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Abstract
Along with the exponential growth of online video creation platforms such as Tik Tok and
Instagram, state of the art research involving quick and effective action/gesture recognition
remains crucial. This work addresses the challenge of classifying short video clips, using a
domain-specific feature design approach, capable of performing significantly well using as
little as one training example per action. The method is based on Gunner Farneback’s dense
optical flow (GF-OF) estimation strategy, Gaussian mixture models, and information diver-
gence. We first aim to obtain accurate representations of the human movements/actions by
clustering the results given by GF-OF using K-means method of vector quantization. We
then proceed by representing the result of one instance of each action by a Gaussian mix-
ture model. Furthermore, using Kullback-Leibler divergence (KL-divergence), we attempt
to find similarities between the trained actions and the ones in the test videos. Classification
is done by matching each test video to the trained action with the highest similarity (a.k.a
lowest KL-divergence). We have performed experiments on the KTH and Weizmann Human
Action datasets using One-Shot and K-Shot learning approaches, and the results reveal
the discriminative nature of our proposed methodology in comparison with state-of-the-art
techniques.
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1 Introduction

In this paper, we propose a novel action recognition framework whose goal is to classify
short action video clips to their respective actions by automatically matching their represen-
tations to trained ones. The trained representations are essentially labeled instances of each
action, as shown in the upper left of Fig. 1, that are used in a few-shot learning setting to
achieve a few-shot action recognition task. The framework is flexible enough to be extended
in various ways according to the application and could for example be integrated in users’
devices to classify their videos using little training data.

Requests for new action (e.g. dance) challenges are emerging on a daily basis, and our
framework is designed to be able to effectively learn each new action using as little as
one instance of it, and classify new videos using the learned instances. An overview of
the process flow is displayed in Fig. 2 and goes as follows: Initially, the input dataset is
split into training and testing sets that both go through the same feature extraction pro-
cess. This process initially tracks the actors in the videos and places a bounding box around
them, computes the dense optical flow inside the box, and clusters the optical flow vec-
tors using the KMeans algorithm. Subsequently, classification is achieved using a similarity
check method which employs Gaussian Mixture Models and Kullback-Leibler divergence
between the KMeans clusters of the training and testing videos. A visual representation of
the similarity measurement is demonstrated in Fig. 1, in which the KMeans cluster cen-
ters of a trained “waving” action are used in an attempt to find similar movement patterns
in a test video.

Fig. 1 Similarity between clustered optical flow centers (KMeans) of a trained “Two-hands wave” action
(Red) and a test one (Green) from the Weizmann Human Action dataset
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Fig. 2 Overview of the process flow. The training and testing videos (shown in red) are used as inputs and
go through a feature extraction process (shown in grey), followed by a similarity check process (shown in
green) in which classification is achieved

1.1 Data preprocessing

The goal is to pre-process all the data in a way that will maximize the quality of the extracted
features, while discarding unmeaningful ones. To start off, a fixed size bounding box (BBx)
was employed around the actors in each video to maximize classification accuracy while
minimizing background noise, however this step remains optional. Resizing was then done
to each frame, and area interpolation was used to cover up for lost information. For actions
that involve significant lateral movement, a high-speed tracking method based on kernel-
ized correlation filters [18] was employed on the actors to automatically keep the BBx
around them.

1.2 Feature extraction

Following the preprocessing step in which each actor was tracked and surrounded by a
BBx, feature extraction was completed using Gunner Farneback’s optical flow [9, 10]. The
feature, being the optical flow in its raw 2D format, was extracted by computing the opti-
cal flow between each two consecutive frames t and t + 1. The result was essentially a
set of 2D vectors (u, v), each representing the horizontal and vertical movement of a pixel
at position (x, y), respectively. Noise was reduced by thresholding vectors under a certain
magnitude. Although the application of a threshold generally positively impacts the clas-
sification results, the value of the threshold itself was not critically important due to the
flexibility of the proposed framework. The 2D optical flow feature was then converted to a
5D set of vectors (x, y, u, v, t) by concatenating the position of each pixel in 3D space to it;
(x, y, t) represent the horizontal position, vertical position, and frame number of the pixel
in 3D space, respectively. Finally, K-means clustering was applied on k frames long sub-
clips, resulting in clusters of similar optical flow vectors. The center of each cluster was a
5D vector (x, y, u, v, t) representing its mean position and optical flow values.

