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Abstract
This paper presents a new fast iterative shrinkage-thresholding algorithm, termed AFISTA.
The essential idea is to improve the convergence rate of FISTA using a new continuation
strategy leading to a less number of iterations compared to FISTA. The convergence theorem
of the AFISTA is proposed. In order to further accelerate the AFISTAmethod, it is equipped
with the Barzilai-Borwein (BB) method. Also, for applications with orthogonal sensing
matrix A, we proposed a specialized version of the AFISTA method. AFISTA is tailored
for solving the basis pursuit problem which can be applied successfully on a variety of
problems arising in signal and image processing issues such as sparse signal recovery, signal
and image denoising, image restoration, and compressive sensing. To show the efficiency of
the method, we compare our results with generalizations of linearized Bregman and fixed -
point continuation (FPC) methods in sparse signal recovery applications, with split Bregman
method in compressive sensing for sparse MRI and with Gradient projection for sparse
reconstruction (GPSR) method in image deconvolution. Numerical results demonstrate that
AFISTA overcomes all of the compared methods in convergence rate and some of them in
both convergence rate and quality of reconstructed results.

Keywords Proximal algorithms · Compressed sensing · L1 minimization · Basis pursuit

1 Introduction

Let A ∈ R
m×n with m < n or m � n (in compressed sensing), b ∈ R

m, and u ∈ R
n. A

basis pursuit (BP) problem is a constrained minimization problem as follows [11]:

min
u∈Rn

{||u||1 : Au = b} , (1)
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which gives the solution of the underdetermined linear system with minimal L1 norm. This
formulation has been suggested by Chen and Donoho [11] to find a sparse solution among
the many possible solutions to Au = b. Basis pursuit problem emerges in many applications
such as statistics [15], image compression [22], spectral decomposition [23] and compressed
sensing [9, 14, 33, 38], image reconstruction [39], specially its applications in medical
images [36, 37]. Instead of problem (1), one can consider the unconstrained problem:

min
u∈Rn

1

2
‖Au − b‖22 + λ||u||1, (2)

for λ ≥ 0 named LASSO (Least Absolute Shrinkage And Selection Operator) which is
closely related to that. Indeed, in the [32], the authors proved that a solution of (1) is either
u = 0, or else is a solution of problem (2), for some λ > 0. In (1), one can use another
norm instead of L1 norm. Especially, considering sparsity for the solution, L0 norm can be
replaced with L1 norm since it gives the sparsest solution for the problem at hand (note
that L0 is not actually a norm) [24, 26]. But, it is an NP-hard problem and so it is difficult
to solve [24, 26]. In [29], it is mentioned that under suitable circumstances, the solution to
the problem (2) gives the sparsest solution satisfying Au = b. Indeed, the problem (2) is a
convex approximation to the L0 regularizing problem [17]:

min
u∈Rn

1

2
‖Au − b‖22 + λ||u||0, (3)

where ‖u‖0 corresponds to the total number of nonzero elements in u. The problem (2)
can be considered as a second order cone programming problem [17] and therefore can be
solved by conventional methods such as an interior point method [5]. However, because of
its computational complexity, these conventional methods are not suitable for large scale
data [29] which arises in the real applications such as CS reconstruction of Magnetic Res-
onance Imaging (MRI). Many algorithms solve efficiently the problem (2). Some of these
methods can be listed as follows: infeasible-point subgradient algorithm (ISA) [25], homo-
topy based methods [27, 28], fixed - point continuation (FPC) [19, 40], L1-Magic algorithm
[6], linearized Bregman and its generations [21, 29, 41, 42] and proximal gradient based
algorithms such as alternating direction method (ADM) [30], alternating direction method
of multipliers (ADMM) [30], iterative shrinkage thresholding algorithm (ISTA) and its
modification, fast iterative shrinkage thresholding algorithm (FISTA) [2, 3, 30, 34, 35].
Compared to the traditional methods, the above methods, had been suggested to be suitable
for problems with large - scale data and sparse solutions and had been used successfully for
the LASSO problem. Most of these methods are proposed to solving LASSO (2) which has
nothing to do with the BP problem. Among these methods, fixed - point continuation and
an active set method can also solve the BP problem directly only if λ is set to be a tiny value
(e.g., 1e-10).

In this paper, we proposed a method based on FISTA which solves the BP problem
directly. Indeed, we modified FISTA using a continuation strategy to lead to a less number of
iterations compared to FISTA and to solve the BP problem instead of the LASSO problem.
Given that the only difference between the FISTA and AFISTA methods is related to the
continuation strategy added to the AFISTA algorithm, which has little computational cost
compared to the matrix-vector multiplication, the computational cost of each of these two
algorithms at each iteration is almost the same. But the number of iterations for AFISTA is
considerably less than FISTA. Also, we presented the convergence analysis of the proposed
method. In order to further accelerate the proposed method, we used the Barzilai-Borwein
(BB) method [4]. Also, for applications with orthogonal sensing matrix A, we proposed a
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specialized version of the AFISTA method. The efficiency of the proposed method is illus-
trated through a variety of numerical experiments such as sparse signal recovery, recovery
of a noisy sinusoidal wave, compressive sensing for MRI images, and image deconvolution.

This paper is organized as follows: Section 2 recalls ISTA and FISTA methods which
is the core of the proposed method, in Section 3, we proposed the AFISTA method and
its generations, also, we presented its convergence analysis, in Section 4, some numerical
experiments were presented. Finally, in the conclusion section, we summarize the whole
text of this paper.

