
systems, especially in image encryption. Various image encryption algorithms are based on
chaotic maps, such as the encryption algorithm that combines chaos with DNA coding [22,
32], cellular automata [25, 30], and wavelet transform [5, 7] and the chaotic encryption
algorithm [26, 38–40]. However, in practical applications, chaotic systems running on devices
with finite precision would eventually enter a cycle after multiple iterations due to the effects
of truncation and rounding errors, which subsequentially affect the security of encryption
algorithms. This is usually called as dynamical degradation of digital chaotic map. The
suppression of the dynamic degradation of chaotic systems therefore received extensive
attention.

So far, there are many cryptographers proposed different solutions to inhibit such dynamic
degradation, which can be divided into the following categories. (1) Using higher precision
equipment [12, 31]. This method is the fastest, simplest, and most direct among the proposed
approaches. However, even without considering the cost, the precision of the equipment
cannot be improved indefinitely. In addition, this method has inherent limitations that cannot
be resolved in short term. (2) Disturbing the map [17, 18, 21, 36]. The parameters or state
variables of maps can be disturbed to prolong the period and increase the randomness of the
generated chaotic sequence. The disturbance source can be selected as a fixed constant, a
variable, or a chaotic map. The choice of disturbance source and object is based on the cost
constraint and desired effect. However, the effect of the improvement is limited. (3) Switching/
Cascading multiple maps [9, 19, 23]. This method mainly relies on the superiority of the
switch or cascading strategy. However, this method does not consider the internal influence
that multiple different mappings may cause; and (4) Feedback mechanism [8, 11, 15, 34]. This
method uses the state function to control the state variables of the digital chaotic map, which
destroys the original state space. However, without the assistance of other methods, this
method cannot significantly improve the performance of the digital chaotic map.

The above-mentioned methods have their own advantages and disadvantages. The improve-
ment method proposed in this study is based on the third and fourth methods.We combined two
different initial values into the samemap to generate two different sequences. Subsequently, we
used a nonlinear function to control the difference between the two sequences using state
feedback, which enhanced the randomness and complexity of the generated chaotic sequence
and suppressed the dynamic degradation of the digital chaotic map.
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1D chaotic maps are widely used because of their simple structure, easy implementation,
and low cost. We used this kind of maps in the experiment to confirm the effectiveness of the
proposed method. The improved methods based on 1D maps could be divided as follows: (1)
directly modifying the existing 1D chaotic map to generate a new chaotic sequence; (2)
generating a new chaotic sequence using the sum or difference of the output sequences of
two 1D sequence chaotic sequences; (3) combining two 1D chaotic maps into a 2D chaotic
map; (4) taking the sequence of the 1D chaotic map as the initial values of another 1D chaotic
map; and (5) switching among multiple 1D chaotic maps based on the parameters. This paper,
we adopted the second improvement method. By bringing two different initial values into the
1D chaotic map, the difference of the sequence would be used as the intermediate output
sequence, and then a feedback function would be used to control the intermediate output
sequence to obtain the final sequence. 1D Logistic map and x-dimensional of 2D Baker maps
are taken as examples. The experimental results show that this method suppressed the dynamic
degradation of digital chaotic maps effectively under the condition of limited precision, and the
improved maps display good performance.

The remarkable advantages of the improved method are elaborated as follows. (1) The
improvement model is universal to all digital chaotic maps. When the map is one dimensional,
directly adopt this model. And if the map is high dimensional, apply the model to each
dimensional of the HD chaotic map. (2) No additional interference sources are introduced, the
map is improved by introducing two different initial values into the same map, and a nonlinear
function is used for state feedback control without excessive cost input. (3) The improved map
exhibits a good effect and competitiveness with other improved schemes.

A good image encryption algorithm must be able to resist the known/selected plaintext
attack. To strengthen the connection between the plaintext and encryption system, most image
encryption algorithms calculate the sum of the pixel values of the plaintext image and
subsequently update the initial value of the chaotic map using the calculated one [26, 35,
38]. However, this approach is not secure because the attackers can use images with the same
sum of pixel values to attack the encryption system. Thus, we also designed a novel key
selection method. In the method, a part information of a plain-text image would be selected by
a sequence generated by 1D traditional Logistic map. Then use this information to calculate
the special value p. Based on the special value, a new encryption algorithm was designed, the p
value is used throughout the entire encryption algorithm, such as in updating the initial value
of the chaotic map, determining the size of the rectangle for the image preprocess, and
calculating the parameter in the row and column permutations. This value is also used to
update the initial value of the chaotic map.

The significant advantages of the p value are summarized as follows. (1) On the basis of the
sequence generated by the chaotic map, some pixels in the image are randomly selected, and
the degree of randomness is high. (2) Using the p value is more secure than just using the pixel
sum of the image. (3) For the same image, subtle differences in keys can result in different
p values. Hence, cracking the algorithm, without clearly knowing the key is difficult for an
unauthorized third party, thereby enhancing the security of the algorithm.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
improved model and lists the comparison results of various aspects of the 1D logistic map and
x-dimensional of 2D baker map before and after improvements. In Section 3, we proposed a
new image encryption scheme that uses part of images as seeds to generate a special value. The
performances of the novel image encryption algorithm are discussed in Section 4. The
conclusions are provided in Section 5.
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2 Proposed model and improved map

This section introduces an improved model to suppress the dynamic degradation of digital
chaos. The digital logistic map is used to prove the effectiveness of this method.