1.3 Paper organization

The rest of the paper is arranged as follows. The related works, including their novelties and
drawbacks, are illustrated in Section 2 in addition to our contributions. Section 3 describes
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the methodology and the mathematical background behind the proposed framework. The
different experiments that have been carried out are detailed and empirically examined
in Section 4. Limitations and potential improvements in future works are presented in
Section 5, and finally, the paper is concluded in Section 6.

2 Related work

Recognition is a field that concentrates on a classical problem in computer vision, which is
determining whether the information on images or video frames contains a specific feature,
object, or activity. Such field includes “object recognition”, “Human action recognition”,
“identification” and “detection” [5, 6, 38–42, 44]. On the other hand, applying deep learn-
ing, image restoration and classification has facilitated the study over different sub-branches
of recognition. Some of the novel deep learning, image restoration and classification
applications which are recognized for this purpose can be found in [11, 12, 16, 17, 22, 24,
37, 43].

The “Human action recognition” field is an active and important area in computer vision.
Related comprehensive research works can be found in [3, 21, 34, 45]. In this regard, spa-
tiotemporal interest points and feature descriptors for human action recognition have been
researched in [1, 19, 26], which include a wide range of methodologies and described as
“Bag of visual and video words”. The strength of these methodologies is their robustness
to occlusion, whereas their drawback is their locality and distribution of content under-
standing, and their sensitivity to several intermediate processes such as classifiers. There
is another set of techniques that focuses on detecting a bounding box, which includes the
person executing the action. These methods include spatiotemporal shapes using contours
for body tracking [35], spatiotemporal volumes using silhouette images [30] and space-
time gestures [8]. Such methodologies ignore the primitive human sub-actions, which are
considered a drawback for their representations.

There is another set of methodologies which considers the location knowledge or body
parts appearances. For instance, landmark trajectory features of body parts have been
researched in [36]. Additionally, the learning of cascade of filters has been proposed by Ke
et al. [20] for accurate spatiotemporal localization and detection purposes. Such approaches
are challenging issues in the field of human action recognition since a completely supervised
strategy is not ensured.

The problem of long-term visual tracking has been addressed in [4] where ascribable to
deformation, abrupt motion, heavy occlusion and out-of-view, the target objects undergo
significant appearance variation. Accordingly, the task of tracking into translation and scale
estimation of objects has been decomposed. In another work, an adaptive region proposal
scheme with feature channel regularization has been provided for facilitating robust object
tracking [23]. Correspondingly, the unsupervised video object segmentation task has been
addressed in [32] where the method was denominated as CO-attention Siamese Network
(COSNet). Recently, another video object segmentation (VOS) work has been proposed
which unlike most existing methods which rely heavily on extensive annotated data, this
method addresses object pattern learning from unlabeled videos [33].

Contributions Despite the significant progress which has formely been performed, there
are several challenges in the field of human action recognition. For instance, the variation of
the camera position relative to the subject may create confusions in the human action detec-
tion and classification. Moreover, similarities in different action categories may cause action
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misclassifications. In this work, we have tried to overcome such challenges by present-
ing a human action representation and classification framework that automatically matches
human action test videos to trained ones. The action representation is based off the repeti-
tive nature of human actions, and can be utilized effectively in one-shot or k-shot learning
settings [13, 25]. The importance of our contributions can be described as follows:

– Classifying human actions by automatically matching their representations to trained
ones in videos.

– Representing human actions considering their repetitive nature.

3 Methodology

In this section, we explain the concepts and fundamental strategies behind our proposed
structure. This includes the optical flow application that has been implemented, followed by
the action instance representation that we have proposed and the approach we have used to
obtain meaningful similarity measurements between different actions for the classification
process.

