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Abstract
Video-based action recognition has become a challenging task in computer vision and
attracted extensive attention from the academic community. Most existing methods for
action recognition treat all spatial or temporal input features equally, thus ignoring the
difference of contribution provided by different features. To address this problem, we pro-
pose a spatial-temporal channel-wise attention network (STCAN) that is able to effectively
learn discriminative features of human actions by adaptively recalibrating channel-wise fea-
ture responses. Specifically, the STCAN is constructed on a two-stream structure and we
design a channel-wise attention unit (CAU) module. Two-stream network can effectively
extract spatial and temporal information. Using the CAU module, the interdependencies
between channels can be modelled to further generate a weight distribution for selectively
enhancing informative features. The network performance of STCAN has been evaluated
on two typical action recognition datasets, namely UCF101 and HMDB51, and comparable
experiments have been performed to demonstrate the effectiveness of the proposed STCAN.

Keywords Action recognition · Channel-wise attention · Spatial-temporal information ·
Two-stream network

1 Introduction

Video-based action recognition has been widely investigated in the past decade, owing to
its widespread applications in video surveillance, human action analysis, human-computer
interaction, and so on. For action recognition in videos, the traditional methods are mainly
based on hand-crafted features, such as 3D-Hessian, 3D-Harris, and improved dense trajec-
tory (IDT) [2, 33, 59]. However, these methods are limited, to a large extend, by sampled
interest regions when extracting video features. Motivated by the great promise of deep
learning shown in image understanding, object detecting and target tracking, deep learning
methods, such as two-stream CNNs and 3D CNNs, have been applied to the problem of
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action recognition [8, 9, 11, 19, 25, 48]. Unlike traditional methods, deep learning meth-
ods are end-to-end frameworks and can automatically learn and extract video features from
global images, showing great potential for video-based action recognition.

Two-stream CNN [37] has been proven to be a successful architecture, which contains a
spatial stream and a temporal stream to extract appearance and motion features from videos
separately. Two-stream CNN and most of its variants [10, 12, 19, 37, 49, 57] mainly focus
on how to effectively fuse these two streams or how to operate segment-based sampling
and effectively aggregate the different segment features, for example, the spatiotemporal
distilled dense-connectivity network (STDDCN) [12] and the temporal segment network
(TSN) [49]. 3D CNN has also been a promising method for action recognition, which
extends 2D convolution with the temporal domain [5, 7, 13, 42, 56]. The Convolutional
3D (C3D) [42], Inflated 3D ConvNet (I3D) [5], and Temporal 3D ConvNet (T3D) [7] have
achieved satisfying results on both UCF101 and HMDB51. However, most of these stud-
ies have not focused on how to selectively enhance informative features. Over the recent
years, the attention mechanism has been widely exploited in many fields, such as natural
language processing (NLP) [41] and image captioning [53], to help generate a more effec-
tive attention mask for the tasks. We argue that the relationship of feature channels plays an
important role and emphasizing informative features selectively can help two-stream CNN
yield superior performance for action recognition. Thus, we introduce attention mechanism
into two-stream CNN to generate a new weight distribution of features in both spatial and
temporal streams to better model the human actions [1, 26, 43]. The idea can be viewed in
Fig. 1.

In this paper, a model named spatial-temporal channel-wise attention network (STCAN)
is proposed based on TSN to recognize human action. Specifically, STCAN includes a
flexible and effective module dubbed channel-wise attention unit (CAU), which can be
embedded into CNNs expediently. Inspired by [17, 26], to selectively highlight the infor-
mative features while preserving the integrity of the original features, the CAU consists
of two parts: a squeeze-and-excitation (SE) operation module and a shortcut connection
module. The former can capture the channel-wise dependencies and generate a new weight
distribution for the feature channels by feature compression operation, which can enhance
informative features and suppress less relevant features selectively. Considering that the for-
mer module may destroy the discriminative properties of the original features, the latter is
designed as a bypass structure, which connects the input and output of CAU. Notably, the
CAU is simple and effective, and only increases slight computational complexity to net-
works. Furthermore, we argue that the network performance may have great relations with
the embedding position and number of CAUs, thus it is crucial to explore the most suitable
position and the most appropriate number of CAUs for superior performance.

Our main contributions are summarized as follows:

– A model named STCAN is proposed, which has the ability to model long-range tempo-
ral structure. And STCAN includes a simple but effective module named CAU, which
can not only generate a channel-wise weight distribution to selectively enhance relevant
features, but also maintain the discriminative properties of original features.