2.1 Improvement model

This model is mainly composed of the difference between two maps with the same type but
different initial values, x0, y0. The tangent function is used to control the state of digital chaotic
map to enhance the randomness and inhibit the degradation of the chaotic dynamics. The
mathematical equation is expressed as

x iþ 1ð Þ ¼ Fchaos u; xið Þ ð1Þ

y iþ 1ð Þ ¼ Fchaos u; yið Þ ð2Þ

z iþ 1ð Þ ¼ j x iþ 1ð Þ � 2nd e−y iþ 1ð Þ � 2nj
2n

þ k � tan PI � z ið Þð Þ mod 1 ð3Þ

where Fchaos(∙) represents any one chaotic map, z is the final chaotic sequence generated by the
model. And the initial value of sequence z is equal to x0, which means z0 = x0. The tangent
function was used to be a feedback function, then the final chaotic sequence z could be
obtained by mixing the function values and difference between the maps. The function ⌈x⌉
means the largest integer not greater than (x + 1), and PI = 3.1415926, n is the current
computing precision of the equipment, u is the system parameter of the chaotic map, which
ranges within [3.6,4), and k is a positive real number, whose value is selected based on the
experiment. The concept of this model is universal to all 1D digital chaotic maps or anyone
dimension of a HD (higher-dimensional) chaotic map, with minor form modifications. It is
also possible to improve each dimension of the HD chaotic map to form a new HD chaotic
map.

To better illustrate the effectiveness of this model, we used the 1D Logistic map and x-
dimension of 2D Baker map as examples, respectively.

2.2 Improved logistic map

The traditional Logistic map is defined as

x iþ 1ð Þ ¼ Fchaos u; xið Þ ¼ ux ið Þ 1−x ið Þð Þ ð4Þ
Where x(i) ∈ (0, 1) is the state variable after i iterations, and u ∈ (3.6, 4) is the system param-
eter. And the modified Logistic map after applying the proposed approach is then defined as

x iþ 1ð Þ ¼ ux ið Þ 1−x ið Þð Þ
y iþ 1ð Þ ¼ uy ið Þ 1−y ið Þð Þ
z iþ 1ð Þ ¼ j x iþ 1ð Þ � 2nd e−y iþ 1ð Þ � 2nj

2n
þ k � tan PI � z ið Þð Þ mod 1

8><
>: ð5Þ

where k value is selected according to the experimental result, there set k = e2.
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The parameters are set as follows: n = 15, u = 3.99, the initial values are x0 = z0 = 0.3312,
and y0 = 0.5845. If no additional instructions are given, leave these settings unchanged. Several
properties of the improved and original 1D Logistic maps are analyzed to evaluate the
improvement effect, including the trajectory and phase space, autocorrelation function, sensi-
tivity to initial value, approximate entropy (ApEn), permutation entropy (PE), and iteration
steps before entering the period.

2.2.1 Trajectory and phase diagrams

The trajectory of the theoretical chaotic maps does not enter the period, regardless of the
number of iterations, and such maps have satisfactory ergodicity in the phase space. However,
the result of running on finite precision equipment is not satisfactory. The value remains the
same if no special emphasis is present. Figure 1(a) and (b) show the trajectories of the original
and improved Logistic maps, respectively. The figures show that the original Logistic map
iterates less than 200 times before entering a period. The sequence generated by the improved
chaotic map did not enter a cycle despite iterating more than 5000 times. These results indicate
that the improvement method does effectively delay the entry of the map into the cycle.
Figure 2(a) and (b) show that the phase diagrams of the original and improved maps,
respectively. The phase diagram of the original map is a fixed upside-down U with an
extremely low density that does not traverse the entire diagram space, whereas that of the
improved one has no fixed shape and is much denser than the original. In conclusion, the
improved map has better performance, higher security and better randomness than the original
one. In addition, the dynamical degradation in the former is inhibited.

2.2.2 Autocorrelation analysis

Auto-correlation functions describe the correlation between any two values in a sequence. The
autocorrelation of an ideal chaotic map rapidly decays along with the interval in one sequence.
Thus, the diagram of the autocorrelation function is similar to that of the δ function. The
comparison results when the computing precision n = 16 are showed in Fig. 3. Figure 3(a)
displays the auto correlation function of the original map, which decreases with the increase or
decrease in the interval and suddenly increases in particular intervals. Figure 3(b) shows the
autocorrelation function of the improved map. When the current interval is not zero, the value
of the curve is stable and close to zero. The correlation sharply increases when the interval

Fig. 1 Trajectories of the (a) original and (b) improved Logistic maps
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value is zero. The shape of the curve is identical to that of the δ function, which indicates that
the improved chaotic map is close to the ideal one.

