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Abstract
Parallax, exposure differences, ghost and efficiency handling are the challenging tasks for
image stitching, which is regarded as the promising approach to resolve the issues in the
tasks. In this paper, we propose a novel stitching method that locates the overlapped
regions of the input images, and records the feature points at the same time. The warping
of each image is then guided by a mesh interpolation map in a local warp model. We also
propose an arc function weight model to eliminate image chromatic aberration. It is
proved via the validation cases that our approach shows constantly the better performance
than the AutoStitch, APAP, SPHP, ANAP, ELA and many other state-of-the-art methods.
Our method can effectively avoid mismatched points, improve the matching efficiency of
feature points of large-size images by about 60%, eliminate the color difference seam and
ghost of the image, and still have good accuracy and stability in complex scenes.

Keywords Image stitching . Projective transform . Imagewarping

1 Introduction

Image stitching technology combines a set of images with overlapped regions to form a new
image of a wide-angle scene containing information of each image [34]. Image stitching
technology is widely used in panoramic images [5] and videos [12, 33, 37], virtual reality [32,
36, 40], remote sensing [17], real-time monitoring, military reconnaissance [10, 35] and other
fields [16, 26, 30, 38]. The conventional procedure is to first register the feature points of
images I1 and I2. The image is then deformed and converted to the same coordinate system.
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Finally, the deformed image is fused [11, 27]. However, registration of feature points will take
long time. Also, there will be ghosting and object distortion due to the mismatch between
feature points and image distortion. In order to solve the above problems, this paper proposes a
new image stitching method for feature positioning and stitching seam elimination.

The point mapping relationship between the images is determined by the ORB [29], and the
boundary line of the polygon overlapping area is calculated. The feature points are extracted
and the parallel orientation registration is performed on the overlapping region by SIFT [25].
The optimization of the TPS models can be found in the work [1, 4], and then the image is
deformed. In order to obtain a high quality stitched image, we finally use the arc function
model to smooth the deformed image pixels.

2 Related work

Feature extraction and image fusion are two challenging points that image stitching technology
confronts. In recent years, related algorithms have been continuously contributed in the
optimized manner.

Feature matching is an important factor that affects the real-time and quality of image
stitching. Many studies have spared no effort to improve the performance of matching
methods. Lowe [25] proposed a robust scale-invariant feature transform (SIFT) registration
algorithm in 1999 and improved it in 2004. In 2006, Herbert Bay proposed an improved
algorithm for the SIFT algorithm, Speeded Up Robust Features (SURF) [2], which uses the
integral image to increase the computational speed of SIFT. Rosten et al. optimized corner
detection and proposed the Features from Accelerated Segment Test (FAST) in 2006 [28]. The
FAST algorithm performs corner detection by comparing the gray values of 19 pixels in the
neighborhood in sections, but it also has the shortcomings of excessive dependence on
threshold, lack of scale and rotation invariance. Calonder et al. proposed the binary coded
descriptor BRIEF [7]. This method selects N point pairs around the key point P in a certain
way, and then combines the corner results of the N point pairs to construct the descriptor of the
key point. Rublee [29] proposed a new framework algorithm in 2011, Oriented fast and
Rotated Brief (ORB), 3 times faster than the sift. Bian et al. [3] proposed an ORB-based grid
motion statistics (GMS) matching algorithm to refine the violent matching point pairs, thereby
obtaining data containing a large number of correct matching point pairs. It not only depends
on the threshold value, but also produces a lot of mismatches. In summary, compared to the
SIFT algorithm, although the later matching algorithm has improved the speed of acquisition,
it has lost the quality of the matching. Therefore, the performance of feature matching still
needs to be improved.

AutoStitch [6] takes the multiband fusion as the core and stitches together the images of the
camera’s optically close coincidence. DHW [13] divides the scene into background and
foreground planes, using two homography matrices to align and splice separately. Zaragoza
J et al. proposed a milestone APAP [39], which divides the image into dense grids and
proposes a local alignment method. SPHP [8] adds similar transformation constraints to the
entire image, reducing projection distortion in non-overlapping regions. ANAP [24] linearizes
the homography matrix and transforms it into a global similar transformation that represents
camera motion. GSP [9] use linear alignment constraints to determine the angular selection of
global similar matrices, while using local similarity constraints and global similarity con-
straints. Li Jing introduced the Bayesian probability model to refine the feature point set and
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proposed the ELA [20] image stitching method. The stitching results of these methods will
have different degrees of ghosting problems, which will affect the image quality. In sum, the
problems of real-time and ghosting encountered in image stitching still need to be solved.