– The CAU proposed can be embedded into CNNs expediently with only a slight increase
in computational complexity and enables end-to-end training. We explore several
strategies of embedding the CAU for superior performance.

– Compared with the state-of-the-art approaches, STCAN achieves superior performance,
which are evaluated on two challenging action recognition datasets, UCF101 and
HMDB51.

21790 Multimedia Tools and Applications (2021) 80:21789–21808



Convolution network without attention operation

Convolution network with attention operation

Attention-based two-stream network architecture

Fig. 1 a The attention mask generated by the network without attention unit. b The attention mask generated
by the network with attention unit. c The channel-wise attention unit is embedded into basic two-stream
architecture, which can enhance informative features for action recognition

The remaining of this paper is organized as follows. Section 2 discusses some related
works, and Section 3 describes the proposed STCAN architecture in detail. In Section 4, the
experimental details and results are provided. Section 5 gives some concluding remarks.

2 Review of related works

In this section, we will cover some works closely related to this paper, including human
action recognition and attention mechanism.
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2.1 Action recognition

Action recognition in videos has made significant progress in the past decade. State-of-the-
art approaches can be roughly classified into two types: RGB-based ones and RGB-D-based
ones.

RGB-based approaches can effectively extract appearance information and better rep-
resent action details, and they can be categorized into two types: ones using hand-crafted
features and the others based on deeply-learned features. For the former approaches, many
spatial-temporal feature detectors have been proposed, for example, 3D-Hessian [52],
3D-Harris [21], and improved dense trajectory (IDT) [46]. Additionally, to extract the
appearance and dynamic information around interest regions, the histogram descriptors are
developed, for example, Histogram of Oriented Optical Flow (HOF) [22], Histogram of
Oriented Gradient (HOG) [22], Extended Speeded Up Robust Features (ESURF) [52], and
Motion of Boundary History (MBH) [44]. Moreover, to form the feature representations,
several encoding methods are applied. The classical encoding methods include Fisher Vec-
tor (FV), Bag of Visual Words (BoVW) [34], Vector of Locally Aggregated Descriptors
(VLAD), and Multi-View Super Vector (MVSV) [4]. These traditional methods are simple
to implement, but their ability to represent video features is limited by the sampled interest
regions.

Unlike traditional methods, deep learning does not sample interest regions manually,
instead, it can extract features autonomously through network training [3, 14]. There are
two main research lines for action recognition in deep learning methods, one of which uses
3D CNNs to recognize the human action and the other is based on optical flow [5, 7, 13,
15, 30, 42, 56]. 3D CNN extends 2D convolution with the temporal domain, which can
take the temporal information into consideration [5, 7, 13, 15, 42]. Carreira et al. [5] pro-
posed two-stream I3D to learn seamless spatio-temporal feature extractors. Diba et al. [7]
proposed T3D to introduce a temporal layer to efficiently model the temporal convolution
kernel depths. He et al. [15] proposed a spatial temporal network architecture to model both
local and global spatial-temporal features. One successful architect based on optical flow is
two-stream CNN [10, 12, 33, 37, 49, 57], which uses optical flow images and RGB images
respectively to extract motion and appearance features in parallel. Ng et al. [33] introduced
the long short term memory (LSTM) module to two-stream CNN and could extract motion
information more accurately from the images. Wang et al. [49] proposed a new method TSN
to extract video features on the basis of two-stream CNN, which improved the accuracy dra-
matically. Feichtenhofer et al. [10] proposed a variety of methods to fuse the temporal and
spatial networks, which further improved network performance. RGB-D-based approaches
are not sensitive to illumination changes or dynamic camera views, and can accurately esti-
mate the contour and skeleton of human body. The most typical ones are skeleton-based
methods [35, 58]. Plizzari et al. [35] proposed a spatial-temporal transformer network to
model dependencies between the joints. Zheng et al. [58] constructed a spatial and temporal
graph convolution network to extract spatial-temporal features of skeleton for classification.
However, most of the approaches lack the ability to distinguish the contribution of different
features of the image.

Taking inspiration from the TSN architecture, we build a new model STCAN. In order
to capture the channel-wise dependencies and enhance important features, we further
introduce the attention mechanism.
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2.2 Attentionmechanism

Originated from human vision, the attention mechanism can assist the CNNs to focus on
some specific features of the image and suppress less useful features [26]. We argue that
through attention mechanism, CNNs can generate a weight distribution of image features,
which can be applied to the original image to highlight the informative features.