2.2.3 Period analysis

One of the main manifestations of the dynamic degradation of digital chaotic systems is the
entrance of the sequences to a cycle after a certain number of iterations. In this section, we focused
on period length and the number of iterations before entering the cycle. Compare the change of
period length and iteration steps of 1D Logistic map before and after improvement under different
precisions to verify whether the improved map is better than the original one, thus proving the
effectiveness of the improvement method. We take the same parameters under different accuracy
conditions, generate sequences with length of 500,000, and calculate the num of iteration times
before entering the cycle and their period length. The results are showed in the Table 1. These
results only come from one experiment under a certain parameter and initial value, rather than the
average result brought by many experiments, which cannot represent the overall trend of the
whole map. From the table, the effectiveness of the improved method was illustrated.

2.2.4 Sensitivity to initial conditions

A good chaotic map is extremely sensitive to subtle changes in initial conditions. The initial
conditions include initial values and system parameters. Any small change in these values or

Fig. 2 Phase diagrams of the (a) original and (b) improved Logistic maps

Fig. 3 Autocorrelation function of the (a) original and (b) improved Logistic maps
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parameters will result in a huge difference in the generated sequence. By applying minor
modifications to the initial values and parameters, we generated two sequences and compared
their trajectories to verify that the improved chaotic map has a good performance and extreme
sensitivity to the initial conditions. Figure 4 shows the experimental results under a precision
of 2−15. The blue lines in Fig. 4(a)–(d) represent the trajectory of the improved chaotic mapping
within 50 iterations under certain conditions; Fig. 4(a)–(d) show the comparison of the
sequence curve after the slight modification of u, x and y, and the sequence curve before the
parameter change. The results show that even a slight alteration can cause a complete change
in the sequences.

2.2.5 Complexity analysis

ApEn and PE are scalars that are commonly used when evaluating the complexity of a chaotic
map. ApEn measures the probability of the new pattern generated in the sequences using
growing embedding dimensions [28]; the larger the probability, the more complex the
sequence. PE [4], compares the sizes of several consecutive values in the sequence and adds
the different order types. Shannon’s entropy is then used to measure the uncertainty of these
orders. The PE of an ideal random sequence should be close to 1. Set the initial values are
x0 = z0 = 0.4312, and y0 = 0.5845, and the test result diagrams shown in Figs. 5 and 6 are used
for the analysis. From the figures, it’s obvious that the ApEn and PE values of the improved
map are greater than those of the original one. And the ApEn value of the improved map after
stabilization is much higher than that of the original map. The PE value of the improved map
closer to ideal value 1.

Table 1 Period length and step length before entering the cycle (Logistic map)

Precision Period length Step length

Original map Improved map Original map Improved map

2−4 3 9 2 3
2−5 5 10 1 15
2−6 11 33 1 8
2−7 6 24 4 16
2−8 10 40 3 24
2−9 3 54 2 10
2−10 30 30 16 399
2−11 29 261 9 244
2−12 4 80 4 157
2−13 35 700 28 444
2−14 37 222 41 1148
2−15 50 2550 137 456
2−16 253 4048 90 10,262
2−17 178 2314 117 2753
2−18 392 15,288 87 1899
2−19 83 2988 416 3307
2−20 989 10,879 688 11,253
2−21 399 6384 1595 10,209
2−22 1021 – 508 –
2−23 3715 – 944 –
2−24 100 – 985 –
2−25 1362 – 547 –
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2.3 Improved baker map

As one of the common 2D digital chaotic maps, Baker map is expressed as follows:

xiþ1; yiþ1

� � ¼
xi
p
; pyi

� �
; 0 < xi≤p

xi−p
1−p

; 1−pð Þyi þ p
� �

; p < xi≤1

8>><
>>:

ð6Þ

Fig. 4 Sensitivity analysis of the initial condition (a) curve at u = 3.99, x= 0.3312, y= 0.5845; (b) curves at u = 3.99
and u = 3.99 + 2−15; (c) curves at x = 0.3312 and x = 0.3312 + 2−15; (d) curves at y= 0.5845 and y= 0.5845 + 2−15

Fig. 5 Approximate Entropy analysis under different precisions
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Where p ∈ (0, 1) is the system parameter. We selected x-dimensional of Baker chaotic map as
example to prove the effectiveness of the improvement method and the generality in all 1D
maps or one dimension of a HD map. The x-dimensional of Baker chaotic map could be
described as:

xiþ1 ¼
xi
p
; 0 < xi≤p

xi−p
1−p

; p < xi≤1

8><
>: ð7Þ

Thus, the modified x-dimensional of Baker map would be expressed as.

x iþ 1ð Þ ¼ f x ið Þ
a

; 0 < x ið Þ≤a
x ið Þ−a
1−a

; a < x ið Þ≤1

y iþ 1ð Þ ¼ f y ið Þ
a

; 0 < y ið Þ≤a
y ið Þ−a
1−a

; a < y ið Þ≤1

z iþ 1ð Þ ¼ j x iþ 1ð Þ � 2nd e−y iþ 1ð Þ � 2nj
2n

þ k � tan PI � z ið Þð Þ mod 1

ð8Þ

where a ∈ (0, 1) is the system parameter, and PI = 3.1415926, and set k = 6. The same
experimental methods as in Section 2.2 is used to compare the classical and modified x-
dimensional of Baker map. The parameters are set as follows: n = 12, a = 0.6, the initial values
are x0 = z0 = 0.3312, and y0 = 0.5845. If no additional instructions are given, leave these
settings unchanged. In this experiment, we only analyze the x-dimensional of Baker map.