2 ISTA and FISTAmethods

In this section, the ideas of ISTA and FISTA algorithms, the core of our proposed method,
are shortly described In [2], the authors considered the following general formulation to
solve

min
u∈Rn

f (u) + g(u), (4)

where g : R
n → R is a continuous convex function which can be both smooth or non-

smooth. And f : R
n → R is a convex and continuously differentiable function with

Lipschitz continuous gradient, i.e.,

‖∇f (u1) − ∇f (u2)‖ ≤ L‖u1 − u2‖, ∀u1, u2 ∈ R
n,

where ‖.‖ denotes the Euclidean norm in the space R
n. The basic iterative scheme of the

ISTA for solving the convex optimization problem (4) is as follows

uk = argmin
u∈Rn

f (uk−1) +
〈
u − uk−1, ∇f (uk−1)

〉
+ L

2

∥∥u − uk−1
∥∥2 + g(u)

= argmin
u∈Rn

g(u) + L

2

∥∥∥u −
(

uk−1 − 1

L
∇f (uk−1)

) ∥∥∥
2
.

Now by setting f (u) = 1
2‖Au − b‖2 and g(u) = λ‖u‖1, we have ∇f (u) = AT (Au − b)

and L(f ) = ‖AT A‖ and also [2]

uk = Tλ/L

(
uk−1 − 1

L
AT (Auk−1 − b)

)
,

where Tα : Rn → R
n is the shrinkage (soft thresholding) operator defined by

Tα(x)i = sgn(xi)max {|xi | − α, 0} .
Finally, algorithm of the ISTA method for solving LASSO problem can be written as
follows [2]

Algorithm 1 shows the ISTA algorithm exactly uses two matrix-vector multiplica-
tions involving A and AT followed by a shrinkage step. So, it is suitable for large-scale
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applications. Note that, ISTA is the special case of the proximal forward-backward method
proposed in [8] and [31]. A general convergence results for the proximal forward-backward
method can be found in [13]. A sufficient but not necessary condition to ensure the con-
vergence of the sequence

{
uk

}
generated by the ISTA for the optimal point of the LASSO

problem is that the stepsize L satisfies 1
L

∈
(
0, 1

‖AT A‖
)
[16] or equivalently L ≥ ‖AT A‖.

The authors in [7] proved that the sequence
{
uk

}
can converge to minimizer of the LASSO

problem with L > 1
2‖AT A‖. However, it is not a necessary condition too.

The main drawback of the ISTA algorithm is its rate of convergence. Indeed, it converges
slowly to the optimal objective function value. To fix this drawback of the ISTA, in [2] a
faster algorithm called FISTA is proposed. The main difference between FISTA and ISTA
algorithms is that FISTA uses yk composed of uk−1 and uk−2, whereas ISTA is only based
on uk−1. Algorithm 2 shows FISTA method for LASSO problem [2]

As appears, the cost of calculation of Algorithms 1 and 2 are almost the same, this is
because the execution times of lines 4 and 5 are obviously marginal. Now, we report two
theorems of the convergence rate of the ISTA and FISTA methods presented in [2]. Suppose
that F(u) = 1

2‖Au − b‖2 + λ‖u‖1 and BP problem is solvable, i.e., U∗ = argmin F �= ∅
and also F ∗ be the optimal function value of F at an optimal point u∗.

Theorem 1 [2] Let
{
uk

}
be the sequence generated by ISTA method. Then for any k ≥ 1

F(uk) − F(u∗) ≤ C

k
, ∀u∗ ∈ U∗,

where C is a positive constant.

Theorem 2 [2] Let
{
uk

}
be the sequence generated by FISTA method. Then for any k ≥ 1

F(uk) − F(u∗) ≤ C

(k + 1)2
, ∀u∗ ∈ U∗,

where C is a positive constant.

In [35], the authors note that the ISTA and FISTA methods have local linear convergence
rate, i.e., the convergence of these methods is linear when they reach close to the optimal
point.
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3 AFISTAmethod

Considering the importance of the convergence rate in large-scale problems, we advocate in
favor of using a continuation strategy along with the BB stepsize for accelerating the FISTA
method.

3.1 Accelerating FISTA with continuation

Here, the AFISTA method is presented. In [19], the authors introduced a fixed point con-
tinuation method that solves a sequence of LASSO problems with different values of the
regularization parameter λ. Indeed, for a decreasing sequence {λk}, as a warm start for the
next LASSO problem, they used the solution of the i-th LASSO problem associated with
the regularization parameter λk , which was obtained using fixed - point algorithm. Similar
continuation strategies have also been used in [1, 17, 20, 28].

Here, we have used the continuation technique to accelerate the FISTA method in a
different way. Compared with previous works, that produce decreasing sequence {λk} with
a fixed descent rate 0 < β < 1, we used the convergence of the sequence {uk} generated
by FISTA method to produce a decreasing sequence of the regularization parameters which
converges to zero. Indeed, here we produced the decreasing sequence {λk}, first by setting
λ1 as λ1 = λ̃ ‖b‖2‖AT b‖2/L and then at iteration k, by setting λk+1 as follows

