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Abstract
Over the years, social multimedia has gained credibility as a source of information and a
reliable platform on which organizations, students and employees can interact with expert
audiences. In the areas of education and teaching, the technique, multimedia and network
of use computerized methods to build a creative environment for learners and broaden our
perspective on a variety of topics. Getting new information and sharing it with others has
become much easier with social multimedia. To boost the productivity and growth of any
university, student contentment is a critical factor. Student contentment level is the need
of the hour that is necessitated to be analyzed every year for the progress of the university.
In this paper, we use a social multimedia technique to collect data from the students of the
university based on a designed questionnaire circulated. The collected information
embraces different aspects like academics, research, recreational, and technology that
portray the image of the university. The current work relies on developing a stacking
ensemble machine learning model for prediction of student’s overall contentment score,
an indicator to perceive overall, how much the university gets the thumbs up from its
current students. The work employs the cuckoo search meta-heuristic based wrapper
method for feature selection from the original dataset with 78 features. The proposed
ensemble model portrayed a lowest RMSE value of 0.373 by the combination of Self
Organizing Map, Multilayer Perceptron, Boosted Generalized Linear Model and Gauss-
ian Process with Polynomial Kernel along with Partial Least Squares as meta-learner,
showcasing its ability to accurately predict student contentment levels of a University.
The proposed machine learning framework acts as a great developmental tool for
foreseeing and analyzing student contentment for its university.
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1 Introduction

With a progressively increasing competition in the education sector, student contentment has
emerged as an essential factor in magnetizing and retaining the best students, who, in turn,
perk up the rank and status of the university. The term ‘Student Contentment’ is a measure that
quantifies the student’s appraisal of the services offered by the colleges and universities [6].
Student satisfaction is of convincing enthusiasm to schools and colleges as they try to
consistently improve the learning condition for understudies, meet the desires for their
constituent gatherings and authoritative bodies, and exhibit their institutional viability. It is
an important indicator of the quality of learning experiences. Higher education establishments
consider student satisfaction as one of the significant components in deciding the nature of
different projects in the present markets [14, 38, 39]. Resources such as effort, money and time
are being spent by the students at the university, and thus it matters to students as they aim to
achieve quality education for their higher studies. Contentment level, at a particular Institute/
University, alters the motivational level of the students and ultimately changes the rate of
retention of the students at a specific University. It allows universities to build a system for
continuously keeping an eye on how effectively University caters student needs. From a
university point of view, satisfied students are more likely to do well academically, which
further augment the financial status and reputation of the University. Student contentment
reflects not only the relish time of a student at University, but it also focuses on his
performance within and outside University. A new study has found that student contentment
has a remarkable influence on the apparent uniqueness of an institution, which has a direct
impact on the achievement of student’s recruitment efforts [20]. Student contentment is vital
for promoting institution life as well as it is catering to an essential influence for standing the
university in global rankings.

In recent times, differing research has featured the significance of examining studying
the life satisfaction of students, for the scholastic and individual repercussions [26, 32].
Most of the research target a broad range of topics, addressing student contentment. For
example, some practitioners attempt to explore which aspects influence student content-
ment [28, 35]. Others investigate the correlation involving student contentment and other
factors such as learning environment, service quality or instructional design and man-
agement style [20]. The authors [17] focused on finding the viewpoint of the students on
sustainability. The authors [33] presented research work to determine whether Facebook
likes are sufficient to determine student contentment in Open Distance Learning (ODL)
or not. Some research work analyzed student contentment for courses like Computer
Architecture and Organization by the use of multiple e-Learning tools [3]. The re-
searchers [9] discussed how student contentment is related to teaching, along with other
university experiences.