3 Our method

Our method aims to improve the efficiency and quality of image stitching. Figure 1 is an
overview of the method. First, the positioning of the image coincidence area is performed.
Secondly, the feature points are oriented and registered in a parallel processing manner. The
image is then deformed. The deformed image is weighted and fused afterwards. Finally, the
spliced image without color difference and ghost is output. The function of positioning is
similar to the preprocessing, and the weighted fusion works like the post-processing stage.
And then in part A, we first introduce the localization and feature point registration, the B part
is the image deformation, the C part is the pixel smoothing process.

The target and reference images are represented by images I1 and I2. The matching points
between I1 and I2 are represented by the homogeneous coordinates p1 ¼ x y 1½ � T

and p2 ¼ u v 1½ � T . The homography matrix

H ¼
h00 h01 h02
h10 h11 h12
h20 h21 h22

2
4

3
5

is used to represent the relationship between p1 and p2 [8, 9, 13, 20, 24, 39].

p1∼H ⋅p2 1ð Þ ð1Þ
By rewriting the formula (1) to 03 × 1 = p1 ·H · p2, that is

Fig. 1 The leftmost image in the blue box shows the preprocessing stage, followed by the Parallel directional
registration, then the image wrapping, and finally the image smoothing. The bottom is the output image.
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03x1 ¼
03x1 −p1T v � p1T
p1T 03x1 −u � p1T

−v � p1T u � p1T 03x1

2
4

3
5 h00

⋮
h22

2
4

3
5 ð2Þ

Given N matching points P1if gNi¼1 and P2if gNi¼1, H can be estimated by

H ¼ arg min
h

Ahk k2; s:t:‖h‖ ¼ 1 ð3Þ

Where A is a 2N · 9 matrix. The solution is the least significant right singular vector of A.
We use P1i0f gNi¼1 to denote the projection of P1if gNi¼1 in I1 computed by (1).

3.1 Feature positioning

We propose a method of overlapping regional positioning to avoid a large number of invalid
calculations.

Firstly the images I1 and I2 are divided into 10 test sub-images To speed up the calculation,
we set the height of the sub-image to 1/2 of the height of the original image. The reason is that
this segmentation matching works best in multiple sets of experiments. The index of the sub-
image of I1 from left to right is I19-I10 and the index of the sub-image of I2 from left to right is
I20-I29. Establish an ORB-based feature point registration algorithm.
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The right side boundary of I1 and the left side boundary of I2 are respectively mapped by
the formula (1) in the corresponding figures to obtain corresponding polygon overlapping
areas. In the Parallel directional registration section of Fig. 1, we divide the corresponding
overlapping regions into 5 sub-images from A to E in order. This split matching balances
accuracy and efficiency. From the homography matrix H, the position of the feature points can
be estimated. We separately align the feature points in the images A, B, and C with the feature
points of D and E at the same time. The homography between images is obtained by sampled
sub-image matching. This homography can accurately match all feature points in the coinci-
dent area to avoid mismatching.

3.2 Image wrapping

Thin-plate spline functions are commonly used to transform images [20, 21, 31] with
expressions

f x; yð Þ ¼ a0 þ a1xþ a2yþ ∑n
i¼1ωiφ sð Þ ð4Þ

Where φ(s) is a radial basis function RBF. The coefficients a = (a0, a1, a2)T and
ω = (ω1,⋯, ωn)T are calculated from the set of registered feature points and the following
equations.

S þ λI Qn�3

QT 03�3

� �
ω
a

� �
¼ Fn�1

03�1

� �
ð5Þ

Where

Qnx3 ¼ bP11 0
; bP12 0

;⋯bP1n 0
h iT

F1xn ¼ f 1; f 2;⋯; f n½ �T:

I is an identity matrix, and the elements of the matrix S represent the distance between the
current point and other points in the point set.

In order to tolerate errors such as noise, regularization parameters are usually introduced to
control the smoothness of TPS interpolation. In this paper, the average distance R between all
feature points in the feature point set is used as a regular parameter instead of the previous
empirical value constant to achieve adaptive adjustment of the smoothness of the surface. Let
λ = R.