3.1 Parameterized displacement fields

In this subsection, we are going to describe the parametrized displacement fields which we
have applied in Farneback optical flow estimation considering two consecutive video frames
using the eight-parameter model in a two dimensional space [9, 10]. For this purpose, we
define the global parameterized displacements considering polynomials which represent the
neighborhood of a pixel in each of our video frames as follows

dx(x, y) = a1 + a2x + a3y + a7x
2 + a8xy,

dy(x, y) = a4 + a5x + a6y + a7xy + a8y
2, (1)

where x and y are the horizontal and vertical coordinates of corresponding pixels in two con-
secutive video frames; and dx and dy illustrate the parametrized displacement polynomial
with respect to x and y. Furthermore, a1, a2, · · · , a8 are expansion coefficients considering
the polynomial expansions of both video frames. Equation 1 can be rewritten as

D = PS, (2)

P =
(

1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

)
, (3)

S = (a1 a2 a3 a4 a5 a6 a7 a8)
T , (4)

where D = 〈
dx, dy

〉
is the global displacement, and P and S stand for the polynomial matrix

and the solution, respectively. In addition, the polynomial expansion is the neighborhood
approximation of each pixel with a polynomial. Accordingly, the quadratic polynomial in a
local coordinate system can be represented as

F(X) ∼ XT AX + BX + C, (5)

where X = 〈x, y〉 is a pixel vector considering its direction in the video frame and F is
the polynomial expansion of pixels neighborhood in the video frame. Furthermore, A, B,
and C are the coefficients of such neighborhood polynomial expansion where A represents
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a symmetric matrix, B is a vector and C is considered a scalar. By applying the global
displacement in (5), we end up with

F(X − D) ∼ (X − D)T A(X − D) + BT (X − D) + C

= XT AX + (B − 2AD)T X + DT AD − BT D + C. (6)

Accordingly, by defining B ′ = B − 2AD and ΔB = B ′−B
2 and considering (3), we

minimize the following weighted least square problem for calculating our desired solution∑
j

ωj

∥∥AjPjS − ΔBj

∥∥ , (7)

where j is the pixel index and ωj represents the weight of the corresponding pixel.
Therefore, the solution is calculated as follows

S =
⎛
⎝∑

j

ωjPj
T Aj

T AjPj

⎞
⎠

−1 ∑
j

ωjPj
T Aj

T ΔBj . (8)

The application of the parametrized displacement fields solution displayed in (8) is illus-
trated on the left side of Fig. 3, in which a “bending” action from the Weizmann Human
Action dataset was used as an input. Furthermore, the right side is the result of cluster-
ing of the optical flow points using K-means. In Section 3.2 we will describe how this
feature extraction method may be utilized on a spatiotemporal level to obtain a valuable
representation tool for human action classification.

3.2 Proposed framework

As seen in Fig. 4, obtaining K-means clusters gives an accurate 3D representation of the
movement in a video. The idea behind our approach involves the use of just one (or k)
example(s) of each action in the training phase. Since our work is instance-based oriented,
we focus on obtaining a representation of a single instance/repetition of each action. In
videos which contain many repetitions of the same action, we only focus on one of the
occurrences, typically the one that looks the most representative or general for the action.

Fig. 3 Application of dense optical flow (on left) and K-means clustering (on right) on a “Bending” action
from the Weizmann Human Action dataset. Colors correspond to the flow magnitude and direction, as per
the color wheel
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Fig. 4 3D Representation of K-means clusters of optical flow for the “Wave 2” action of Daria from Weiz-
mann Human Action dataset. Colors correspond to the mean flow magnitude and direction of each cluster,
as per the color wheel. Three full repetitions of the action are clearly discernable

Once an instance for each action is obtained during the training phase, we employ the
following method to compare those instances to groups of K-means points found in test
videos. In this regard, we propose that the K-means clusters of each action instance be
modeled by a mixture of Gaussian distributions, resulting in a set of Gaussian components
defined as follows

p(x|Θ) =
M∑

j=1

pjN
(
x; μj ;Σj

)
, (9)

where pj is the mixing parameter of component j
(

0 ≤ pj ≤ 1,
∑M

j=1pj = 1
)