Recently, the attention mechanism has been extensively studied in a lot of domains, such
as human parsing, object tracking, image cropping, image captioning and so on [1, 17, 20,
23, 24, 26, 36, 41, 43, 47, 50, 51, 53, 55], and can also be applied in many practical appli-
cations [27–29]. For example, Tan et al. [41] designed an effective attention architecture
for semantic role labeling. You et al. [53] combined bottom-up and top-down approaches
through a semantic attention model to selectively focus on semantic concept proposals. Liao
et al. [26] proposed a residual attention unit for 3D CNNs to highlight the foreground region
for action recognition. Hu et al. [17] proposed a squeeze-and-excitation block to model
channel-wise interdependencies to improve network performance. Li et al. [24] proposed a
spatiotemporal attention to learn the discriminative feature representation. Shen et al. [36]
designed an effective hierarchical attention Siamese network for object tracking. Zhang
et al. [55] proposed a moving foreground attention model to pay more attention to the fore-
ground targets. In this paper, we introduce attention mechanism into two-stream CNN and
design an attention model CAU. Different from the previous works, the module CAU can
not only emphasise informative features but also retain the discriminative properties of the
original features.

In summary, inspired from TSN architecture and attention mechanism, we propose a new
method STCAN, which can model long-term temporal structure and includes an attention
unit CAU. The CAU, containing a SE operation module and a shortcut connection module,
has the abilities to model the interdependencies among all the channels, selectively highlight
the informative features, and retain the discriminative properties of the original features.

3 Spatial-temporal channel-wise attention network

In this section, we make a detailed description of the proposed STCAN. Firstly, the STCAN
framework is introduced in Section 3.1. Then, the architecture of the CAU is presented in
Section 3.2. Finally, the strategies to embed CAU are discussed in Section 3.3.

3.1 Spatial-temporal channel-wise attention network framework

The STCAN architecture is built on the basis of TSN [49]. Similarly, STCAN has the
capacity to incorporate long-term temporal information into the learning of action mod-
els and learns action models efficiently with the segment-based sampling and aggregation
scheme. Specifically, given a video V , STCAN firstly splits the video into K segments
{S1, S2, . . . , SK } with the same length, form which to randomly sample the snippets
{I1, I2, . . . , IK }. Each snippet Ii could be 1 frame for RGB or 5 frames for optical flow.
Then, the two patterns of frames are treated as inputs of the networks to extract fea-
tures and make clip-level recognition predictions. Finally, the video-level prediction can be
obtained by fusing these clip-level recognition predictions. The formula can be represented
as follows:

Net(I1, I2, . . . , IK) = H
(
G (F (I1; W),F (I2; W), . . . ,F (IK ; W))

)
. (1)
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where F (·; W) denotes the ConvNet function with parameters W , which takes Ii as input
and produces scores over all the classes. G (·) refers to segmental consensus function to
combine the outputs of multiple snippets. H (·) refers to the Softmax function to predict
the probability of each class for the whole video.

The model STCAN contains a simple but effective module CAU in both spatial and
temporal streams, which can selectively highlight the informative features and preserve the
discriminative properties of the original features. Additionally, the deep CNN architectures
(e.g. BN-Inception and Inception-v3 [31, 40]) are employed as the backbone. The ConvNet
parameters are transferred from pre-trained models and the learning procedure is sketched
in Algorithm 1. Figure 2 illustrates the basic framework of the model STCAN.

Fig. 2 The basic framework of Spatial-Temporal Channel-wise Attention Network. The sample video is
divided into K segments (K = 3 for example), from each to randomly sample a short snippet (1 frame
for RGB or 5 frames for optical flow). The CAU is embedded into both streams to selectively highlight the
informative features. The snippet scores are fused to yield a video-level prediction
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3.2 Architecture of the channel-wise attention unit

Figure 3 shows the architecture of the CAU. Inspired by [17, 26], the CAU contains two
parts: the shortcut connection module and the SE operation module. The former, connecting
the input and output of the CAU, can prevent the loss of discriminative properties of the
original features. The latter makes full use of the channel global information to obtain the
channel-wise dependencies and adaptively recalibrate the feature responses, which works
in the squeeze-and-excitation way.