λ′ = λ̃ × ‖b‖2 × ‖uk − uk−1‖2,
if λ′ < γλk,

λk+1 = λ′, (5)

else

λk+1 = λk,

where λ̃ and γ are positive constants. It is notable that, the ISTA and FISTA are proposed
to solve LASSO problem which has nothing to do with BP problem. Whereas, the proposed
method, by converging λk to 0, solves BP problem. Also, to ensure the convergence of the
sequence λk to 0, we need to take γ < 1. Numerical results show how much the use of this
method to generate a sequence of regularization parameters in the continuation technique
can be successful. Now, we are ready to present the algorithm of the AFISTA for the BP
problem
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Given that the only difference between the FISTA and AFISTA methods is in the fifth
and seventh lines of the AFISTA algorithm, which has little computational cost compared to
the matrix-vector multiplication, the computational cost of each of these two algorithms at
each iteration is almost the same. But the number of iterations for AFISTA is considerably
less than FISTA. This fact is clearly shown in Fig. 1, where the total number of iterations
of the FISTA and AFISTA methods to reach the same stopping criterion are 7651 and 155,
respectively. In this experiment, we take the sensing matrix A to be a 300 × 1000 Gaussian
random matrix, the total number of nonzeros of u∗ to be 50 and λ = 0.005 for FISTA
method and λ̃ = 2 and γ = 0.9 for AFISTA method and we use the stopping criterion
‖Auk−b‖

‖b‖ < 10−5 for these two methods.
Table 1 shows the difference between the convergence rate of the AFISTA and FISTA

methods in terms of the number of iterations (NoI ter for short) along with stoping criterion
‖uk−u∗‖

‖u∗‖ ≤ ε for different values of ε. Here, Func. Err. denotes objective function error

F(uk) − F(u∗). Observe the big difference between AFISTA and FISTA: the former needs
715 iterations with γ = 0.5, 733 iterations with γ = 0.7 and 708 iterations with γ = 0.9 for
ε = 10−14 whereas the latter requires 3282 iterations for ε = 10−1. In this test, we take the
sensing matrix A to be a 300× 1000 Gaussian random matrix, the total number of nonzeros
of u∗ to be 50 and λ̃ = 2.5. It is notable that, numerical results are obtained for 10 random
samples.

3.2 Convergence analysis of the AFISTA

In this section, first we present the convergence result of the FISTA. Then, we propose the
convergence theorem of the AFISTA. Note that, the Authors in [10], proved the convergence
of the objective function. However, the convergence of the sequence {uk} given by FISTA
was not known. In [10], the Authors show that with a small modification, one can ensure
the convergence of the objective function as well as the convergence of the sequence {uk}
itself. Here, we present the theorem proved in [10].
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Fig. 1 Plot of residual and relative error as a function of iteration counts in the left and right hand side,
respectively. Solid line: AFISTA. Dashed line: FISTA
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Table 1 Iteration numbers of AFISTA .vs. FISTA to reach the stoping criterion ‖uk−u∗‖
‖u∗‖ ≤ ε

AFISTA FISTA

ε γ = 0.5 γ = 0.7 γ = 0.9

NoI ter Func. Err. NoI ter Func. Err. NoI ter Func. Err. NoI ter Func. Err. λ

1e-1 33 9.64e-02 28 9.50e-02 31 9.40e-02 3282 1.60e-02 5e-3

1e-2 57 9.43e-03 51 9.49e-03 47 9.41e-03 5089 5.31e-03 5e-3

1e-3 92 9.67e-04 89 9.53e-04 84 9.63e-04 7036 1.31e-03 5e-3

1e-4 138 9.61e-05 138 9.79e-05 136 9.64e-05 7431 8.60e-04 5e-3

1e-5 197 9.68e-06 192 9.73e-06 185 9.73e-06 7524 4.33e-04 5e-3

1e-6 242 9.64e-07 243 9.80e-07 239 9.70e-07 32188 4.74e-05 5e-4

1e-7 303 9.75e-08 304 9.66e-08 283 9.44e-08 142699 5.26e-06 5e-5

1e-8 350 9.68e-09 352 9.64e-09 354 9.54e-09 682023 5.39e-07 5e-6

1e-9 419 9.66e-10 402 9.59e-10 407 9.53e-10 3010636 4.99e-08 5e-7

1e-10 468 9.63e-11 464 9.73e-11 474 9.51e-11 26354427 4.86e-09 5e-8

1e-11 539 9.74e-12 551 9.79e-12 527 9.71e-12 − − −− − − −− − − −
1e-12 599 9.79e-13 595 9.63e-13 585 9.68e-13 − − −− − − −− − − −
1e-13 649 9.67e-14 652 9.61e-14 636 9.66e-14 − − −− − − −− − − −
1e-14 715 9.66e-15 733 9.62e-15 708 9.65e-15 − − −− − − −− − − −

Theorem 3 [10] Suppose that a > 2 be a real number, and ∀k ∈ N let tk = k+a−1
a

. Then,
the sequence {uk} produced by FISTA converges to a minimizer of objective function F .

Note that, here we set objective function F(u) = 1
2‖Au − b‖2 + λ‖u‖1, which is the

objective function of the LASSO problem. Now, we are ready to present the following
theorem of the convergence of sequence {uk} given by AFISTA.

Theorem 4 Suppose that {uk} is the sequence given by AFISTA. Then, the sequence {uk}
converges to the minimizer of the Basis Pursuit problem.

Proof Based on updating rule (5), it is obvious that the sequence {λk} is a non-increasing
sequence. Also it is not a fixed sequence. For some k ≥ 1, suppose that at iteration k,
we have λk = λk+1 = · · · . It means that, from iteration k, we are solving LASSO prob-
lem with regularization parameter λk using FISTA starting from initial point uk . Thus, the
convergence of FISTA method yields that for a given 0 < γ < 1

∃N ′ ∈ N s. t. ‖uk+N ′−1 − uk+N ′−2‖ < γ ‖uk−1 − uk−2‖
⇒ λ̃‖b‖‖uk+N ′−1 − uk+N ′−2‖ < γ λ̃‖b‖‖uk−1 − uk−2‖
⇒ λk+N ′ < γλk . (6)

So, the sequence {λk} is a positive decreasing sequence, and converges to a point. Also,
from (6), one can conclude that the sequence {λk} has a subsequence which satisfies
λki+1 < γλki

∀i ∈ N. This means that, the sequence {λk} is a convergent seguence which
has a subsequence that converges to zero. Thus, we have {λk} → 0 which will force the
equality Au = b constraint. This means that eventually AFISTA solves the Basis Pursuit
problem.
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Note that, throughout this paper we set a = 3 in formula tk = k+a−1
a

.