Further, the research work [18] investigated the contentment level at the School of
Technology and Applied Sciences, Mahatma Gandhi University; Kerala. The authors [29]
concluded that there is a rise in the contentment level of the students from the year 2007 to
2013, with the improvement in laboratory conditions that included laboratory notes, the
computers, and the other engineering equipment. The researchers [40] presented that how
meaningful is the participation and contentment of the students towards the approach of online
learning. The research also focused on finding the methods the faculty followed to promote
online learning among the students [1, 23]. Some researchers [13] worked on a project that
aims to enhance the level of student contentment using a Virtual Learning Environment. The
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work [25] aimed to trace out the aspects affect the happiness of the pupils in universities in
Pakistan and to evaluate these factors’ relationship, either positive or negative with the
satisfaction. The research [31] predicted the levels of student contentment in face-to-face
learning. The work [19] examined the extent to which dealings and other predictors put in to
student contentment in online learning. The researchers [21] determined the predictors of
student contentment focusing on recreational sports and cultural facilities within the campus.
The research [12] discovered that log files from student course activities play a significant role
in predicting student contentment with modules from a virtual learning environment. The
authors [11] investigated that data mining techniques can choose a lesser number of constructs
that need consideration to handle student contentment. The work [15] concluded that the two
most significant aspects to student course contentment are both the count of enrolled students
to a course and their extraordinary merit rate in their final grading.

In recent times, machine learning has been associated with the field of educational
studies. In the report of 2018 New Media Consortium Horizon (NMCH), the sector of
machine learning is appealed to be embraced as a part of adaptive skills integrating
artificial intelligence in the succeeding 2–3 years, and as a part of analytics skills less
than a year [5, 8, 16, 22, 24].

Utmost studies on an eminence in the higher education sector pay more attention to
academic features rather than administrative factors [10, 27, 30, 34, 41]. These studies mostly
concentrate on the quality of courses, their teaching methodologies, and effective course
delivery tools. The author [7] for example, suggests several determinants influencing the
image of a higher education institution, such as average class strength, diversity of courses,
reputation from academic perspective, students’ qualification, as well as their personal qual-
ities, staff students interaction, etc. On the other hand, the author [4] highlights the significance
of student consultation, well-being of the student, library facilities, teaching environment,
technical facilities, etc.

Until now, research usually focuses on determining correlations among student
contentment and academic success of students or the final scores and individual psycho-
logical elements. This work is the first step towards the prediction of student contentment
score from different aspects of Academics, Faculty zone, General, Research zone, Extra-
Curricular, Hostel, Technology, Teaching Practices and Recreational zones. The purpose
of this work is to exploit machine learning practices in the field of educational research.
The paper presents an ensemble machine-learning model for predicting student content-
ment score based on the data procured using a designed questionnaire circulated through
online means [37].

1.1 Major research contribution

The following are the main contributions:

1. The proposed predictive analytic ensemble model integrates the capabilities of each
predictive model thereby generating improved and consistent predictions. The proposed
framework performed notably better than the best performance models viz. ‘Gaussian
Process with Polynomial Kernel’

2. From a computational point of view, the ensemble approach is more in demand and
Wrapper feature selection using heuristic inspired by cuckoo to optimize is the general-
ization performance of a predictive model
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3. The superiority of the novel ensemble prediction model was validated based on the data
procured using a designed questionnaire circulated through online means

4. In contrast to the baseline models, the proposed ensemble prediction established its
supremacy and the results revealed superior student satisfaction predictive strength in
comparison to the base models.

5. The comparison of the prediction efficiency of the proposed model along with the
explorations of the significance of the proposed prediction model was carried out.

1.2 Organization

The remaining part of paper involves the following sections: Section 2 gives the detailed
background of materials and methods for the proposed analytical model; Section 3 demon-
strates the experimental results of the proposed model along with comparative glance with
base models based on various performance metrics, and Section 4 concludes the work with
highlights of future research directions.

2 Materials and methods

This section presents a detailed description of the proposed methodology along with
the features of procured data. The proposed methodology encompasses the prediction
module that predicts the contentment rate of the students by employing multiple
ensemble machine learning models on the ratings received from the students through
Google forms.

2.1 Data collection

In the current work, the data related to the evaluation of student contentment level is originally
collected by circulating the questionnaire to the students of the university through online
means. The survey named The Overall Contentment Predictor Questionnaire (TOCPQ) is
designed to know the perceptions of the students of the university that can further aid in
forecasting the student’s contentment level associated with that university as depicted as
Table 2. The survey focused on distinct groups like Academics, Campus environment (Hostel
facility, library facility, within the class environment), General, and Research as shown in
Table 1. The data collected through online means include 78 parameters and 4386 distinct
instances. The participants involved pursuing graduation, post-graduation, and doctorate
degrees from the university (Table 2).