The squeeze and excitation operations mentioned above are implemented by five lay-
ers, of which the first layer is to fulfill the squeeze operation and the remaining layers are
designed to complete the excitation operation. In this paper, the global average pooling,
a simple aggregation technique, is exploited as the first layer. The remaining four layers
consist of two convolutional layers (namely Conv1 and Conv2), one ReLU layer and one
Sigmoid layer. The function of these two convolutional layers is to fuse the features of
each channel, and the ReLU layer makes this module capable of learning the non-linearity
between channels. In addition, to ensure that multiple channels can be emphasized, we opt
Sigmoid layer to learn non-mutually exclusive relationships.

Consider the input x ∈ R
N×C×W×H , where N refers to the number of training samples

in each batch, C refers to the number of channels, and W and H represent the width and the
height of the sampled image. Then, we can obtain the channel statistic z(x) ∈ R

N×C×1×1 by
operating the global average pooling on individual feature channel of each training sample.
The c-th channel on n-th sample of z(x), denoted as zcn(x) ∈ R

1×1, can be formulated as
follows:

zcn(x) = 1

W × H

W∑

i=1

H∑

j=1

xcn(i, j), (2)

where xcn(i, j) is the value at position (i, j) of the c-th channel on n-th sample of the input
x. Furthermore, the output of excitation operation A(x) ∈ R

N×C×W×H can be written as
follows:

A(x) = σ(F2(δ(F1(z(x);W1));W2)), (3)

where σ refers to the Sigmoid function, and F (·; W) denotes the convolutional network

function with parametersW . More specifically,F1(·; W1) ∈ R
N× C

r
×1×1 denotes the Conv1

function and F2(·; W2) ∈ R
N×C×1×1 denotes the Conv2 function, δ refers to the ReLU

Fig. 3 The architecture of Channel-wise Attention Unit
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function. The Conv1 layer is a dimensionality-reduction layer and the reduction ratio r is
set to 16. The Conv2 layer is a dimensionality-increasing layer, which makes the output
dimension return to the channel dimension of input x. Note that A(x) is a scalar, which
represents the weights of channel feature maps of the input x, and is obtained by learning
from the two convolutional layers and ReLU layer.

Thus, the final output of the CAU, H(x) ∈ R
N×C×W×H , can be represented as follows:

H(x) = x ⊕ (A(x) � x), (4)

where⊕ represents element-wise addition and this operation represents the shortcut connec-
tion, and � denotes element-wise multiplication, which means that a weight coefficient is
added to the feature maps of each channel. For further explanation, the overview of squeeze
and excitation operations is shown in Fig. 4.

Remarkably, the purpose of CAU is twofold: (a) It can model the channel-wise interde-
pendencies and adaptively recalibrate feature responses to selectively enhance informative
features and suppress less relevant features. (b) It can prevent the loss of discriminative
properties of the original features through a bypass structure. The proposed CAU is flexible
and can be embedded into CNNs conveniently. Nevertheless, simply applying the CAUmay
not achieve satisfactory optimization performance, so how to embed the CAU into networks
is worth further consideration.

3.3 Embedding strategies

In this subsection, the strategies of embedding CAU into CNNs are investigated. Since the
network performance may have great relations with the embedding positions and number of
CAUs, we design several different strategies to seek the most suitable position and the most
appropriate number of CAUs for superior performance.

As mentioned above, Inception networks are employed as the network backbone, which
contain a sequence of convolution Inception blocks. Taking Inception-v3 for example, we
select the first four convolution Inception blocks (named Block1, Block2, Block3 and
Block4) for experiment and exploit Kinetics dataset for pre-training. First, only one CAU

Fig. 4 The overview of squeeze and excitation operations
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is embedded into the Inception-v3 for experiment, following Block1, Block2, Block3 and
Block4 individually. For instance, Fig. 5 shows the structure when a CAU is embedded
following Block1. Then, multiple CAUs are embedded following the chosen convolution
Inception blocks for further experiments. By this method, we can not only find the appro-
priate positions to embed CAU, but also get whether multiple CAUs can further optimize
the network performance.

4 Experiments

In this section, the datasets involved and implementation details are firstly introduced.
Several good practices are then investigated to prevent overfitting in the process of train-
ing. Finally, we carry out experiments to evaluate the effectiveness of STCAN on two
challenging datasets.

4.1 Datasets and implementation details

4.1.1 Datasets

Two action recognition datasets are applied to verify the effectiveness of the proposed model
STCAN, namely HMDB51 and UCF101. HMDB51 [18] consists of 51 action categories
and 6766 short video clips with the resolution of 320×240. HMDB51 is divided into three
sub-datasets (called split1, split2 and split3), and each contains 3570 clips for training and
1530 clips for testing. The experimental results are validated on these three sub-datasets,
and we take the average value of these three results as the final accuracy on HMDB51.