3.3 AFISTA with BB stepsize

The Barzilai-Borwein (BB) method was proposed in [4]. The motivation of the BB method
is the same idea behind quasi-Newton’s method. In fact, BB method provides an approxi-
mation to the inverse of the Hessian matrix of the problem at hand, and this approximation
simply is set to be a multiple of the identity matrix, that is, the step size αk is chosen so that
αkI approximates the inverse of the Hessian at iteration k.

Let Sk−1 = uk − uk−1 and Gk−1 = gk − gk−1, then the BB stepsize can be computed as
follows

αk = argmin
α∈R

‖Sk−1 − αGk−1‖2,
and so by differentiating and setting it to zero, we obtain

αk = (Gk−1)T Sk−1

(Gk−1)T Gk−1
. (7)

Now, in order to further accelerate the AFISTA method, we intend to use the BB method,
which has been successfully used in similar works for l1-minimization issues [12, 17, 40,
41]. The AFISTA algorithm contains two basic steps in each iteration. The first step has one
iteration of the gradient descent method with fixed stepsize 1

L , which performs the mini-
mization of the function f (u) = 1

2‖Au − b‖2. The second step uses a shrinkage operator,
which imposes the sparsity assumption on the obtained solution. Therefore, to improve the
convergence rate of the first step, we changed the value of stepsize furnished by BB step-
sizes. The above discussions lead to an accelerated version of AFISTA, namely AFISTA-BB
(see Algorithm 4).
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Each iteration of the AFISTA-BB algorithm uses two matrix-vector multiplications as in
the previous methods, but in practice, its convergence rate is better than the AFISTA. Left
and right - hand side of Fig. 2 shows the residual and relative error as a function of iteration

counts, respectively. In this figure, to reach the stopping criterion ‖Auk−b‖
‖b‖ < 10−5, the total

number of iterations of the AFISTA and AFISTA-BB methods are 122 and 71, respectively.
Figure 2 shows also the AFISTA-BB method has significantly better performance than the
AFISTA. The sensing matrix A is a 600× 2000 Gaussian matrix. All other parameters used
in this figure are the same as used in Fig. 1.

3.4 Orthogonal case

Let us consider the specific case of AAT = I which appears in the most applications. In
this case, all of the stepsizes are equal to one. For steepest descent stepsize, we have

αk = (gk)T gk

(gk)T AT Agk
= (Auk − b)T

braceAAT (Auk − b)
(Auk − b)T AAT AAT︸ ︷︷ ︸(Auk − b) = 1.

And for BB stepsize, we have

Sk−1 = uk − uk−1

Gk−1 = gk − gk−1 = AT A(uk − uk−1),

thus

αk = (Gk−1)T Sk−1

(Gk−1)T Gk−1
= (uk − uk−1)T AT A(uk − uk−1)

(uk − uk−1)T AT AAT︸︷︷︸A(uk − uk−1)
= 1.

Therefore, for this particular case, the AFISTA algorithm can be rewritten as follows

0 20 40 60 80 100 120 140

Iterations

10-5

10-4

10-3

10-2

10-1

100

R
e

s
id

u
a

l

Decay of ||Au k-b||/||b||

AFISTA
AFISTA_BB

0 20 40 60 80 100 120 140

Iterations

10-5

10-4

10-3

10-2

10-1

100

E
rr

o
r

Decay of Relative Error

AFISTA
AFISTA_BB

Fig. 2 Plot of residual (left) and relative error (right) as a function of iteration. Solid line: AFISTA-BB.
Dashed line: AFISTA
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4 Numerical experiments

In this section, the efficiency of the AFISTA algorithm is shown for solving the BP prob-
lem. We applied the AFISTA on several examples. First, it is done on sparse signal recovery,
second on noisy sinusoidal wave recovery, third on CS for sparse MRI, and finally on image
deconvolution problem. All of the discussed algorithms were implemented using Lenovo
B590 laptop with Intel(R) Celeron(R) CPU 1005M @ 1.90GHz Processor in MATLAB.

Throughout this section, the accuracy of themethods ismeasured by relative error ‖uk−ū‖
‖ū‖ , where

ū and uk stand for the original signal and the reconstructed one at iteration k, respectively.

4.1 Sparse signal recovery

In this subsection, our goal is to reconstruct the original sparse signal ū from the sensing
matrix A and the observation b. To generate the original signal ū, the position of the non-
zero components of signal ū were randomly selected using the randsample command in
MATLAB and then each of these non-zero components were sampled from the standard
Gaussian (randn in MATLAB) or from [−1, 1] uniformly at random (2∗rand−1 in MAT-
LAB) or from {−1, 1} standard Gaussian random (sign(randn) in MATLAB). And we use
three types of measurement matrices: orthogonalized Gaussian matrices that its entries were
generated using Gaussian distribution and its rows were orthogonalized by QR decomposi-
tions, standard Gaussian matrices, and partial discrete cosine transform (DCT) matrices that
itsm rows were randomly selected from the n×nDCTmatrix. Note that, when we deal with
the partial DCT matrix, we can compute matrix-vector multiplications involving A and AT

using the discrete cosine transform and the inverse discrete cosine transform, respectively.
Here, we have done two types of tests: Noise - free Test: its results are given in Fig. 3 and
Table 2, and Noisy Test: its results are given in Figs. 4, 5, 6 and Table 3. In noisy case, we
take the measurement vector b as follows

b = Aū + η,

where η is the white Gaussian noise of variance σ 2. To detect the noise level, instead of
using σ , we use the signal to noise ratio (SNR), which is defined as follows