, Θ is the

set of all the parameters (p1, . . . , pM,μ1, . . . , μM,Σ1, . . . , ΣM) and N
(
x; μj ;Σj

)
is the

j-th Gaussian distribution given by the mean μj and the covariance matrix parameter Σj

N
(
x; μj ;Σj

)= 1

(2π)D/2

1

|Σj |1/2
× exp

{
−1

2

(
x − μj

)T
Σ−1

j

(
x − μj

)}
. (10)

Each Gaussian component represents part of an action, meaning that the mean μ of each
component is a 5D vector (x, y, u, v, t) representing the position (x, y, t) and magnitude
(u, v) of a group of K-means clusters that constitute a lower-level action, or sub-action (e.g.
left arm moving up, right leg moving to the left).

The parameters of each Gaussian mixture model are then estimated using the Expectation-
Maximization estimation algorithm (EM) where the log-likelihood is derived with respect
to the mean, the covariance matrix, and the mixing weight. Starting with the expected value
of the posterior probabilities, all the parameters are updated until convergence of the likeli-
hood. Subsequently, Kullback-Leibler (KL) divergence measure is employed in an attempt
to find similarities between the GMM representations of the trained action instances, and
the ones being generated in different sections of each test video.
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Considering the single Gaussians p(x) = N
(
x; μp;Σp

)
and q(x) = N

(
x; μq;Σq

)
,

the KL-divergence is represented as follows [15]

KLGMM (p||q) = 1

2

[
log

∣∣Σp

∣∣∣∣Σq

∣∣ + tr
(
Σ−1

q Σp

)
− k + (

μq − μp

)T
Σ−1

q

(
μq − μp

)]
, (11)

where k is the dimension of both distributions, μp and μq stand for the mean values of the
Gaussians, Σp and Σq represent the covariance values and tr(·) the trace of a matrix.

In order to compute the KL-divergence between two GMMs, we consider the approxi-
mation proposed by Goldeberger et al. [14] as follows

KLGMM (f ||g)=
m∑

i=1

ωf,i

(
KLG

(
fi ||gπ(i)

) + log
ωf,i

ωg,π(i)

)
, (12)

where π(i) = arg min
j

(
KLG

(
fi ||gj

) − log ωg,j

)
, f and g are two GMMs including fi

and gi for i ∈ {1, · · · ,m} as their Gaussian distributions. Moreover, ωf,i and ωg,i are the
corresponding weights and m is the total number of Gaussian components.

Since each trained action has its own GMM representation, the classification process is
done by matching each test video to the trained action with which the KL-divergence value
was the lowest. The proposed classification framework is described in Algorithm 1.

4 Experiments

The conducted experiments involved training using a set of actions and classifying test ones
using one-shot and k-shot learning approaches. Trials were conducted using several assump-
tions in an attempt to increase the representation quality of each action, hence maximizing
classification accuracy.

4.1 Dataset

Our experiments were conducted on the Weizmann Human Action [2] and the KTH [7]
datasets, which contain actions that resemble the ones seen on online platforms (Short,
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contain one or more repetitions of the action and recorded using a fixed camera). The Weiz-
mann dataset contains 90 low-resolution videos, consisting of 10 natural actions (bend,
jumping jack, jump forward, jump in place, gallop sideways, run, skip, walk, wave one hand,
wave two hands). As for the KTH dataset, it contains 600 action videos, involving 25 sub-
jects performing 6 different actions (walking, jogging, running, boxing, hand waving, hand
clapping) in 4 dissimilar scenarios. As mentioned in Section 1.1, the videos were prepro-
cessed prior to feature extraction. Actions in which the actors are not horizontally moving
were placed in a bounding box and upscaled three times, whereas the rest of the actions
went through an additional process, described earlier as Tracking BBx, in which the actors
were automatically tracked to keep them centered inside the BBx.