UCF101 [39] consists of 101 action categories and 13320 short video clips with the
resolution of 320×240. This dataset is also divided into three sub-datasets. Similarly, the
experimental results of UCF101 are verified on three sub-datasets and we take the average
value of these three results as the final accuracy on UCF101.

We downloaded HMDB51 dataset at https://serre-lab.clps.brown.edu/resource/
hmdb-a-large-human-motion-database/, and download UCF101 dataset at https://www.
crcv.ucf.edu/data/UCF101/UCF101.rar. To extract RGB images and optical flow images
of all frames of the datasets, we choose the OpenCV and DenseFlow toolkits complied
by GPU. Moreover, the TV-L1 (Total Variation-L1) [54] algorithm is used to calculate the
optical flow.

Fig. 5 The overview when a CAU is embedded following Block1
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4.1.2 Implementation details

From the perspective of network inputs, a single RGB frame and 5 stacked consecutive
optical flow frames that randomly sampled from each video clip are treated as inputs of
the spatial and temporal streams respectively. Figure 6 shows the RGB images and their
corresponding optical flow images. To extract the optical flow frames, we take the TV-L1

[54] optical flow algorithm. Specifically, it takes about 18 hours to extract frame images
(RGB images, horizontal and vertical optical flow images) of all videos in UCF101, and
takes about 5 hours in HMDB51.

In the training process, four data augmentation methods, namely random clipping, cor-
ner clipping, horizontal flipping, and scale jittering [38], are adopted for pre-processing.
The clipping size of scale jittering is randomly determined according to the jittering ratios,
which are set to 1, 0.875, 0.75, and 0.66. Then, the clipping areas are uniformly adjusted to
224×224 for network training. The stochastic gradient descent (SGD) algorithm is used to
learn the network parameters. The batch size is set to 32 and the momentum is set to 0.9.
BN-Inception and Inception-v3 are employed as the backbone. In addition, pre-trained mod-
els from Kinetics or ImageNet are exploited to initialize the network weights. Moreover,
the number of segments is set to 3. Since the average pooling can model multiple segments
jointly and capture visual information from the entire video, we apply average pooling as
aggregation function to calculate the prediction scores of the segments. The integration ratio
of spatial and temporal streams is set to 1:1.6.

For the temporal stream parameters on UCF101, the total number of iterations is set to
9000. The learning rate is initialized as 0.001, and reduces to its 0.1 times after 5000 and
8000 iterations. For the spatial stream, the total number of iterations is set to 4000. The
learning rate is initialized as 0.0005, and changes to its 0.1 times for every 1500 iterations.
On HMDB51, the overall process is similar as that of UCF101. For temporal stream, the
total number of iterations is set to 5000. The learning rate is initialized as 0.001, and reduces
to its 0.1 times after 2500 and 3500 iterations. For the spatial stream, the total number of
iterations is set to 3000. The learning rate is initialized as 0.0005, and changes to its 0.1
times for every 1000 iterations.

In order to prevent overfitting [32], we adopt two methods: gradient clipping and dropout
[16]. The parameter of gradient clipping (clip gradient) is set to 20 in temporal stream

Fig. 6 The RGB images and their corresponding optical flow images. The first row is the RGB images, and
the second and third rows are the optical flow images in x and y component
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and set to 40 in spatial stream to make the gradient restrained in a fixed range to prevent
gradient explosion during training. Moreover, the dropout layers are added between the
global pooling layer and the FC layer of spatial and temporal streams, and the parameters
(dropout ratio) are set to 0.7 and 0.8 respectively.

The experiments are carried out in the Ubuntu 18.04 with RTX 2080 TI and the proposed
model is built on Caffe. Since only a single RTX 2080 TI is used, the network training is
time-consuming. For instance, when training BN-Inception network on UCF101, the total
training time of the temporal stream is about 20 hours, and the spatial stream about 2.5
hours.

4.2 Experimental results

4.2.1 Embedding experiments of CAU

In this subsection, we will explore the appropriate position and number of CAUs for spatial
and temporal stream networks, and experiments are carried out on HMDB51. Meanwhile,
Inception-v3 architecture is employed as the backbones.

