Multimedia Tools and Applications (2021) 80:20971-20989
https://doi.org/10.1007/511042-021-10642-4

®

Check for
updates

Acceleration techniques for cubic interpolation MIP
volume rendering

Yongha Shin' @ - Bong-Soo Sohn? - Heewon Kye*

Received: 18 February 2020 /Revised: 8 December 2020 / Accepted: 4 February 2021/
Published online: 12 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Maximum intensity projection (MIP) is a volume visualization technique that is important
in modern medical imaging systems. We propose a method to accelerate high-quality
MIP volume rendering using cubic interpolation. First, our method skips more regions of
volume data that do not affect the output image. To do this, we propose a method of
transforming the B-spline interpolation function into a sub-division of Bezier spline
interpolation. We generate the B-spline interpolation control points then the Bezier
interpolation control points from three dimensional voxel values. The maximum value
of each block is approximated using the Bezier interpolation control points due to the
convex hull property of the Bezier spline. By accurately approximating the maximum
value of each block, we can skip more unnecessary blocks. Second, we propose an
efficient method of parallelization when performing volume visualization using a GPU.
In order to reduce the number of memory transfers, our method determines the working
shape of a warp, a bundle of 32 GPU threads, depending on the viewing direction. As a
result, our method achieves a remarkable rendering speed improvement with no loss of
image quality compared to previous studies, and performs high-quality MIP volume
rendering using cubic interpolation at interactive speed.

Keywords Volume rendering - Cubic interpolation - Bezier spline - GPU memory divergence -
Maximum intensity projection

< Heewon Kye
kuei@hansung.ac.kr

Department of Information System Engineering, Hansung University, 116 Samseongyo-ro 16-gil,
Seongbuk-gu, Seoul 02876, South Korea

School of Computer Science and Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu,
Seoul 06974, South Korea

Division of Computer Engineering, Hansung University, 116 Samseongyo-ro 16-gil, Seongbuk-gu,
Seoul 02876, South Korea

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-10642-4&domain=pdf
https://orcid.org/0000-0002-9530-2727
http://orcid.org/0000-0001-7951-3228
mailto:kuei@hansung.ac.kr

20972 Multimedia Tools and Applications (2021) 80:20971-20989

1 Introduction

Volume rendering is a technique for generating images using volume data, which is composed
of the three-dimensional array of voxels [8], that can be obtained when a patient has a CT scan
or MRI taken. Modern medical imaging systems rely on this technique due to the difficultly in
diagnosing hundreds of human body cross-sectional images taken by a CT scan or MRI one by
one. Ray casting is currently the most popular method of volume rendering. In ray casting, rays
proceed from the viewer through the projection plane (i.e. image) and extend into the target
volume. Along the ray’s path, intensity values are reconstructed at sampling positions in the
volume coordinates [11] (Fig. 1). Reconstructed values are blended to generate the output pixel
value. Alpha blending, maximum value selection, and averaging are the most popular methods
of blending.

Maximum intensity projection (MIP) is a volume rendering technique that displays the
maximum value along the viewing direction [14, 18] (Fig. 1). This technique is mainly used to
observe blood vessels and skeletal structures [15].

To create the image, we need to find the continuous interpolation function using a given set
of' voxels [11]. There are many possible interpolation functions (or filter kernels). As described
in previous research [4], tri-linear interpolation is a well-known method and generates
smoother results than the nearest neighbor interpolation which generates staircase artifacts
[15].

Many modern medical imaging systems require very high-quality images, where interpo-
lation methods using a cubic spline are particularly useful [11]. When viewing enlarged
images of the vascular structure, as shown in Fig. 2, images using cubic interpolation are
clearly superior to those using linear interpolation. There are various ways to determine the
coefficients of a cubic function, the choice of coefficients presents trade-offs between the
sensitivity to noise and blurring. For example, the B-spline very smooth, but has low post-
aliasing (pixel energy leaking), while the Catmull-Rom spline produces less smoothing but has
poor post-aliasing properties, and there is no optimal setting that works for all applications
[10]. On the other hand, the windowed sinc filter generates a very good image, but it is difficult
to use practically for volume visualization because the amount of computation is excessive.