4.2 Human action classification

4.2.1 Training

Our goal was to obtain a representation of a single instance for each action. In this regard,
after computing GF-OF between two consecutive frames, K-means was applied using 50
components (K = 50) on sub-clips [f, f + 2] consisting of three consecutive frames. A
moderately larger number of frames per sub-clip may have also been employed for faster
computation, without having a considerable impact on classification results. Sub-clips in
which little to no movement was present (e.g. transition from bending down to going
back up) employed a lower value of K clusters, to prevent them from holding or being
concentrated upon few optical flow points.

During the training process for one-shot learning, one video of each action was used
(k videos were used for k-shot learning). Training videos in which the action was only
executed once had all their K-means clusters, which represent that single instance, gathered.
On the other hand, training videos in which more than one repetition of the action was
completed, had the K-means clusters of only one of those instances saved. This process was
completed by setting a range of frames which contain only one instance for each action.
The length f (number of frames) of each action occurrence was also stored and used in
the training process described in Section 4.2.2. Finally, the K-means clusters of each action
were represented by a Gaussian mixture model consisting of n Gaussian components.

Gaussian components Experiments were conducted to determine the ideal number n of
Gaussian components per mixture. The results illustrated in Fig. 5 demonstrate that the
highest average classification accuracies are achieved when n = 9. This signifies that 9
Gaussian components are sufficient to accurately represent a fully executed action.

Additionally, Gaussian components of similar action instances may resemble each other
in the (x, y, u, v) dimensions, however, they often do not occur in the same range on the
temporal axis (t). To deal with this drawback, we employed a simple method in which the
Gaussian mixture of each action instance was assumed to begin at t = 0 on the temporal
axis. This was done by subtracting the lowest t value of all the K-means points, which are
within the range of frames of interest, from the t values of all the other points within that
same range. This process was employed prior to each Gaussian mixture generation in both
training and testing steps. For example, selecting the second “Wave2” instance displayed
in Fig. 4 for training would involve the employment of this process to the K-means points
within the range of that instance so that they end up being within the frame range t ∈ [0, 25]
instead of t ∈ [30, 55].
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Fig. 5 Classification accuracy with different numbers of Gaussian components n per mixture using the
Weizmann dataset. The highest accuracies were achieved when at least 9 components were used (n = 9)

4.2.2 Testing

Once one, or k, representations of each action were carried out, the testing process went as
follows: Each video in the dataset, except the ones used in training, went through a sim-
ilarity measurement process in which an attempt to find similarities between the trained
actions and the data of the test video was completed. This was done by calculating the
KL-divergence between the Gaussian mixture of each trained action and different Gaus-
sian mixtures in the testing video. Those Gaussian mixtures were generated on different
f frames long blocks. One of the assumptions we made was that all similar actions have
instances executed over the same number of frames f . For instance, a trained “bending”
action consisting of 50 total frames, had an f value set to 50. Therefore, when an attempt
was made to find similarities between this “bending” action and the action in the test video,
50 frames long blocks of K-means points were represented as Gaussian mixtures. After
each cluster was generated, KL-Divergence was applied to obtain a measure of similar-
ity between the training and the generated testing probability distributions. Finally, after
obtaining a measure of similarity using each trained action, the test video was classified by
matching it to the trained video with which the KL-divergence value was the lowest. All
classification accuracies demonstrated are averages of 5 runs.

One-shot learning In some cases, two instances of a same action executed by two differ-
ent actors have a significant resemblance between each other from a temporal perspective.
An example of such case is demonstrated in Fig. 1, in which the actors “Daria” and “Denis”
from the Weizmann dataset have very similar “Two-hands wave” actions. However, in gen-
eral cases, a clear difference was noticed in the number of frames f required to represent
one same action. This is due to the presence of variance in the execution time of an action
from person to person. Due to this observation, we conducted some experiments, using one-
shot learning, to check how our assumption regarding fixing the value of f according to
the training data would affect the classification results. The experiments involved replacing
f by f + Δ with Δ ∈ [1, 15], in which Δ represents a fixed number of additional frames
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Table 1 Classification accuracies
for one-shot learning of proposed
work and similar works using
Weizmann dataset