Since the bottom features and top features contain different information, the former rep-
resent low-level texture information and the latter represent semantic information, it is worth
exploring which features are appropriate for CAU. To this end, we evaluate the perfor-
mance of embedding a single CAU following different convolution Inception blocks, such
as Block1, Block2, Block3 and Block4. Additionally, we argue that embedding multiple
CAUs into multiple positions may achieve satisfactory optimization performance, thus it is
worth pondering whether multiple CAUs can further increase the network performance.

Tables 1 and 2 show the spatial and temporal stream results of embedding different num-
bers and different positions of CAUs into networks. It figures out that embedding CAUs
into Inception-v3 can significantly improve the accuracies in both spatial and temporal
streams, and inserting a single CAU following Block1 can get the best performance. Note
that embedding multiple CAUs dose not further improve performance as expected. Con-
versely, the accuracy decreases as the number of CAU increases. From the results in Tables 1
and 2, we deduce that the bottom features can fit the CAU better, which can be explained
that low-level features contain rich texture information and are more conductive to gen-
erating attention mask. Otherwise, high-level features are more abstract and may lead to

Table 1 Spatial stream results of
embedding different numbers
and different positions of the
CAUs into Inception-v3 on
HMDB51 split1

Embedding strategy Accuracy

Baseline 57.06%

Block1 61.76%

Block2 60.85%

Block3 60.78%

Block4 60.72%

Block1 + Block2 60.46%

Block2 + Block3 60.26%

Block3 + Block4 59.54%

Block2 + Block3 + Block4 59.48%

Block1 + Block2 + Block3 59.28%

Block1 + Block2 + Block3 + Block4 58.63%
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Table 2 Temporal stream results
of embedding different numbers
and different positions of the
CAUs into Inception-v3 on
HMDB51 split1

Embedding strategy Accuracy

Baseline 69.61%

Block1 72.75%

Block2 72.48%

Block3 72.35%

Block4 71.90%

Block1 + Block2 71.76%

Block2 + Block3 71.37%

Block3 + Block4 71.24%

Block1 + Block2 + Block3 70.98%

Block2 + Block3 + Block4 70.92%

Block1 + Block2 + Block3 + Block4 70.39%

disharmony with CAU. Additionally, if the bottom features are modulated repeatedly by
CAU in multi-layers, the attention mask already processed may be destroyed and lose some
important information.

4.2.2 Comparison of pre-trained datasets

As the two-stream CNNs take images as inputs, it is feasible to apply the models trained
on Kinetics or ImageNet as initialization. Additionally, experiments are performed to
investigate the impact of pre-trained datasets on recognition performance. Furthermore,
BN-Inception is employed and the parameters can be optimized with back propagation
algorithm. Table 3 gives comparison results of different pre-trained datasets on UCF101.

As shown in Table 3, exploiting the model pre-trained on Kinetics can obtain better
results compared with that pre-trained on ImageNet, which indicates that the capacity of
dataset can affect the recognition performance. Moreover, we argue that the generalization
ability and the recognition performance of the network may improve with the increase of the
dataset capacity. Therefore, the model pre-trained on Kinetics is exploited as initialization
for the subsequent experiments by default, unless stated otherwise.

Table 3 Comparison results of BN-Inception pre-trained on ImageNet or Kinetics on UCF101

CNN architecture Stream UCF101

Split1 Split2 Split3

BN-Inception(ImageNet) Spatial 86.02 84.96 84.55

Temporal 87.62 90.18 91.28

Two 93.52 94.16 94.38

BN-Inception(Kinetics) Spatial 86.40 87.18 85.88

Temporal 90.75 93.77 93.34

Two 94.72 95.51 95.26
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4.2.3 Evaluation of proposed STCAN

As stated above, embedding the single CAU following Block1 will obtain the best per-
formance, thus this strategy is used for subsequent experiments. In addition, we adopt the
transfer learning method and exploit the model trained on Kinetics as initialization, which
can effectively solve the problem of insufficient training samples. The experiment per-
formance are evaluated on UCF101 and HMDB51, and BN-Inception and Inception-v3
architectures are employed. The comparison results of STCAN and the baseline(Not embed-
ded with CAU) are shown in Table 4, and the detailed accuracies are summarized in Tables 5
and 6.