2.2 Data preprocessing

Data collection step is followed by data pre-processing wherein the data is pre-processed to
exclude irrelevant data from the dataset by cleaning the noisy data along with imputing
missing values through interpolation technique. Various categorical attributes are changed to
numerical values (Fig. 1).

This step is followed by the application of cuckoo search meta-heuristics wherein the
original dataset, including 78 features is reduced to an optimal subset of features.
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2.3 Proposed methodology

The prediction module broadly consists of three broad sub-modules, namely Data Preparation,
Feature selection using cuckoo search, Stacking ensemble, and Cross-Validation. The pipeline
of the methodology is illustrated in Fig. 3.

2.3.1 Cuckoo search meta-heuristic

The cuckoo search, the best suited meta-heuristic for solving the combinatorial optimization
problem relies on the lazy nature of cuckoos that lay their eggs in the host nest. The eggs look
same as that of the eggs of host bird. If the host bird differentiates foreign eggs, the bird either
discards that nest or kicks out those eggs. On the basis of this lazy characteristic of cuckoos’
species, the authors [36] proposed a cuckoo search algorithm that is a novel meta-heuristic
optimization algorithm. The algorithm considers every nest as single solution. The algorithm
iteratively improves the new solutions/cuckoo eggs by discarding/replacing the older ones
based on fitness function values. The detailed pseudo code of the proposed model for finding
the student’s contentment score is given in Fig. 2.

The main sections of the pseudo code are as follows.

Encoding of Solution The solution is encoded as a combination of zeros and ones with ‘m’
bits where m-representing the number of features in original data (here m = 78) with 1
signifying selection and 0 as discard of feature in the feature space.

The solution Xk
i; j is characterized as in Fig. 3.

The new solutions are bounded to binary values using Eq. (1) .

Z Xk
i; j

� �
¼ 1

1þ eX
k
i; j

and Xkþ1
i; j ¼ 1; if Z Xk

i; j

� �
< bu

0; otherwise;

(
ð1Þ

where bu∼U 0; 1ð Þ & Xk
i; j represents the solution at generation k.

Table 1 Broad classification of the dataset

Class No. Parameter Description

Class- 1 Gender It includes the gender information of the participant.
Class- 2 Academics It contains all the parameters related to academics

such as syllabus of the course.
Class- 3 Faculty It contains all the parameters which are related to faculty.
Class- 4 General All the general facilities are grouped together and placed in this class.
Class- 5 Research The research parameters are put together in this class.
Class- 6 Extra-Curricular It contains the parameters which tell about the extracurricular

activities at the campus.
Class- 7 Hostel All the hostel facilities are included in this class such as hostel

living and food etc.
Class- 8 Technology It includes all those parameters which are related to technology

such as the use of latest version of the software in labs.
Class- 9 Teaching Practices It gives us the information about the teaching practices

within the university
Class- 10 Recreational All the recreational parameters are included in this

class such as meditation classes.
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New Solutions generation using Lévy flight The new solution is obtained from the ran-
domly selected solution using Levy’s flight as given in (2).

Xk
i; j ¼ Xk−1

i; j þ α x L x Xk−1
i; j −Optimal Xi; j

� �
ð2Þ

where Xk
i; j the new solution which is generated using Lévy flight; Xk−1

i; j represents arbitrarily

chosen solution from the population space; α represents step size; Optimal _ Xi, j signifies the
best solution found so far; and L is the step length (Lévy flight vector). The newly obtained
solutions are compared with the old ones on the basis of their fitness function values and the
highly fitted solution is forwarded to the population for subsequent processing.