Figure 7 (a) and (b) showed the trajectories of the classical and modified map. From the
figure, it’s clear that the improvement method does extend the time for the generated sequence
to enter the cycle. The phase diagram analysis is showed in Fig. 8 (a) and (b). In this
experiment, we plot by using xi and xi + 1 to depict the attractor complexities. As shown in
Fig. 8 (a) and (b), the modified map has more complicated attractor than its classical

Fig. 6 PE analysis under different precisions
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counterpart. After the improvement, the phase diagram points of the map are discretized and
the density is higher. These results fully demonstrate the effectiveness of our improved
method.

Next, we calculate the num of iteration times before entering the cycle and their period
length. Set x0 = z0 = 0.4312. The results are showed in the Table 2. From the table, we can
conclude that the improvement method does extend the period length and the iteration times
before entering a cycle. What’s more, when the accuracy exceeds 2−12, the x-dimension of the
improved Baker map cannot measure the period. Again, the results of this experiment are
derived from the experimental data under a certain parameter condition, which can only
represent a certain situation. And the results could only be used to prove that the improved
method is effective and the improved map has a longer cycle and iteration times than that
before the improvement.

The ApEn and the PE analysis for two maps are plotted as Figs. 9 and 10, respectively.
From the two figures, it’s clear that under the same computing precision the ApEn and PE
values of improved x-dimensional of Baker map are much larger than the original ones. And
the PE value of improved map are closer to ideal value, 1. These proved that the capability of
the proposed approach in enhancing the complexity of the classical x-dimensional of Baker
map on a finite precision machine. As Fig. 11 showed, the improved map remains the
sensitivity to initial conditions. Under the computing precision of 2−12, the initial condition
is only 2−12 apart, resulting in a complete separation of the two curves.

All the above results not only prove the effectiveness of the improved method, but also
prove its universality to digital chaotic maps. And then we designed a new encryption
algorithm based on the improved digital logistic map and a new key selection method.

3 New cryptosystem based on the improved digital logistic map

We proposed a new image encryption algorithm with partial plaintext images as the seed
information based on the improved map. This algorithm is applicable to grayscale and colored
images. For the convenience of description, the encryption of the grayscale image is consid-
ered as an example here. If it is a colored image, it only needs to be divided into three channels.
After encrypting each channel, the final colored ciphertext image can be obtained through the
XOR operation.

Fig. 7 Trajectories of the (a) original and (b) improved x-dimensional of Baker maps
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3.1 Secret key structure and the key selection method

As shown in Fig. 12, the secret key of the proposed cryptosystem comprises four parts,
namely, system parameter u∈(3.6,4), initial values x and y∈(0,1), and the special value of the
image p∈(0,1). The special value, p, is derived from plaintext image, which strengthens the
correlation between cipher text system and plaintext image. Moreover, this method is more
effective than simply calculating the average pixel value of the plaintext image. Only by
calculating the average pixel value of the plaintext image to enhance the ability to resist
plaintext attacks is not secure. Because it could be attacked by different images of the same
pixel sum, thus cracking the encryption algorithm. However, our method relies on chaotic map
to randomly select some pixels of the image, and even a slight difference in the secret key will
result in different points being selected from the plaintext image. So only if you have the
correct key and special value can you get a plaintext image correctly.

Next, the steps to generate the special value p are described in detail. Assume the plain
image is represented by P and its size is set as M ×N.

First, the original 1D Logistic map is used to generate two sequences of length a, {pxi} and
{pyi}, where i = 1,2,3, …, a. a = round(min (M,N)/5), function min(M,N) represents the
smaller value between M and N, and round(∙) means round to get an integer. The initial
values are px(0) = x and py(0) = y.

Fig. 8 Phase diagram analysis of the (a) original and (b) improved x-dimensional of Baker maps

Table 2 Period length and step length before entering the cycle (x-dimensional of Baker map)

Precision Period length Step length

Original map Improved map Original map Improved map

2−4 1 8 2 3
2−5 25 25 1 10
2−6 14 14 2 27
2−7 8 16 2 52
2−8 20 40 5 21
2−9 249 249 1 63
2−10 35 210 50 53
2−11 78 702 10 86
2−12 112 336 52 613
2−13 2903 – 1 –
2−14 123 – 1 –
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px iþ 1ð Þ ¼ u� px ið Þ � 1−px ið Þð Þ
py iþ 1ð Þ ¼ u� py ið Þ � 1−py ið Þð Þ ð9Þ

Second, the two sequences {pxi} and {pyi} are converted into integer sequences {pXi} and
{pYi}, respectively. Where n represents the current computing precision.

pX i ¼ ceil px iþ 1ð Þ � 2nð Þ mod M
pY i ¼ ceil py iþ 1ð Þ � 2nð Þ mod N

ð10Þ

Third, the two integer sequences are processed to form a sequence {Z} = {(pX1, pY1), (pX2,
pY2),…, (pXi, pYi),…, (pXa, pYa)}. The corresponding points in image P of each pair of values
in this sequence (coordinates) are obtained and the total value SUM is obtained through
summation.