As shown in Table 4, STCAN yields superior performance than baseline on both UCF101
and HMDB51. Furthermore, by comparing the accuracies in Tables 5 and 6, we can make
the following three observations. First, both the spatial and temporal networks embedded
with CAU perform better than those without CAU, which verifies the feasibility of the
method proposed. Particularly, we find an interesting thing that the improvement generated
by spatial network is greater than that of temporal network. We suspect it may be because
that the useless information, which is mostly high-frequency, often appears in RGB images
but not optical flow images. Also, it may be because the less useful information, such as
background parts, in the optical flow images are often static. Second, when embedding
CAU, BN-Inception can achieve comparable or even better performance than Inception-v3,
which may indicate that CAU has a more obvious improvement on BN-Inception. Third, the
improvement on HMDB51 is more significant than that on UCF101. We suggest that there
may be two reasons: (a) From the perspective of dataset capacity, the actual training dataset
is not infinite. CAU is designed to generate a weight distribution to selectively enhance
informative features. When the training data becomes sufficient, the generalization ability
of the network will be improved, and thus the effect of CAUwill become less significant. (b)
From the perspective of video clip content, many clips of different categories on HMDB51
have the same scene and embedding CAU may allow the network to focus more on the
action features.

4.2.4 Evaluation of proposedmodule CAU

To evaluate the influence of the proposed module CAU, we perform a comparative experi-
ment of embedding a SE block [17] into the same position of BN-Inception or Inception-V3
and the results are shown in Table 7. The baseline is carried out on BN-Inception or
Inception-V3 with no module embedded in. As shown in Table 7, the module proposed can
obtain better results, which demonstrates the effectiveness of the proposed module CAU.

In addition, to evaluate the computational complexity that CAU increases, we compare
the models with FLOPs (floating point operations) and report the results in Table 8. From

Table 4 Comparison results of STCAN and Baseline on UCF101 and HMDB51

Dataset BN-Inception Inception-V3

Baseline STCAN Baseline STCAN

UCF101 95.16 96.18 95.46 96.13

HMDB51 71.74 75.17 72.26 74.45
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Table 5 Comparison results of STCAN and Baseline with BN-Inception

Dataset Structure Stream Split1 Split2 split3

UCF101 Baseline Spatial 86.40 87.18 85.88

Temporal 90.75 93.77 93.34

Two 94.72 95.51 95.26

STCAN Spatial 90.27 90.80 89.90

Temporal 91.44 94.92 93.98

Two 95.88 96.65 96.01

HMDB51 Baseline Spatial 55.82 52.29 55.29

Temporal 69.41 69.93 70.26

Two 72.94 70.98 71.31

STCAN Spatial 61.63 60.26 59.08

Temporal 71.76 71.63 71.90

Two 75.82 74.84 74.84

Table 6 Comparison results of STCAN and Baseline with Inception-v3

Dataset Structure Stream Split1 Split2 Split3

UCF101 Baseline Spatial 87.33 87.63 87.93

Temporal 91.70 94.32 93.58

Two 94.76 95.85 95.76

STCAN Spatial 90.55 89.89 90.21

Temporal 91.74 94.40 93.86

Two 95.53 96.37 96.50

HMDB51 Baseline Spatial 57.06 56.01 55.36

Temporal 69.61 70.98 70.92

Two 73.20 71.37 72.22

STCAN

Spatial 61.76 59.48 59.48

Temporal 72.75 71.50 72.55

Two 75.36 73.14 74.84

Table 7 Comparison of different embedding modules

Structure BN-Inception Inception-V3

Spatial Temporal Spatial Temporal

Baseline 55.82 69.41 57.06 69.61

SE block 60.46 71.18 60.92 71.57

CAU 61.63 71.76 61.76 72.75
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Table 8 Comparison on complexity of Inception networks with CAU

Method GFLOPs Params(M)

BN-Inception (RGB+Flow) 4.34614 20.698

Inception-v3 (RGB+Flow) 5.79717 43.987

BN-Inception + CAU (RGB+Flow) 4.34621 20.766

Inception-v3 + CAU (RGB+Flow) 5.79719 44.004

the results, we can infer that embedding CAU into BN-Inception and Inception-v3 will only
lead to a small amount of computation while the performance increases significantly.

Moreover, to provide a clearer comparison of the influence of CAU on model training
and testing, the sample training and testing curves for runs of the spatial stream architectures
with and without CAU are depicted in Fig. 7. We observe that the network embedded with
CAU can produce a steady improvement during both training and testing process, and this
result is verified in both HMDB51 and UCF101 datasets.