SNR = 20 log10

(‖ū‖
‖η‖

)
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Fig. 3 Noise - free test. Top: Original signal with ‖ū‖0 = 50. Middle: Reconstructed signal using AFISTA-
BB algorithm with ‖uk‖0 = 51 after 346 iterations. Bottom left: Graph of residual values with respect to
iteration counts. Bottom right: Graph of relative error with respect to iteration counts

Here, we used AFISTA-BB method along with the following parameters, sensing matrix
A = 600×2000 standard Gaussian matrix, ‖ū‖0 = 50 and λ̃ = 2. Figure 3 shows the resid-
ual and the relative error. AFISTA-BB algorithm converges to a solution with 10−15 residual

and relative error in less than 350 iterations. The stopping criterion is ‖Auk−b‖
‖b‖ < 10−15.

Figures 4–6 show the results of the noisy tests with three different levels of noise. These
figures show, even for huge noise levels with negative SNRs, the AFISTA-BB algorithm
works well.

In Table 2, we compare specialized AFISTA for orthogonal case, termed SAFISTA,
with two different methods, namely kicking+BB line search (KB) and L-BFGS (LB) of
the linearized Bergman [41]. In this Table, following [41], we use orthogonalized Gaus-
sian matrices as sensing matrices and we report average results which are obtained using 20
random instances. Also, we let λ̃ = 0.1 for Gaussian signals and λ̃ = 0.05 for uniformly

random [−1, 1] signals, α = 0.95 and the stopping criterion equal to ‖Auk−b‖
‖b‖ < 10−5.

From Table 2, one can observe that the number of matrix-vector multiplications required
for the SAFISTA method is less than linearized Bergman’s methods, so SAFISTA is faster
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Table 2 Noiseless test: Comparison of the SAFISTA for orthogonal case with KB and LB methods [41].
Numerical results are obtained for 20 random samples

Signal type A and AT mult’s Relative error Time(sec.)

m n KB LB proposed KB LB proposed proposed

Standard Gaussian

‖ū‖0 = 50

300 1000 324 193 172 7.71e-06 6.62e-06 1.72e-05 4.89e-02

600 2000 1297 286 138 1.58e-05 7.16e-06 1.06e-05 1.75e-01

1200 4000 1018 339 118 6.11e-06 6.94e-06 9.68e-06 5.87e-01

‖ū‖0 = 20

300 1000 102 128 122 5.14e-06 3.75e-06 1.73e-05 3.86e-02

600 2000 145 152 106 5.67e-06 5.46e-06 1.19e-05 1.32e-01

1200 4000 275 215 98 5.39e-06 6.43e-06 9.35e-06 4.74e-01

Uniformly random [−1, 1]
‖ū‖0 = 50

300 1000 343 214 194 7.71e-06 6.60e-06 1.48e-05 6.24e-02

600 2000 968 282 158 8.40e-06 5.87e-06 1.06e-05 2.02e-01

1200 4000 1183 370 138 9.74e-06 5.94e-06 1.00e-05 6.32e-01

‖ū‖0 = 20

300 1000 119 141 120 4.77e-06 4.42e-06 1.57e-05 3.92e-02

600 2000 269 167 106 6.33e-06 4.82e-06 9.96e-06 1.45e-01

1200 4000 435 257 100 5.83e-06 5.42e-06 9.28e-06 4.64e-01

than these tow methods. Notably, the quality of reconstructions for all three methods are the
same.

Table 3 shows the comparison of AFISTA and the linearized Bregman with kicking
(KO) [29]. Let std denotes the standard deviation. For standard Gaussian matrices and par-
tial DCT ones we use the AFISTA-BB with stopping criterion std

(
Auk − b

)
< σ and

SAFISTA with std
(
Auk − b

)
< 0.5σ , respectively. We report mean results obtained for 10

instances. Numerical results show that the AFISTA method overcomes KOmethod from the
perspective of convergence rate and accuracy.

Table 4 shows the comparison of the SAFISTA with FPC-AS (i.e. FPC Active Set [40]).
We used latest version of the FPC-AS Matlab code, which is available at http://www.caam.
rice.edu/∼optimization/L1/FPC AS/. For a fair comparison, first, we run the FPC-AS code
and then, having the FPC-AS’s solution uF , we terminated the SAFISTAmethod at iteration
k when the following solution uk is satisfied

10−5‖uk‖1 + 1

2
‖Auk − b‖22 ≤ 10−5‖uF ‖1 + 1

2
‖AuF − b‖22.