Fig. 9 Approximate Entropy analysis of the (a) original and (b) improved x-dimensional of Baker maps

Fig. 10 Permutation Entropy analysis of the (a) original and (b) improved x-dimensional of Baker maps
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SUM ¼ P pX 1; pY 1ð Þ þ P pX 2; pY 2ð Þ þ…þ P pX a; pYað Þ ð11Þ
Fourth, the value of sequence {zi| i = 1, 2,…, a} is calculated. Before this calculation, the value
of SUM is used to obtain the dire value, which was used to select corresponding computational
equation.

dire ¼ SUMmod3 þ 1

z ið Þ ¼
P pX i; pY ið Þ ⊕ P pX i þ 1; pY ið Þ; if dire ¼ 1
P pX i; pY ið Þ ⊕ P pX i; pY i þ 1ð Þ; if dire ¼ 2
P pX i; pY ið Þ ⊕ P pX i þ 1; pY i þ 1ð Þ; if dire ¼ 3

8<
: ð12Þ

Finally, the special value p of the image P is obtained as

p ¼
∑
a

i¼1
z ið Þ
a

mod1 ð13Þ

where sum(•) represents the cumulative sum of this sequence. The above expression is the
calculation for the p value, which is then used as a part of the secret key.

Fig. 11 Sensitivity analysis of the initial condition (a) curve at u = 3.99, x = 0.3312, y = 0.5845; (b) curves at u =
3.99 and u = 3.99 + 2−12; (c) curves at x = 0.3312 and x = 0.3312 + 2−12; (d) curves at y = 0.5845 and y = 0.5845 +
2−12

u x y p 

Fig. 12 Secret key structure of the image
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3.2 Image encryption and decryption algorithms

P is a plain grayscale image with a size of M ×N. The reasons for using grayscale images have
already been discussed in a previous section and will not be repeated here. For the plain image
P, we first calculated the p value using the method described in Section 3.1. Subsequently, we
started the encryption algorithm step and used the grayscale Lena image as an example.

Step 1: Preprocessed plain-text image P. Using the p value, a rectangle with a size of
L1 × L2 is selected from the plaintext image for processing. Obtain L1, L2 value by using
p value, the equation could be described as follow:

L1 ¼ round p�Mð Þ; 0 < p < 0:5
round 1−pð Þ �Mð Þ; 0:5 < p < 1

L2 ¼ round p� Nð Þ
�

ð14Þ

In the rectangle, each element in the ith row is XORed with the corresponding element in the
(i + L1)th row, and the preprocessed image is obtained. Put it in mathematical form as follow:

P i; jð Þ ¼ P i; jð Þ⊕P iþ L1; jð Þ 1≤ i < L1; 1≤ j < L2 ð15Þ
The rectangle can be taken from anywhere in the image, but for simplicity, the rectangle
is extracted from the upper left corner. Finally, the preprocessed image A would be
obtained. For example, the images before and after the preprocessing are shown in
Figs. 13 (a) and (b).

Step 2: The p value is also used to update the initial value x and y.

x ¼ xþ pð Þmod1
y ¼ yþ pð Þmod1

ð16Þ

The initial conditions u, the updated value x and y are introduced to the improved chaotic map
to generate a chaotic sequence {s} = {s1, s2, s3,…, sM ×N}. Obtain sorted sequence {sorder} by
ranking the sequence from smallest to largest, keeping the index the same.

Fig. 13 Images (a) before and (b) after preprocessing
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The processed image A is scanned from top to bottom and from left to right to obtain a 1D
sequence {A}. And then the index order {r1, r2,…, rM ×N} of sequence {sorder} is used to
scramble the sequence {A}, which was described as follow:

sorderf g ¼ sr1; sr2; sr3;…; srM�Nf g ð17Þ

Aorderf g ¼ Ar1;Ar2;Ar3;…;ArM*Nf g ð18Þ

Step 3: The sorted sequence {Aorder} is transformed from top to bottom and left to right
into a 2D matrix Aorder.
Step 4: Sequence {s} is also used to calculate the parameters as

Drx ið Þ ¼ round s ið Þ*p*106� �
mod 255þ 1; 1≤ i≤M ð19Þ

Dr ið Þ ¼ round s ið Þ*p*106� �
mod N ; 1≤ i≤M ð20Þ

Dcy jð Þ ¼ round s M þ jð Þ*p*106� �
mod 255þ 1; 1≤ j≤N ð21Þ

Dc jð Þ ¼ round s M þ jð Þ*p*106� �
mod M ; 1≤ j≤N ð22Þ

Where Drx(i) ∈ [1, 255], Dr(i) ∈ [0,N − 1] are used for row substitution and row shift, respec-
tively, and thenDcy(j) ∈ [1, 255],Dc(j) ∈ [0,M − 1] are used to perform column substitution and
column shift, respectively.