4.2.5 Comparison of all categories on the two datasets

Furthermore, we compare the accuracies of all action categories on the two dataset (UCF101
and HMDB51). We evaluate the performance of Inception-v3 with or without CAU on
UCF101 and HMDB51, and the comparison detail results are shown in Figs. 8 and 9
respectively. It is worth pointing out that the approach proposed performs better in almost
all categories, taking UCF101 for example, especially HandstandWalking, JumpingJack,
JumpRope, etc. However, it performs worse in the categories, such as ThrowDiscus, which
may be due to the similarity between the category Shotput and ThrowDiscus.

4.2.6 Comparison with the state-of-the-art

In this subsection,We compare the method STCANwith several state-of-the-art approaches,
including the traditional methods [34, 45, 46], the two-stream methods [10, 33, 37, 49], and
the 3D convolution methods [5, 13, 15, 24, 42]. The comparison results are summarized in

Fig. 7 Training and testing curves of Spatial stream architectures with and without CAU. (a) Training results
for the split1 of two datasets. (b) Testing results for the split1 of two datasets
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Fig. 8 Comparison results of all categories on UCF101 (split1)

Table 9. The best accuracies are 88.30% (UCF101) and 61.70% (HMDB51) in traditional
methods, and 98.40% (UCF101) and 81.40% (HMDB51) in deep learning methods.

We observe that the method STCAN outperforms the traditional methods and most
2D convolution methods on both datasets. Moreover, our results significantly outper-
form the two-stream baseline [37] by 8.18 and 15.77 percent. When compared with 3D
CNN methods, the method STCAN achieves comparable performance. Specifically, I3D

Fig. 9 Comparison results of all categories on HMDB51 (split1)
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Table 9 Comparison results with current state-of-the-art methods on UCF101 and HMDB51

Method UCF101 HMDB51

IDT+FV [46] 85.90 57.20

IDT+BoVW [34] 87.90 61.10

MoFAP [45] 88.30 61.70

Two-stream [37] 88.00 59.40

Two-stream+LSTM [33] 88.60 −
Two-stream+IDT [10] 93.50 69.20

TSN(3 seg) [49] 94.20 70.70

TSN(7 seg) [49] 94.90 71.00

C3D (RGB) [42] 82.30 −
I3D (RGB) [5] 95.10 74.30

I3D (RGB+Flow) [5] 97.80 80.90

STA-ResNeXt-101(64f) [24] 95.50 74.10

STA-MARS+RGB+Flow [24] 98.40 81.40

StNet+IRv2(T=7) [15] 95.70 −
3D Resnext-101+64f+RAU [13] 95.27 71.83

Ours(Inception-v3) 96.13 74.45

Ours(BN-Inception) 96.18 75.17

(RGB+ Flow) and STA-MARS+RGB+Flow perform better than STCAN, probably because
that I3D can learn seamless spatio-temporal feature extractors through its 3D filters and
STA-MARS+RGB+Flow can efficiently learn the discriminative feature representation of
actions. MARS (Motion-Augmented RGB Stream) [6] is a 3D CNN model that trained
using a linear combination of feature-based loss and standard cross-entropy loss, and
its performance is improved by 0.2% and 1.7% respectively to 98.40% (UCF101) and
81.40% (HMDB51) with the help of module STA [24]. For further comparison, the com-
plexity of these methods is shown in Table 10. From the observation, we can find that
the method proposed has smaller computational complexity. Remarkably, our approach
improves the recognition performance, and the accuracies are up to 96.18% (UCF101) and
75.17% (HMDB51).

Table 10 Comparison on
complexity with other methods Method GFLOPs

C3D (RGB) [42] 38.5

STA-ResNeXt-101(64f) [24] 38.502

StNet+IRv2(T=7) [15] 123

I3D (RGB) [5] 111.5

I3D (RGB+Flow) [5] 214.2

Inception-v3 + CAU (Ours) 5.79719

BN-Inception + CAU (Ours) 4.34621
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5 Conclusion

In this paper, a new method, named STCAN, has been proposed, which can model long-
range temporal structure. Specifically, STCAN includes a simple and effective module
named CAU, which can be embedded into the spatial and temporal streams expediently. The
CAU can not only model channel-wise interdependencies to adaptively recalibrate the fea-
ture responses, but also prevent the loss of discriminative properties of the original features.
Moreover, the model proposed can be trained end-to-end and has smaller computational
complexity compared with the ones that achieve comparable results. Since this method has
the ability to selectively highlight the informative features, future work will extend the ideas
of this paper to other interesting domains of recognition, such as video surveillance and
target tracking.
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