Table 4 shows also the average results which are obtained for 20 random instances using
orthogonalized Gaussian matrices as sensing matrices. Also, we take α = 0.95 and λ̃ =
0.04. Note that, in this table, we have both noise - free and noisy cases. From this table,
one can see that for the noise free cases FPC-AS works better than SAFISTA, but in noisy
cases, SAFISTA works better and required fewer matrix-vector multiplications than FPC-
AS. In the last column of this table we present the time ratio of FPC-AS and proposed
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Fig. 4 Noisy test for three different noise levels with SNRs = 16.35, 6.67, −3.74 and for standard Gaussian
signal with ‖ū‖0 = 50. Original signal: red dots. Reconstructed signal: blue circles
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Fig. 5 Noisy test for three different noise levels with SNRs = 8.30, 2.41, −4.23 and for uniformly random
[−1, 1] signal with ‖ū‖0 = 50. Original signal: red dots. Reconstructed signal: blue circles
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Fig. 6 Noisy test for three different noise levels with SNRs = 15.06, 5.59, −4.91 and for uniformly random
{−1, 1} signal with ‖ū‖0 = 50. Original signal: red dots. Reconstructed signal: blue circles

methods, which the average of this column shows that for noise - free cases stopping time
of these two methods is approximately the same but for noisy cases, the proposed method
is approximately 2 times faster than FPC-AS.

4.2 Recovery of noisy sinusoidal wave

For the first compressive sensing application in the frequency domain, we consider a
sinusoidal wave that is sparse in frequency domain:

x̄(t) = a1 sin(β1t) + a2 cos(β2t),

where ai and βi denote magnitudes and frequencies of the signal. The observed signal x̃, is
a noisy signal with the form x̃ = x̄ +η, where η is the white Gaussian noise of variance σ 2.
Note that, in CS application, only a random measurement of observed signal x̃ is available.
So, the problem is to reconstruct the original signal x̄ from a random measurement of the
observed signal x̃. Then, the problem can be written as Au = b, where b = x̃(I ), I is a
random subset of {1, 2, . . . , n}, n is total signal length and the sensing matrix A is the partial
inverse Fourier transform matrix. Note that, signal u is in the Fourier domain, thus we need
to take an inverse Fourier transform to get the reconstructed signal in the physical domain.
In numerical experiments, to generate original signal x̄, the magnitudes ai are generated
uniformly at random from [−1, 1] and βis are taken to be random multiplies of 2π

n
, i.e.,

βi = ki
2π
n
, where ki is randomly selected from {0, 1, . . . , n − 1}.

In this test, AFISTA-BB algorithm is used with parameters λ̃ = 0.01, L = 1 and the

stopping criterion ‖Auk−b‖
‖b‖ < 0.01. Numerical results for this test for three different levels

of noise with SNRs = 9.5369, 4.0767 and -0.9420 are shown in Figs. 7, 8 and 9. Details
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Table 3 Noisy test: Comparison of the AFISTA and the KO [29]. Standard Gaussian and partial DCT matri-
ces are used for AFISTA-BB and SAFISTA algorithms, respectively. Numerical results are obtained for 10
random samples

Sensing matrix

Stopping criteria Avg. SNR NoI ter Relative error Time(sec.)

m n λ̃ KO proposed KO proposed KO proposed proposed

Gaussian matrices

std(Auk − b) < σ

‖ū‖0 = 0.05n

300 1000 3 26.12 25.46 420 41 0.0608 0.0053 3.45e-02

600 2000 3 25.44 25.47 206 51 0.0636 0.0032 1.45e-01

1200 4000 3 26.02 25.47 114 77 0.0622 0.0024 7.47e-01

m n λ̃ ‖ū‖0 = 0.02n

156 1000 5 27.48 26.32 890 59 0.0456 0.0098 3.29e-02

312 2000 5 25.06 24.92 404 55 0.0638 0.0059 9.11e-02

468 4000 5 26.04 25.90 216 96 0.0557 0.0060 4.12e-01

DCT matrices

std(Auk − b) < 0.5σ

‖ū‖0 = 0.05n

2000 4000 0.01 23.97 23.68 151 12 0.0300 0.0607 2.77e-02

10000 20000 0.001 24.00 24.04 250 11 0.0300 0.0805 8.30e-02

25000 50000 0.001 24.09 24.02 274 14 0.0304 0.0609 2.53e-01

‖ū‖0 = 0.02n

1327 4000 0.05 24.29 23.87 130 21 0.0223 0.0717 4.23e-02

7923 20000 0.005 24.37 24.07 223 14 0.0204 0.0559 1.06e-01

21640 50000 0.005 24.16 24.01 283 24 0.0193 0.0637 4.34e-01

of the results obtained in this test are presented in the Table 5. These results show that to
have a reliable reconstruction at the higher level of noise, we need to use a greater number
of measurements.

4.3 CS for sparse MRI

To illustrate the efficiency of our method in practical applications, we tested it on MRI
images. All images used in this section are of the size 720 × 960 which are available at
https://usa.healthcare.siemens.com/magnetic-resonance-imaging/. After the vectorization
of these images, the original signal ūwill be of length n = 691200. In the CS application for
sparse MRI, we need to take the sensing matrix A to be a partial discrete Fourier transform
matrix. Note that, we compute matrix-vector multiplications involving A and AT using the
fast Fourier transform and the inverse fast Fourier transform, respectively. Throughout this
part, we use the AFISTA-BB algorithm with parameters λ̃ = 1 × 10−10, L = 1 and the

stopping criterion ‖Auk−b‖
‖b‖ < 5 × 10−3.