Seo and Milanfar [29] 75%

Yang [34] 80%

FSHMM [28] 81.5%

MAP+SHMM [27] 81.88%

MAP+SHMM (Relaxed) [27] 87.12%

Proposed 89.4%The accuracy of our work are
highlighted in bold

ranging from 1 to 15. The results showed only a slight fluctuation of ±2% in accuracy as Δ

increased, confirming the validity of our assumption.
Experiments conducted using one-shot learning lead to an average classification accu-

racy of 89.4% for the Weizmann dataset and 73.1% for the KTH one. The accuracies of
our work have been compared to other works which implemented one-shot/k-shot learning
frameworks on the same datasets. The results displayed in Tables 1 and 2 show that our
work has the highest accuracy compared to other works. The confusion matrix in Fig. 6,
shows that when only one example per action is used during training in the Weizmann
dataset, the main source of misclassification happens in the “skip” action, in which 50% of
the test videos were wrongly classified, and received prediction labels of “side” or “walk”
instead. In the case of the KTH dataset, the main source of misclassification was between
the “jogging” and “running” actions, which are highly similar in nature. A solution we
will be implementing in an attempt to fix such problem in future works is to automate the
hyperparameters adjustment, as discussed in Section 5.

Table 3 demonstrates the KL-Divergence values between a set of trained actions using
one-shot learning and the ones of actor “Daria” from the Weizmann Human Action dataset.
The classification process was done by matching each action executed by “Daria” to the
trained one with which the KL-Divergence value is the lowest. It is perceivable, that actions
which share some similarities with each other, have lower divergence values between each
other compared to ones that do not share ample similitude.

k-shot learning Following one-shot learning, each experiment involved incrementally train-
ing one additional example of each action prior to going through the classification process.
Each additional action video used in training was removed from the test dataset. The results
shown in Fig. 7 compare our classification accuracies using different values of k with dif-
ferent works. The graph shows that using as little as one training example per action (k =
1), a classification accuracies of 73.1% and 89.4% were achieved for the KTH and Weiz-
mann datasets, respectively, compared to 80% for Yang [34], and 30% for BoVW [31]. As
the number of training examples k increases, the classification accuracies can be seen to
increase the most significantly when k is low (k < 4).

Table 2 Classification accuracies
for one-shot learning of proposed
work and similar works using
KTH dataset

Seo and Milanfar [29] 65%

SHMM [27] 70.4%

FSHMM [28] 71.8%

Proposed 73.1%The accuracy of our work are
highlighted in bold
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Fig. 6 Normalized confusion matrix for the classification of 10 actions of Weizmann Human Action dataset
using one-shot learning

Table 3 Min. KL-Divergence values between training and testing actions using one-shot learning

Bend Jack Jump Pjump Run Side Skip Walk Wave1 Wave2

Test Actions Bend 2.14 31.32 10.51 28.39 6.85 6.81 5.92 7.68 7.07 9.30

Jack 3.77 0.29 3.64 1.35 2.90 3.09 4.20 4.15 4.00 3.02

Jump 5.81 31.55 1.94 23.08 2.82 3.50 10.91 13.05 4.77 24.36

Pjump 0.69 2.30 2.45 0.69 3.95 5.39 9.45 10.83 5.39 5.90

Run 2.59 25.40 1.75 18.35 0.50 2.09 5.29 6.28 2.66 14.90

Side 2.19 34.76 5.68 27.54 3.36 1.03 0.86 1.21 4.13 31.50

Skip 2.27 23.00 11.77 13.55 5.29 3.31 0.82 0.85 8.10 25.57

Walk 6.32 19.03 21.86 18.02 14.54 13.86 4.78 4.15 22.34 8.33

Wave1 3.99 6.57 6.35 7.22 5.09 5.25 5.98 7.04 1.62 4.71

Wave2 3.43 5.14 6.78 5.81 3.59 4.54 6.96 8.52 3.19 1.74

All testing actions are executed by “Daria” from the Weizmann Human Action dataset. Values highlighted
in green correspond to correct classifications, whereas the one highlighted in red is an example of misclas-
sification, in which the “side” action of Daria had higher similarity with the trained “skip” action than the
trained “side” one