R ¼ 1

n2
∑n

i¼1∑
n
j¼1 xi; yi½ �− uj; v j

� ��� ��� � ð6Þ

Bring the coordinates of any point of image into Eq. (4) to get the corresponding coordinates in
deformed graph. The image is deformed by the Eq. (4) at a fixed pixel interval. The image is
mapped to the grid map by an interpolation function. In order to make the image more natural,
we add related constraints.

I1 x; yð Þ∼Hp � I1 x; yð Þ ð7Þ
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I2 x; yð Þ∼Hq � I2 x; yð Þ ð8Þ

Where I1 x; yð Þ and I2 x; yð Þ is the deformation map that will eventually be merged, I1(x, y) and
I2(x, y) is the image after the image I1 and I2 are deformed by TPS, Hq =α ·H +β ·Hs and
Hp =Hq ·H−1 are obtained by the setting of ANAP [24] and ELA [20].

3.3 Image weighting

The traditional method combines linearly blended warped images to reduce the color differ-
ence and image weight of the image [8, 24]. As shown in Fig. 2, the image shows the ghosting
problem of this fusion algorithm. In order to better handle ghosting and chromatic gaps, we try
to introduce nonlinear weights to assign pixel weights more flexibly.

In this paper, a arc function nonlinear weight model is proposed to perform pixel values of
smoother transitional coincidence regions.

P x; yð Þ ¼ ω1 � P1 x; yð Þ þω2 � P2 x; yð Þ ð9Þ
Where P1(x, y), P2(x, y) represent the pixel values of the overlapping regions in the images

I1 x; yð Þ and I2 x; yð Þ, respectively. And P(x, y) represents the pixel values of the overlapping
regions in the final fused image. ω1and ω2are weighting coefficients

ω1 ¼ 0:5þ 0:5 � 1−4x2
� �0:5− 1−4 x−1ð Þ2

	 
0:5
� �

ð10Þ

ω2 ¼ 1−ω1 ð11Þ

Where x ¼ j− jLi
jRi− jLi

,x∈ 0; 0:5½ �∪ 0:5; 1ð �, j is the value of the column of the pixel to be smoothed in

the overlapping region, jLi and jRiare the values of the column of the left end and the right end
of the row of the pixel to be smoothed in the overlapping region, respectively.

The total weight change of the linear weight of the pixel value corresponding to the image
I1 with the position is −1, and the total rate of change of the nonlinear weight is

∫10
∂ω1

∂x

� �
dx ¼ −1 ð12Þ

That is, the overall change rate of non-linear and linear weighting is the same. Our method will
not produce more error than the linear weight model, but will expand the range of smooth
transition, thus reducing the problem of ghosting.

As shown in Fig. 3, comparing the most advanced image stitching techniques on the
Temple image dataset, we list the images of the corresponding overlapping regions in
AutoStitch, APAP, SPHP+APAP, ANAP, ELA and our result graphs. AutoStitch creates
ghosting, misalignment, and chromatic gaps. Algorithms such as SPHP also produce ghosting
and chromatic gaps. In our method, the arc function model is used to fuse the image, which
solves the chromatic aberration problem of the red circle’s mark. Compared with the traditional

20874 Multimedia Tools and Applications (2021) 80:20869–20881



linear fusion scheme, the arc function can increase or decrease the proportion of the warping
image at a suitable position to achieve smoother pixel transition and suppress the problem of
ghosting. For example, the method in this paper effectively increases the influence of the left
image in the position on the left side of the midpoint, and accordingly reduces the proportion
of the corresponding position in the right image, while the opposite is true when it is on the
right side. The optimized TPS function is used to further improve the pixel alignment accuracy
to solve the problem of overlap and ghosting of blue circle marks. The result is a more natural
image.

4 Experiments and results

We have carried out comparative experiments of six methods using image datasets such as
Temple, followed by the methods of AutoStitch [6], SPHP [8], APAP [39], ANAP [24], ELA
[20] and ours. In our experiments, we chose the same parameter settings suggested in the

Fig. 2 Linear fusion

Fig. 3 Splicing effect diagram around the overlapping regions in each algorithm result graph
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corresponding paper and used the code provided by the author of the paper to obtain the
comparison results. More results were provided in the supplemental materials. Our experi-
mental data was run on a desktop with 3.9 GHz CPU and 4 GB RAM.