Discovery of alien eggs For each cuckoo within the population, the probability matrix, is
used for identifying the alien eggs as presented in Eq. (3)

ρi; j ¼ 1; if random 0; 1ð Þ < ρ
0; otherwise;

�
ð3Þ

1 0 1 1 0 0 1 0 1 1 0 0 0 0 1

‘m’ ON/OFF  bits means selection or ignoring feature

Fig. 1 Solution encoding

Fig. 2 The pseudocode of the proposed approach
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where ρi, j represents the probability of noticing foreign eggs in the solution i for the jth
cuckoo’s dimension.

The comparative values of ρ and uniform random number generator random(0, 1) deter-
mines if local random walk is required or not. After calculating the probability of discovery,
new solutions are obtained using Eq.(4).

Xk
i; j ¼ Xk−1

i; j þ LSxρi; j ð4Þ
Where ρi, jrepresents the probability matrix and LS matrix signifies local step size found by
using Eq. (5).

LS ¼ rand 0; 1ð Þ x rand perm Solution ið Þð Þrand perm Solution jð Þð Þð Þ ð5Þ
where rand _ perm() shuffles the solution arbitrarily.

The new solution substitutes the old one in succeeding iteration, in case the objective
function/ fitness value of the new solution is better than the present one. The entire procedure
starting from the generation of solution till searching for foreign eggs is repeated until the fixed
set of iterations.

2.3.2 Flow of proposed scheme

The first step deals with data collection. It includes the formation and circulation of the
questionnaire. The next step involves data preprocessing. On the original dataset with 78
features, cuckoo search based wrapper feature selection is applied to select the specific set of
features. In the next level, the reduced dataset with selected features is used to train the
regression models with their optimum tuning parameters employing 5 fold cross-validation
[2]. These machine learning models are analyzed on various evaluation parameters viz.
Correlation, R-Squared, Root Mean Square Error and Accuracy. Out of the 10 machine
learning models employed, the five models combinations are chosen out of possible

Fig. 3 Depicts the flow of the proposed scheme
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combinations on the basis of RMSE value that yields better RMSE using stacking generali-
zation. Figure 1 depicts the flow of the proposed methodology.

In stacking is ensemble the predictions from different base learners, are employed as inputs
for meta- learning algorithm [5]. This meta-learner is trained to optimally integrate the
predictions from base models to generate a new set of predictions.

In the stacked generalization framework, the predictions from four base models are
exploited by the meta-model to predict the student satisfaction score.

The following are the steps of the generation the proposed model from stacking ensemble
technique:

– Specify a set of 10 base learners (with specific model parameters).
– State a meta-learner.
– Train each base learner on the training data for student score prediction.
– Out of different combinations, the five models combinations are found with better RMSE

(in a group of four-base model and one as meta-learner for making different configura-
tions) that further refines the performance of the prediction model. The final model is
chosen using the stacking ensemble. As the data traveled through the five models, the
models trained the data to offer reliable and precise outcomes. The best ensemble model
was based on RMSE contributes to the final prediction.

3 Experimental results

The experimental results to compute the performance of prediction models have been assessed
by applying all approaches stated in Table 3. R programming [36] is employed to implement
various machine learning models using the processed data.

Table 3 The models along with their tuning parameters

Underlying model Functions Library Model parameters(Tuning)

Conditional inference
random forest

Cforest() party t(Surv(time, cens) ~., data=GBSG2, control=
cforest_unbiased(ntree=50)

Self organizing map Som() kohonen Grid=somgrid(6,4,“rectangular”)
Multilayer perceptron Mlp() RSNNS size=5, learnFuncParams=c(0.1),

maxit=50,
Gaussian process with

polynomial kernel
gausspr() kernlab x, y, scaled=TRUE, type=NULL, kernel=“rbfdot”, kpar=

“automatic”, var.=1, variance.model=FALSE, tol=0.0005,
cross=0, fit=TRUE,

Stochastic gradient
boosting

gbmt() gbm formula=formula(data), distribution=“bernoulli”, data=list(),
weights, var.monotone=NULL, n.trees=100, interaction
.depth=1, n.minobsinnode=10, shrinkage=0.1, bag.fraction=
0.5, train.fraction=1, cv.folds=0, keep.data=TRUE, verbose
=FALSE, class.stratify.cv=NULL, n.cores=NULL)