The lowest value of each row are highlighted in bold and colored in green if classified correctly, or red if
misclassified
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Fig. 7 Classification accuracy comparison between proposed method and others

5 Limitations and future work

This novel occurrence-based representation method that we have presented has been proven
to be robust, even when only one training example is used. The use of KL-divergence values
as a measure of similarity may also be combined with threshold values and used to discard
outliers in human action datasets (e.g. Datasets which do not solely contain videos of human
actions). For instance, a test video which has high KL-Divergence value with all trained
actions would be labelled as an outlier. Regarding the time complexity of our method, since
it is essentially based off an instance-based learning approach, it holds the same advantages
and drawbacks as other lazy learning methods. The training phase is considerably efficient,
but is coupled with a slow evaluation phase. Needless to say, the computation time highly
depends on the nature of the application in which the method is being used and comes
at the expense of some classification accuracy. For instance, a one-shot learning setting
combined with minimal frame rescaling, high value of k (number of frames per sub-clip
prior to application of KMeans) and low number of blocks in the KL-Divergence process,
leads to lower computation time than a few-shot learning setting using opposite settings
to maximize classification accuracy. Moreover, although the classification accuracies have
been effective, there is room for improvement in the following sections:

Hyperparameters Different hyperparameters such as the GF-OF threshold t , the number of
K-means components K and the number of Gaussian components n used per mixture, were
set after conducting experiments to find their ideal values. Our next objectives include the
automation of the adjustment of those hyperparameters, by designing both a feature extrac-
tion and a training model which can automatically adjust the hyperparameters according to
the input data. For example, the training model would set the ideal number of Gaussian com-
ponents n to represent a specific action and proceed through the “similarity measurement”
process using that same number of components to find actions similar to the trained ones.

Unsupervised action recognition The training model that we have implemented was done
in a supervised manner. Our next goal is to create a completely unsupervised human action
recognition model which is capable of automatically finding action instances/repetitions
within a same video and use one of those repetitions in the classification process. Addi-
tionally, we plan on utilizing the effectiveness of frameworks such as GAN and R-CNN to
expand the flexibility of our work and enable its application in a wider range of datasets,
including ones with multiple actors per video.
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6 Conclusion

In this paper, an instance-based learning approach for human actions classification was
proposed. The method employed Gunnar Farneback Optical Flow and K-means cluster-
ing to obtain accurate spatiotemporal features of an action, represented those features by a
Gaussian mixture model, classified test videos using KL-divergence between two Gaussian
mixtures and matched ones with the lowest divergence values. The conducted experiments
involved validating an assumption made regarding the temporal perspective of each action
instance, pinpointing the ideal number of Gaussian components to use per Gaussian mix-
ture and running experiments using one-shot and k-shot learning. As displayed in the
Section 4.2, the application of KL-Divergence as a similarity measure is demonstrated. Its
computed values validate the usefulness of using such measure in our framework to not only
achieve action classification, but to also give us a sense of how similar the actions in the
dataset are. Similar actions exhibit low divergence values between each other, whereas dis-
similar ones exhibit considerably higher values. The meaningful representation of human
action instances, combined with the instance-based learning approach used, demonstrated
that using as little as one training video per action yielded considerably high accuracies in
comparison with state-of-the-art works. The flexibility of our work enables its application
in other fields such as detection of outliers in datasets according to their KL-Divergence
values (or similarity) with respect to the rest of the dataset. Additionally, various exten-
sions could also be used on the proposed framework depending on the application, such as
automating the hyperparameter tuning process used in the KMeans and GMM processes
according to the input dataset to achieve higher classification accuracies while optimizing
overall performance.
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