Figure 4 compares all methods of stitching two challenging images we provide. Each row
represents an effect image obtained by different methods, namely AutoStitch, APAP, SPHP,
ANAP, ELA and ours. The image on the left is the output image containing the marker box
that needs to be highlighted, and the middle red box and the green box on the right are images
of the local area containing the parallax error and distortion area.

The AutoStitch in row 1 does not align the image of the overlapping region well with
multiband fused images. In the second row, SPHP with global similarity transformation
constraints and APAP with network optimization in row 3 are misaligned in the red and green

Fig. 4 An example of stitching two images
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marker boxes. The ANAP on row 4 eliminates the parallax of the overlapping region by the
linearized homography matrix, but still does not solve the perspective distortion problem in
non-overlapping regions. The results obtained by the ELA in the fifth row using the global
homography and similarity also have perspective distortion problems. The results of the last
row show that our method is more aligned and can successfully handle parallax problems with
no visible parallax errors and viewing angle distortion.

Table 1 compares the time consumption of our method with other methods without location
processing to handle feature points, including feature point extraction and matching and total
time consumption, as well as the number of registered feature points. Figure 5 is a comparison
of the time consumption of our method with various advanced algorithms.

As shown in Table 1, after adding the positioning method, compared with the traditional
SIFT, under the same conditions, the extraction and registration time consumption of feature
points is greatly reduced, and the number of feature points obtained by the registration is also
significantly increased. Furthermore, compared with the fast feature matching method, the
method in this paper has more advantages in the number of features, which is more conducive
to the subsequent image alignment process. From the comparison results of the time con-
sumption of each algorithm in Fig. 5, we can see that our efficiency is significantly higher than
other advanced algorithms. It can be seen from various examples that our method improves the
efficiency of the output image and improves the quality of the output image.

The best visual image of AutoStitch [6], SPHP [8], APAP [39], ANAP [24] and ELA [20],
which is the tiniest image of parallax and ghosting, is used as a reference image. The quality of
the reference map and our image was evaluated by SSIM [14] to obtain Table 2 The higher the
SSIM score, the better the quality of the stitched image. The comparison results in Table 2
show that our method is in most cases ahead of other advanced methods, that is, the quality of
the image output by our method is better.

In terms of the matching of the features, our contributions are three-folds: firstly, the
proposed approach maintains the stability of SIFT as much as possible to obtain considerable
feature points, secondly, it improves matching efficiency and quality through preprocessing.
Thirdly, the alignment accuracy of the image is also improved, due to more stable matching. A
large number of matches can effectively improve the robustness of alignment to reduce or even
avoid ghosting.

5 Conclusion

In this paper, a novel solution is proposed to solve the following problems, given to the fact the
feature extraction efficiency in the existing image stitching is poor, and the image fusion has
visual problems such as chromatic aberration, deformation and ghosting. The example results
show that the stitching effect of this method is better than some of the most advanced
technologies, such as AutoStitch, APAP, SPHP, ANAP and ELA. There are no stitching in
the image, and the distortion caused by the perspective transformation is alleviated.

Although our method has been able to better accelerate image stitching and provide better
fusion effects, the objects in the image will still have some unnaturalness. Next, we will
continue to optimize the performance of the method, such as making better. The pixel weight
model and the image distortion of the non-overlapping regions are optimized to make the
image effect more natural. We have considered the latest feature matching methods such as
GMS [3], and the latest image stitching methods such as QH [19], SPW [23] and TFA [22]. At
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Table 1 Running time of each stage of the algorithm

Database Method Elapsed time (s) Points

Position Extract match Total

Temple
(730×487)

SIFT – 0.51616 0.10562 0.6218 347
SURF – 0.26 0.001 0.261 306
ORB – 0.165 0.004 0.169 423
FAST – 0.072089 0.00675 0.082 8
GMS – 0.165 0.003 0.168 380
Ours 0.09221 0.302687 0.05092 0.4458 438

Desk
(800×800)

SIFT – 0.816029 0.252715 1.0687 336
SURF – 0.266 0.008 0.274 298
ORB – 0.101 0.001 0.102 500
FAST – 0.077631 0.11355 0.091 32
GMS – 0.101 0.002 0.103 383
Ours 0.16595 0.418617 0.044711 0.6293 405

Green
(1200×1000)