Parallel random forest Foreach() foreach (a=1:1000, b=rep(10, 2))
Generalized linear

model
Glmnet() glmnet family=“binomial”

Partial least squares Pls() mixOmics ncomp=2,scale=TRUE,mode=c(“regression”, “canonical”,
“invariant”, “classic”),tol=1e-06,max.iter=100,near.zero.var.
=FALSE,

logratio=“none”,multilevel=NULL,
all.outputs=TRUE
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The work is implemented in R language on standalone machine with an Intel Core®i7
processor running at 2.80 GHz, 8 GB RAM, using 64-bit windows OS. The main stages of the
proposed work are as below:

& Data procurement and Pre-processing
& Feature selection using Cuckoo Search Meta-heuristic
& Prediction using 10 machine learning approaches
& Selecting best combination of five learners (on the basis of RMSE)
& Application of stacking ensemble using four at one time as base learner and the 5th one as

meta-learner
& Choosing the best ensemble for final testing.

The dataset procured is free from missing values. The dataset contained values on mixed scale,
as percentage, ratios, and average scores. The ratings offered by the students at the university
are dealt with the prediction module. The various parameter values settings of the underlying
CS algorithm are:

Initial solution count, N - 20
Generations count, Gen - 500
Step size, α - 0.15
Discovery probability, ρ - 0.25
Levy step length, L - 1.5

The normalize() function in R is utilized for normalization purpose. As data is procured from
real data, the work is simulated on original data without considering any outliers effect. Table 3
depicts the tuning parameters of the models used in the present study along with their required
packages.

Various parameters are being analyzed to compute the overall contentment rate within the
university. To evaluate the performance of the proposed methodology various evaluation
parameters are calculated such as Root Mean Square Error (RMSE), Correlation, R-Squared
and Accuracy.

Root Mean Square Error (RMSE) Root mean square error depicts the standard deviation of the
model’s prediction by finding the difference between the model predicted values and the actual
values. The lower the value of RMSE, the better is the performance of the model. The RMSE
is given as in Eq. 6

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�
n ∑

n

i¼1
yi−yjð Þ2

s
ð6Þ

where n represents the total number of observations, yi denotes the actual observed values and
yj denotes the predicted values.

Correlation(r) The correlation coefficient illustrates how well are two variables linearly
related. For variables X and Y, correlation(r) is computed as in Eq. 7.
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r ¼ N∑xy − ∑xð Þ ∑yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N∑x2 − ∑xð Þ2
h i

N∑y2 − ∑yð Þ2
h ir ð7Þ

N-total number of samples
∑ xy - summation of products of paired sample values
∑ x - summation of x values
∑ y - summation of y values
∑ x2 - summation of squared x values
∑ y2 - summation of squared y values

R- Squared (R2) R-squared determines how well the data fits to the regression line. It is square
of coefficient of correlation and is given as in Eq. (8)

R2 ¼
∑ yΛi−Y
� �2

∑ yi−Y
� �2 ð8Þ

Table 5 Average values of evaluation parameters for 10 models (5-Fold Cross validation)

Model No r R RMSE Accuracy

Multilayer perceptron 0.76 0.58 1.62 79.02
K nearest neighbour 0.77 0.59 3.75 73.67
Parallel random forest 0.69 0.48 2.18 75.02
Boosted generalized linear model 0.76 0.59 4.73 72.12
Stochastic gradient boosting 0.66 0.44 1.95 76.28
Partial least squares 0.42 0.18 1.81 77.65
Gaussian process with polynomial kernel 0.75 0.57 1.18 81.67
Glmnet 0.75 0.56 2.39 74.35
Conditional inference random forest 0.34 0.13 2.95 74.07
Self organizing map 0.76 0.57 1.35 79.49
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Fig. 4 Comparison of average RMSE values for different machine learning models
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Here, yi denotes the observed values of the dependent variable, Y depicts the mean, and  yi
indicates the fitted value.

Accuracy It illustrates how well the model been able to predict the values of the defined target
class. It is computed by comparing the actual values with the predicted values and is calculated
as in Eq. (9).