Step5: Perform row substitution and row shift with Drx(i) and Dr(i). XOR operation is
conducted on the ith row pixels Aorder(i,:) and the encrypted row pixels are determined as

B i; :ð Þ ¼ Aorder i; :ð Þ⊕Drx ið Þ; 1≤ i≤M ð23Þ
Subsequently, Dr is used to perform the circular shift, which represents the number of steps
moved. If the number is odd, the ith encrypted B(i,:) is shifted toward the left; otherwise, the
shift is directed toward the right.

Step 6: For i = i + 1, step 5 would be repeated in a loop until i >M; matrix B represents
the image after the row permutation.
Step7: Perform column substitution and column shift with Dcy(j),Dc(j). XOR operation is
conducted on jth column pixels B(:, j), and the encrypted column pixels are determined as

C :; jð Þ ¼ B :; jð Þ⊕Dcy jð Þ ð24Þ
Dc(j) is used to perform the circular shift. If the number is odd, circular the j-th encrypted C(:, j)
is shifted upward; otherwise it is shifted downward.
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Step 8: For j = j + 1, step 7 would be performed in a loop until j >N.
Step 9: The encrypted image C is obtained after the row and column permutation. We
transformed the sequence {s} to the 2D matrix S. Then, XOR operation is conducted and
the final encrypted image E is obtained as

E ¼ S⊕C ð25Þ
The flow chart of the entire encryption process is illustrated in Fig. 14.

The decryption process is the reverse of the encryption process. The value of p is passed to
the recipient as part of the secret keys. The flowchart of the decryption process is shown in the
Fig. 15.

3.3 Simulation results

In order to illustrate the universality and practicability of this encryption algorithm, we used 10
different images for experiments. However, due to space limitation, we only show the results
of three images here. The precision is set to as 15 and the initial conditions are established as
follows: u = 3.99, x = 0.3312, and y = 0.5845. The p value of each figures is calculated
respectively and the encryption steps are subsequently performed to encrypt the plaintext
images. Figure 16 shows the simulation results.

From Fig. 16, it’s obvious that the encrypted image no longer provides information on the
plain image, and the correct decrypted image is the same as the plain image.

4 Performance analysis and comparison

4.1 Key space

The size of the key space of the encryption algorithm directly affects the ability of
the algorithm to resist brute force attacks. Under similar conditions, the larger the key
space, the stronger the ability of the encryption algorithm to resist brute force attacks
and the more secure the algorithm will be. The keys in the proposed method are
divided into four parts (u, x, y, p), where u ∈ (3.6, 4), x, y, p ∈ (0, 1). In general, the
key space of a secure encryption algorithm should be larger than 2128. The proposed
key space is 0.4 × 1015 × (1 × 1015)3 = 0.4 × 1060 ≈ 0.4 × 2189.7 > > 2128, with an accuracy
of 15. This space is larger than those obtained in previous studies (i.e., 1056 [13], 1045

[33], 1057 [14], and 1053 [37]). In conclusion, the proposed algorithm can effectively
resist brute force attacks.

4.2 Histogram analysis

The histogram shows the distribution of the pixel intensity values of the images. The image
with an uneven distribution of histogram can be easily cracked by statistical attacks. A good
encryption algorithm has an encrypted image that does not show any information and a
uniformly distributed histogram. In addition, the histogram of the decrypted image should
be consistent with that of the original image. The experiment results are showed as Figs. 17, 18
and 19. The results show that the histogram distribution of the original image is extremely

22150 Multimedia Tools and Applications (2021) 80:22135–22162



uneven, thereby exposing the information distribution of the image. Conversely, the histogram
distribution of the ciphertext image is uniformly distributed, which cannot be easily cracked by
statistical attacks. The histogram of the decrypted image is consistent with that of the original
image. As previously established, the proposed algorithm satisfies the requirements of a good
encryption algorithm.

Fig. 14 Flowchart of the encryption process

Fig. 15 Flowchart of the decryption process
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4.3 Correlation analysis

The most challenging aspect of image encryption is the strong correlation between adjacent
pixels. If this problem is not solved, the security of the encryption algorithm will be greatly
reduced. The correlation of two adjacent pixels is defined as

ρxy ¼
∑G

i¼1 xi−E xð Þð Þ yi−E yð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑G

i¼1 xi−E xð Þð Þ2∑G
i¼1 yi−E yð Þð Þ2

q ð26Þ

where x and y are two adjacent pixel points, G is the sample counts, E xð Þ ¼ 1
N ∑G

i¼1xi, and

E yð Þ ¼ 1
N ∑G

i¼1yi. A total of 10,000 pairs of adjacent pixels were taken from the horizontal,

vertical, and diagonal directions of the images before and after encryption, and the correlation
among them was calculated. The correlation between the adjacent pixels of the Lean image is

Fig. 16 (a) plain-text image (b) encrypted image (c) decrypted image of Lena image; (d) plain-text image (e)
encrypted image (f) decrypted image of Rice image; (g) plain-text image (h) encrypted image (i) decrypted image
of Cameraman image
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strong in any of the three directions (Fig. 20(a)- (c)). However, Fig. 20(d)- (f) show that the
correlation between the adjacent pixels of the ciphertext image broken and exhibits a discrete
distribution. The experimental results of other two example images (Rice image and Camera-
man image) are the same. However, due to the space limitation of the paper, we only show the
adjacent pixel distribution of the encrypted image here (Figs. 21 and 22).