Considering the importance of the sparsity assumption, we first start with angiogram
images, which is usually sparse in the spatial domain. We used four angiogram images
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Table 4 Comparison of the SAFISTA and the FPC active set [40]. Numerical results are obtained for 20
random samples

Sensing matrix Orthogonalized Gaussian matrix

Test A and AT mult’s Relative error Time(sec.)

m n SNR FPC-AS proposed FPC-AS proposed FPC-AS proposed ratio

Without noise

‖ū‖0 = 50

300 1000 158 132 1.46e-05 8.69e-05 1.06e-01 6.17e-02 1.72

600 2000 108 101 4.18e-05 8.11e-05 1.41e-01 1.71e-01 0.82

1200 4000 91 90 1.24e-05 5.56e-05 3.48e-01 5.60e-01 0.62

‖ū‖0 = 20

300 1000 115 145 2.07e-05 6.78e-05 8.75e-02 6.72e-02 1.30

600 2000 101 90 2.10e-05 5.70e-05 1.63e-01 1.47e-01 1.11

1200 4000 78 85 5.94e-06 2.90e-05 3.52e-01 4.96e-01 0.71

Noisy

‖ū‖0 = 50

300 1000 27.08 89 41 8.74e-02 8.85e-02 8.13e-02 2.28e-02 3.57

600 2000 25.97 77 37 7.37e-02 5.99e-02 1.38e-01 7.90e-02 1.75

1200 4000 23.92 55 38 6.89e-02 6.65e-02 2.47e-01 3.13e-01 0.79

‖ū‖0 = 20

300 1000 25.88 76 34 7.36e-02 6.69e-02 6.64e-02 1.87e-02 3.55

600 2000 23.55 52 29 7.83e-02 7.13e-02 1.06e-01 5.47e-02 1.94

1200 4000 24.74 45 27 5.97e-02 4.41e-02 2.66e-01 1.83e-01 1.45
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Fig. 7 Reconstruction using 30% of the noisy signal. Top left: Original (red) and noisy (blue) signals. Top
right: The absolute magnitude of original (red dots) and reconstructed (blue circles) signals in frequency
domain. Bottom left: Original (red) and reconstructed (blue) signals. Bottom right: A close-up view of the
bottom left figure
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Fig. 8 Reconstruction using 50% of the noisy signal. Top left: Original (red) and noisy (blue) signals. Top
right: The absolute magnitude of original (red dots) and reconstructed (blue circles) signals in frequency
domain. Bottom left: Original (red) and reconstructed (blue) signals. Bottom right: A close-up view of the
bottom left figure

with different sparsity levels. We call these four images angio1, angio2, angio3 and angio4,
which are used for producing Fig. 10, from top to bottom, and Fig. 11, respectively.
Figure 10 shows the results of our first test on angiography images. In this figure, we
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Fig. 9 Reconstruction using 70% of the noisy signal. Top left: Original (red) and noisy (blue) signals. Top
right: The absolute magnitude of original (red dots) and reconstructed (blue circles) signals in frequency
domain. Bottom left: Original (red) and reconstructed (blue) signals. Bottom right: A close-up view of the
bottom left figure
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Table 5 Details of the results
obtained in Figs. 7, 8 and 9 Figure Data used SNR NoIter Relative error Time(sec.)

Figure 7 30% 9.5369 24 2.79e-02 3.37e-02

Figure 8 50% 4.0767 32 3.74e-02 5.21e-02

Figure 9 70% −0.9420 20 7.55e-02 5.77e-02

compare the AFISTA-BB algorithm with the split Bregman method [18]. The Matlab
code for the split Bregman method can be downloaded from http://tag7.web.rice.edu/Split
Bregman.html. The obtained results show that for enough sparse images, the AFISTA-BB
works better than split Bregman in convergence rate and accuracy of the solution. In the
other words, Whereas AFISTA-BB is faster than split Bregman, the quality of reconstructed
images using AFISTA-BB is better than split Bregman. Details of the results obtained in this
test are presented in the Table 6. Figure 11 shows the results of our second test on angiogra-
phy images. In this test, we use image angio4 that is 52% sparse. Compared to the images
used in Fig. 10, which are about 70% sparse, this image is not sparse enough to reconstruct
using 30% of its frequency domain data. From Fig. 11, we can see that the AFISTA-BB
algorithm failed to have a proper reconstruction using 30% of frequency domain data.

This figure also shows that the AFISTA-BB algorithm works well in reconstructing the
image angio4 using 50% of its frequency domain data. Details of the results obtained in this
test are presented in the Table 7. Figure 11 shows the importance of the sparsity assumption

Fig. 10 CS reconstruction of MR Angiography images using 30% of frequency domain data. Columns from
left to right: Original images, images reconstructed using 30% of the frequency domain data, in which miss-
ing samples are filled with zero, images reconstructed by split Bregman algorithm after 8 inner iterations (3

outer iterations) and images reconstructed by AFISIA-BB using the stopping criterion ‖Auk−b‖
‖b‖ ≤ 5× 10−3,

respectively
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Fig. 11 CS reconstruction of a 50% sparse MR Angiography image. Top: Original image. Middle left: image
reconstructed using 30% of the frequency domain data, in which missing samples are filled with zero. Middle
right: Result of AFISIA-BB algorithm using 30% of frequency domain data. Bottom left: image reconstructed
using 50% of the frequency domain data, in which missing samples are filled with zero. Bottom right: Result
of AFISIA-BB algorithm using 50% of frequency domain data

Table 6 Details of the results obtained in Fig. 10

Images Sparsity NoI ter Relative error Time(sec.)

SB proposed SB proposed SB proposed

angio1 74% 3(8) 22 1.39e-01 1.89e-02 6.57 2.83

angio2 69% 3(8) 22 9.74e-02 1.36e-02 6.15 2.63

angio3 72% 3(8) 26 1.35e-01 2.04e-02 6.48 3.24
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Table 7 Details of the results
obtained in Fig. 11 Frec. data NoI ter Relative error Time(sec.)