Accuracy ¼ mean abs Actual ¼¼ Predictedð Þ; 1; 0ð Þð Þ*100 ð9Þ
The original cleansed dataset is is fed to cuckoo search meta-heuristic for feature selection.
Table 4 provides the r, RMSE, R2 and accuracy results for dataset with selected features at
different values of folds in 5 fold cross-validation, while Table 5 concludes the average result
of 5-fold cross-validation for different evaluation parameters. The main evaluation parameter
used in this work is predictive RMSE.

Figure 4 depicts the average RMSE values of 10 base machine learning models on a
reduced dataset after feature selection. It is clear from the figure that the lowest RMSE of 1.18
is depicted by the Gaussian Process with Polynomial Kernel model and the highest RMSE of
4.726% is shown by Boosted Linear Model.. The K nearest Neighbour model has better
performance in comparison to the Boosted Linear Model with less RMSE value of 3.75.

Figure 5 depicts the comparison between machine learning models over the accuracy
evaluation parameter on the reduced dataset. The Gaussian Process with Polynomial Kernel
is the best performer in terms of accuracy with an accuracy value of 81.67% while Boosted
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Fig. 5 Comparison of accuracy values for different machine learning models

Table 6 The 5 models combination (based on RMSE)

S.no Model name

1 Gaussian Process with Polynomial Kernel
2 Self Organizing Map
3 Partial Least Squares
4 Multilayer Perceptron
5 Boosted Generalized Linear Model
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Generalized Linear Model shows the least accuracy value of 72.12% in comparison to rest of
the base models.

These models are further exploited for stacking ensemble with a group of four as base
learners and one as meta- learner, leading to different possible combinations of the heteroge-
neous learners.

All heterogeneous learners are exploited (in combination of 5) for stacking ensemble, that
further aid in avoiding the ensemble to overfit the model.

Out of the ensemble of these diverse predictors combinations, 5 models (in combination)
are chosen from the set of 10 base models based on the RMSE values as given in Table 6.
Table 7 presents the average RMSE values of stacking ensemble of the 5 models
combinations.

Figure 6 concludes that the models Self Organizing Map, Multilayer Perceptron, Boosted
Generalized Linear Model and Gaussian Process with Polynomial Kernel along with Partial
Least Squares as meta-learner portrays lowest RMSE of 0.373. The combination of Multilayer
Perceptron, Partial Least Squares and Boosted Generalized Linear Model is not proven to
better combination for predicting the contentment score of a student in university. The
proposed stacking ensemble with cuckoo search meta-heuristic is proven to be beneficial for
computing the overall contentment rate of the university. The proposed methodology can help
to find and conclude the parameters that impact the student contentment levels the most.

Table 7 Different ensemble models with the 5 models

Sr. No Possible variations RMSE

1 Self Organizing Map + Multilayer Perceptron+ Partial Least Squares +
Gaussian Process with Polynomial Kernel

1.072

2 Self Organizing Map + Multilayer Perceptron + Boosted Generalized
Linear Model + Gaussian Process with Polynomial Kernel

0.373

3 Multilayer Perceptron + Partial Least Squares + Boosted Generalized
Linear Model + Gaussian Process with Polynomial Kernel

0.958

4 Self Organizing Map + Partial Least Squares + Boosted Generalized
Linear Model + Gaussian Process with Polynomial Kernel

0.886

5 Self Organizing Map + Multilayer Perceptron + Partial Least Squares +
Boosted Generalized Linear Model

1.068
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4 Conclusion and future scope

The current work focuses on the development of an ensemble machine learning model to
foresee the overall student contentment score according to their perceived level of satisfaction.
The proposed approach utilizes cuckoo search meta-heuristic for selecting the best combina-
tions of features out of 78 original feature set. The work exploits the stacking ensemble to
improve the efficiency of the proposed approach. The results indicate that an ensemble model
of Self Organizing Map, Multilayer Perceptron, Boosted Generalized Linear Model and
Gaussian Process with Polynomial Kernel along with Partial Least Squares as meta-learner
gives lowest RMSE of 0.373. The current work can be extended by enhancing the dataset by
capturing feedback data and reviews from social media leading.
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