Table 3 presents the comparison of the correlation coefficients of the proposed encryption
algorithm with those of other algorithms. The comparison results show that the proposed
algorithm is competitive.

4.4 Key sensitivity

Key sensitivity is the degree of the changes in the result when the key is slightly changed
during the encryption process. A small change in the keys can result in a completely different
encrypted image. The satisfactory image encryption algorithm should demonstrate outstanding
key sensitivity. To investigate the key sensitivity of the proposed algorithm, we slightly
modified u, x, and y and then calculated the mean square error (MSE) between the ciphertext
image generated by the modified key and the original ciphertext image.

Fig. 17 Histogram diagrams of the (a) plain, (b) encrypted, and (c) decrypted Lena images

Fig. 18 Histogram diagrams of the (a) plain (b) encrypted and (c) decrypted Rice images
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MSE ¼ 1

R
∑R

i¼1 yi−xið Þ2 ð27Þ

where R =M×N. The ciphertext image generated by the modified key is compared with each
element of the original ciphertext image. The calculated MSE value of Lena image is shown in
Fig. 23. Except for the difference value of 0, in other cases, the MSE value of the changed and
original ciphertext images is extremely large regardless if the change is applied to u, x, or y.
The results of other two sample images show the same trend, which are not shown here due to
space limitations. This finding implies that the proposed encryption algorithm is extremely
sensitive to the key.

Fig. 19 Histogram diagrams of the (a) plain (b) encrypted and (c) decrypted Cameraman images

Fig. 20 Distribution of the adjacent pixels: (a) horizontal (b) vertical (c) diagonal directions of the plain Lena
image and (d) horizontal (e) vertical (f) diagonal directions of the encrypted Lena image
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4.5 Information entropy analysis

Information entropy is used to measure the randomness of information. The greater the
information randomness, the greater the entropy and the more information is needed for
clarification. The maximum information entropy for a 256 × 256 grayscale image is 8.

H uð Þ ¼ ∑W
i¼1p uið Þlog 1

p uið Þ ð28Þ

where u represents a message source, W is the total number of symbols, and p(ui) is the
probability of symbol ui [10]. The results of the different algorithms are listed in Table 4. The
results reveal that the information entropy of the proposed method is extremely close to the
ideal value 8, compared with other methods, which indicates that the proposed algorithm is
competitive.

4.6 Analysis of the resistance to differential attacks

A differential attack is an effective and the most common mode of attack. In general, the
values of the number of pixel change rate (NPCR) and unified average changed intensity
(UACI) are used to evaluate the ability of an encryption algorithm to resist differential attacks.
The calculation formula of NPCR and UACI are expressed as

Fig. 21 Distribution of the adjacent pixels: (a) horizontal (b) vertical (c) diagonal directions of the encrypted
Rice image

Fig. 22 Distribution of the adjacent pixels: (a) horizontal (b) vertical (c) diagonal directions of the encrypted
Cameraman image
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NPCR C1;C2ð Þ ¼ ∑M
i¼1∑

N
j¼1

jsign C1 i; jð Þ−C2 i; jð Þð Þj
MN

ð29Þ

UACI C1;C2ð Þ ¼ ∑M
i¼1∑

N
j¼1

jC1 i; jð Þ−C2 i; jð Þj
MNF

ð30Þ

where M and N are the length and width of the image, respectively, C1 and C2 represent two
different images with the same size, F is the largest allowed pixel value in the images, and
sign(∙) is the symbol function. If C1(i, j) =C2(i, j), then |sign(∙)∣ = 0; otherwise, |sign(∙)∣ =
1. In addition, M = N = 256 and F = 255. The ideal values of NPCR and UACI are 0.9961 and
0.3346, respectively. In this experiment, the difference between the two images is only one
pixel, and the value of this pixel only differs by 1.

Table 5 presents the NPCR and UACI values of different algorithms for the sample image.
The values of the proposed method are close to the ideal ones. Therefore, the proposed
algorithm is competitive compared with the other ones.