30% 43 2.20e-01 5.27

50% 32 9.30e-03 4.31

Fig. 12 CS reconstruction of MRI images in wavelet domain (The original signal is considered as the wavelet
coefficients of the MRI images) using 25% of frequency domain data. Columns from left to right: Original
images, Images reconstructed using 25% of the frequency domain data, in which missing samples are filled
with zero and Images reconstructed by AFISIA-BB algorithm, which are obtained by using the stopping

criterion ‖Auk−b‖
‖b‖ ≤ 5 × 10−3, respectively
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Table 8 Details of the results presented in Fig. 12

Images Wav. Dom. Spat. Dom. SNR Wav. Dom. Spat. Dom. Iter Time(s)

Sparsity Sparsity Relerr Relerr

Cardiac 95% 37% 3.1282 4.54e-03 2.68e-02 16 1.84

Neurology 90% 52% 3.3644 6.54e-03 3.30e-02 21 2.48

Orthopedics 90% 25% 0.9697 8.29e-03 4.97e-02 21 2.52

Health 91% 48% −1.7118 7.51e-03 5.69e-02 19 2.44

Oncology 91% 35% −0.3860 6.92e-03 5.04e-02 19 2.65

Pediatrics 92% 62% 0.8107 5.50e-03 3.43e-02 18 2.11

in BP problem. It is obvious that for other MRI images with significantly little sparsity level
the AFISTA method will not work.

As the last test, we applied AFISTA-BB on MRI images. Here, the original signal is
considered as the wavelet coefficients of the MRI images, in which the Haar wavelet is used
to decompose images up to five resolution levels. The results of this test are presented in
Fig. 12 and its details are presented in Table 8.

4.4 Image deconvolution

For our final experiment, we test the proposed AFISTA-BB on the Image Deconvolution
problem. In other words, we set matrix A to be RW, in which, R is a matrix representation
of the blur operation, and W denotes the inverse wavelet transform. Following [17], the
blur kernel is setted to be hij = 1

i2+j2
. Here, we use two well - known test images, Lena

and Cameraman. And we compare the proposed method With GPSR-BB algorithm [17].
Both the paper and the code of the GPSR-BB algorithm are available at http://www.lx.
it.pt/∼mtf/GPSR/. For the GPSR algorithm, we use the demo ”demo image deblur.m”
with default settings for its parameters except parameter ”tolA”. For implementation of
the discrete wavelet transform, both algorithms use the Rice wavelet toolbox that it can be
freely downloaded from http://www-dsp.rice.edu/software/rwt.shtml. Throughout this part,
we use the AFISTA-BB algorithm with parameters λ̃ = 1 × 10−7, L = 1 × 10+3 and

Table 9 Image deconvolution test: Comparison of the AFISTA-BB with the GPSR-BB [17] for different
tolerances

GPSR [17] Proposed

”tolA” Psnr NoI ter Time(sec.) ε Psnr NoI ter Time(sec.)

Cameraman Test Image

1e-03 26.96 21 0.875 1e-03 28.99 20 1.098

1e-05 27.88 50 2.000 1e-04 39.83 103 3.922

1e-07 28.09 144 5.953 1e-05 57.60 402 14.27

Lena Test Image

1e-03 33.02 13 2.531 1e-03 33.48 17 2.797

1e-05 33.58 28 5.469 1e-04 39.50 81 12.55

1e-07 33.69 82 15.28 1e-05 52.35 440 66.44
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Fig. 13 Image deconvolution test: Size of the blur kernel is [9, 9]. Top left: Original image. Top right: Blurred
Image. Bottom left: reconstructed using GPSR-BB algorithm with Psnr 28.09. Bottom right: reconstructed
using AFISTA-BB with Psnr 57.60

Fig. 14 Image deconvolution test: Size of the blur kernel is [17, 17]. Top left: Original image. Top
right: Blurred Image. Bottom left: reconstructed using GPSR-BB algorithm with Psnr 32.49.Bottom right:
reconstructed using AFISTA-BB with Psnr 50.54
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the stopping criterion ‖Auk−b‖
‖b‖ < ε. The results of Image Deconvolution experiments are

reported at Table 9 and Figs. 13 and 14, which show the efficiency of the proposed method.
Note that, in this test, the quality of reconstructed images using the GPSR method is less
than the proposed method. The psnr of reconstructed images shows this fact. For example,
from Table 9, we can see that, for Lena test image GPSR-BB reached psnr=33.69 in 15.28
seconds whereas AFISTA-BB reached psnr=39.50 in 12.55 seconds. So, AFISTA-BB can
reach a better quality of reconstruction in less time compared to GPSR-BB. Thus, from
this test, we can see that the AFISTA method overcomes the GPSR-BB method from the
perspective of convergence rate and accuracy.

5 Conclusion

This paper proposes AFISTA to accelerate the FISTA method using a specific continuation
strategy. Also, the convergence analysis of the proposed method is presented. Although the
main computational cost of these two methods at each iteration remains almost the same,
however thanks to the continuation strategy AFISTA method is significantly faster than the
FISTA method. Furthermore, to improve its convergence rate, we furnished the AFISTA
method with BB stepsize. In the sequel, AFISTA is specialized for the orthogonal case i.e.
AAT = I . A fundamental difference between the proposed method and the FISTA method
is that the proposed method solves BP problem while the FISTA method solves LASSO
problem. As mentioned above, AFISTA is applied on various tasks of signal and image pro-
cessing and compared with other methods such as generalizations of linearized Bregman,
fixed - point continuation (FPC), split Bregman, and Gradient projection for sparse recon-
struction (GPSR) methods. Numerical results show that in most cases, the proposed method
in both the convergence rate and the quality of reconstruction is better than other methods.
The main limitation of the proposed method is that its parameters need to set beforehand.
The application of AFISTA on medical image processing is our future work.
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