SIFT – 1.732978 1.017644 2.7506 461
SURF – 0.2401 0.0001 0.2402 332
ORB – 0.19 0.0001 0.1901 20
FAST – 0.093025 0.0088887 0.104 3
GMS – 0.19 0.005 0.195 223
Ours 0.22852 0.796314 0.050034 1.0749 486

Window
(1250×1040)

SIFT – 2.021396 1.537666 3.5591 958
SURF – 8.584 0.523 9.107 983
ORB – 8.756 0.001 8.758 682
FAST – 2.24272 0.009414 2.254 7
GMS – 8.756 0.006 8.762 1031
Ours 0.19587 1.327019 0.491388 2.0143 1057

Electric
(1400×800)

SIFT – 1.500063 0.943631 2.4437 1070
SURF – 0.221 0.001 0.222 466
ORB – 0.011 0.000001 0.011 5
FAST – 0.075492 0.006142 0.087 1
GMS – 0.012 0.000001 0.012 532
Ours 0.27667 0.826007 0.423487 1.5262 1216

Box
(1400×1000)

SIFT – 2.06538 1.173241 3.2386 1696
SURF – 0.223 0.014 0.237 862
ORB – 0.155 0.00001 0.15501 104
FAST – 0.050632 0.001814 0.053 0
GMS – 0.155 0.00001 0.15501 681
Ours 0.13581 1.325091 0.302876 1.7638 1923

Yard
(1800×2800)

SIFT – 7.551832 19.31385 26.866 2428
SURF – 2.869 1.064 3.933 1495
ORB – 0.852 0.002 0.854 1630
FAST – 0.152044 0.052434 0.209 79
GMS – 0.852 0.005 0.857 1971
Ours 0.63185 4.937846 5.071302 10.641 2898

Railway
(2000×1500)

SIFT – 4.392761 5.980657 10.373 2307
SURF – 2.097 2.268 4.365 2978
ORB – 1.143 0.001 1.144 3006
FAST – 0.65203 14.467957 15.127 3574
GMS – 1.143 0.005 1.148 2953
Ours 0.52031 2.807214 1.665249 4.9928 3168

Road
(2048×1360)

SIFT – 3.675152 3.656014 7.3312 1099
SURF – 0.787 0.061 0.848 1188
ORB – 0.533 0.002 0.535 862
FAST – 0.145931 0.156119 0.303 67
GMS – 0.533 0.0008 0.5338 936
Ours 0.48852 2.547528 0.984425 4.0205 1206
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Fig. 5 Total running time of each algorithm

Table 1 (continued)

Database Method Elapsed time (s) Points

Position Extract match Total

Theater
(2160×1440)

SIFT – 4.013346 6.072838 10.086 2307
SURF – 0.732 0.07 0.89 3030
ORB – 0.59 0.002 0.592 2945
FAST – 0.169405 0.205626 0.376 31
GMS – 0.59 0.1 0.69 460
Ours 0.36650 2.670042 1.826204 4.8627 3108

Edifice
(2448×1400)

SIFT – 5.456885 9.101018 14.558 1959
SURF – 0.975 0.33 1.305 992
ORB – 0.619 0.002 0.621 500
FAST – 0.177025 0.338041 0.516 219
GMS – 0.619 0.008 0.627 1674
Ours 0.58667 3.294601 1.869021 5.7503 2315

Mural
(2700×1800)

SIFT – 6.580614 9.387552 15.968 3133
SURF – 0.512 0.05 0.562 1115
ORB – 0.518 0.1 0.618 1631
FAST – 0.123388 0.021908 0.15 1
GMS – 0.518 0.00001 0.51801 1045
Ours 0.26282 3.923798 0.730094 4.9167 3501

Car
3000×2500

SIFT – 11.713774 27.86502 39.579 2440
SURF – 1.484 0.325 1.809 981
ORB – 1.179 0.002 1.181 500
FAST – 0.338879 0.75287 1.094 119
GMS – 1.179 0.001 1.18 1428
Ours 0.73686 7.100131 6.808443 14.645 2968

Paint
(3600×2400)

SIFT – 11.50185 28.63069 40.133 1235
SURF – 1.961 0.445 2.406 1371
ORB – 1.412 0.001 1.413 1058
FAST – 0.388138 0.622889 1.012 31
GMS – 1.412 0.002 1.414 1523
Ours 0.52848 5.550213 3.009706 9.0884 1620
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the same time, line matching such as HLM [18] and CLPI [15] can also be introduced into
feature matching to enrich feature points.
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