4.7 Robustness analysis against data-loss and noise attacks

The encrypted image must be transmitted to the receiver. The image information is extremely
vulnerable to various attacks or influences during the transmission process, which results in
partial loss of data or overlaying of noise on the image. An ideal encryption algorithm can
decrypt the ciphertext image to the correct image when former is affected. The decrypted
image may not be perfect, but it must have the ability to see the general information of the

Table 3 Correlation coefficients of different algorithms

Algorithm Horizontal Vertical Diagonal

Lena image 0.9281 0.9456 0.8947
Our method (2−16) 0.0013 −0.0041 −0.0044
Ref. [37] −0.0032 0.0141 0.0058
Ref. [27] 0.0064 0.0004 −0.0095
Ref. [24] −0.0069 0.0070 −0.0014
Rice image 0.9236 0.9369 0.8890
Encrypted rice image 0.0019 0.0008 −0.0014
Cameraman image 0.9333 0.9565 0.9059
Encrypted cameraman image 0.0004 0.0012 −0.0004

Fig. 23 MSE of (a) u, (b) x, and (c) y
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original image. The test results of data-loss attack are shown in Figs. 24 and 25. The ciphertext
images can be correctly decrypted despite the different levels of data loss attacks. And Figs. 26
and 27 shows the three images experimental results under different kinds of noise attacks.
Most parts of the original image can be seen despite the slight flaws, which proves the ability
of the proposed encryption algorithm to resist robust attacks.

4.8 Speed analysis

A good encryption algorithm must not only have good performance, but also have a fast
enough encryption speed to be practical. There some studies claim that traditional encryption is
faster than chaotic encryption for images, such as [29]. Thus, we take the speed analysis here.
The encryption speeds of different schemes are shown in Table 6. These results indicate that
our algorithm is competitive for practical use.

5 Conclusion

In this study, a novel improvement model is proposed to suppress the dynamical degradation
of digital chaotic map and a new image encryption scheme is designed. Two chaotic maps with
the same type but different initial values are used as the difference, and a nonlinear function is
used as feedback function to affect the previously obtained difference, then degradation of the
chaotic dynamics was suppressed. A 1D Logistic map and x-dimensional of 2D Baker map are
taken as examples to improve the effectiveness of the proposed improvement model. What’s
more, a new key selection method is proposed. In the method, part information of plain-text
image would be selected by the sequence generated by a chaotic map, which resulting in the
randomness of the selection of the part information. The special value p would be obtained by

Table 4 Information entropy of different algorithms

Algorithms Information Entropy

Lena image 7.5635
our method (2−16) 7.9972
Ref. [32] 7.9892
Ref. [25] 7.9972
Ref. [13] 7.9971
Rice image 7.0115
Encrypted Rice image 7.9976
Cameraman image 7.0097
Encrypted cameraman image 7.9973

Table 5 NPCR and UACI values of different algorithms

Algorithms NPCR UACI

ideal values 0.9961 0.3346
Our method (2−16) 0.996094 0.334635
Ref. [22] 0.9976 0.3912
Ref. [13] 0.9962 0.3347
Ref. [27] 0.9961 0.3350
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Fig. 24 Robustness against occlusion attacks: encrypted Lena image with (a) 0.01 data loss, (b) 0.1 data loss,
and (c) 0.2 data loss; decrypted Lena image with (d) 0.01 data loss, (e) 0.1 data loss, and (f) 0.2 data loss

Fig. 25 Robustness against occlusion attacks: decrypted Rice image with (a) 0.01 data loss, (b) 0.1 data loss, and
(c) 0.2 data loss; decrypted Cameraman image with (d) 0.01 data loss, (e) 0.1 data loss, and (f) 0.2 data loss
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Fig. 26 Robustness against noise attacks: encrypted Lena image with (a) 0.2 salt and pepper noise, (b) 0.02
speckle noise, and (c) 0.02 Gaussian noise; decrypted Lena image with (d) 0.2 salt and pepper noise, (e) 0.02
speckle noise, and (f) 0.02 Gaussian noise

Fig. 27 Robustness against noise attacks: decrypted Rice image with (a) 0.2 salt and pepper noise, (b) 0.02
speckle noise, and (c) 0.02 Gaussian noise; decrypted Cameraman image with (d) 0.2 salt and pepper noise, (e)
0.02 speckle noise, and (f) 0.02 Gaussian noise
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using the selected pixels. A slight change in the key will result in different selected pixels,
resulting in different special values. Then based on this selection method, a new image
encryption was proposed. The p value was used to update the initial value of the encryption
algorithm. What’s more, the p value is applied throughout the entire encryption algorithm,
which increase the correlation between plain-text image and encryption algorithm, resulting in
high resistance to plain-text attacks. For the same image, determining the correct p value is
difficult if the key is unknown. Consequently, cracking the encryption algorithm is challeng-
ing, which signifies that the security of the algorithm is improved. The effectiveness of the
model and encryption algorithm is verified by comparing the sequences produced by the
improved and original maps and testing the ciphertext image generated by the encryption
algorithm. All results show that the improved model and the proposed encryption algorithm
exhibit good performance in all aspects, as well as certain competitiveness compared with
other algorithms, especially when the precision is low. In future, it may be considered to
introduce neural network to perturb the improved model so as to greatly improve the effect of
suppressing the dynamical degradation of digital chaotic map or introducing the Hopfield
chaotic neural network to generate the self-diffusion chaotic matrix so as to increase the
security of image encryption algorithm.
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