Producing such a high-quality image requires a significant amount of time, due to the
increase in computation and memory references. For example, linear interpolation can be
computed as a weighted sum of 23 = 8 voxel values, but a cubic interpolation is calculated as a

190 —-

4

Camera

Image

Fig. 1 Maximum intensity projection using the ray casting method, where the maximum value along the line of
sight is determined

@ Springer



Multimedia Tools and Applications (2021) 80:20971-20989 20973

(@) (b)

Fig. 2 Magnified CT images using a linear interpolation and b cubic interpolation. The images that were
processed with cubic interpolation were higher quality than those processed with linear interpolation when
magnified

weighted sum of 43 = 64 voxel values in a three-dimensional space. Even when utilizing GPUs
[3], volume visualization using cubic interpolation takes a significant amount of time to
generate high-resolution images. In this paper, we propose a more efficient MIP volume
rendering method using cubic interpolation processed by GPUs.

First, we can skip unnecessary areas of volume data, with a 1.5 times better than the
existing technique [25]. The maximum value of each area must be accurately estimated in
order to determine whether or not it is necessary; a region with a low maximum value is more
likely to be removed. To obtain more accurate estimates, we propose a new method that
transforms the B-spline into piecewise Bezier splines and then subdivides each Bezier spline
into smaller subsections.

Second, we suggest a new method to improve the computational efficiency of the GPU.
When the viewing direction changes, we dynamically determine the optimum shape of tiles
(group of pixels). We enhance memory access efficiency by utilizing the memory coalescing
capability of the GPU [24].

The remainder of this paper is organized as follows. After reviewing the preliminaries and
related work in Section 2, we describe our method for efficient space skipping using Bezier
curve subdivision and GPU utilization in Section 3 and 4, respectively. Section 5 presents the
experimental results. Finally, we make a conclusion in Section 6.

2 Related works
2.1 Empty space skipping
Sub-volumes that are not represented in the output image can be removed from the volume

data to improve rendering time. Although it is not the subject of this paper, in direct volume
rendering, users typically determine the transparent and opaque sections using the transfer

@ Springer



20974 Multimedia Tools and Applications (2021) 80:20971-20989

function, allowing the transparent sections to be removed in advance [9]. For the concrete
method, the entire volume is subdivided into equal sized blocks, and the maximum and
minimum values of every block (M, m in Fig. 3(a)) are calculated and stored during in the
preprocessing time. During rendering, if the maximum and minimum values of a block are
within in the transparency range designated by the user (T/M,m] in Fig. 3(a)), the block is
determined to be transparent.

Because there is no transparent part in MIP rendering, an alternative method is
used. As the ray progresses, if the current cumulative value is greater than the
maximum value of the current block (M in Fig. 3(b)), the block is deemed unneces-
sary and does not affect the result [5, 13]. The processing of one pixel (or ray) is
described in Algorithm 1.

Algorithm 1. MIP ray casting using empty space skipping

Processing one ray
pixel max :=0
sample position := start position of the ray
WHILE sample_position is in the volume
block = GetBlockFrom (sample_position)
IF block.max < pixel_max THEN skip block
ELSE pixel_max := max ( ManySamplingsAndGetMaxFrom(block), pixel _max )
sample_position := move to next block

N eawe

2.2 B-spline interpolation

B-spline is a popular technique to generate curves using given control points. The
curve is drawn as the weighted sum of the points according to the changing parameter
t. In this study, we use the cubic B-spline using four control points (see Eq. 1). For
example, the i-th curve, S;, uses points Piy, P;, P;,q, and P;,,, while the (i+ 1)-th
curve uses points P;, P, 1, Pi,,, and P;,3. Adjacent curves, S; and S;,, are smoothly
connected at the end points.

The B-spline does not pass through the given control points because S;(0) =
%#pi for each S;. At each voxel position (X, y, z) in the volume data,
the B-spline reconstructed sampling value is different from the value measured by CT
scan or MRI, i.e. b(x,y, z) # volume[x][y][z]. Therefore, B-spline is not an interpolation

but an approximation method, and involves an over-blur problem.
-1 3 -3 1 Py

113 -6 3 0 P,

_[3 2 1 L i
Si()=1[7 72 ¢ 1]6 3 0 3 ol P (1)

1 4 1 0 Piyo

To solve this problem, the control points are moved, such that the B-spline curve
based on the moved control points passes through the original control points. This
method is called B-spline interpolation [23]. As shown in Fig. 4, the control points,
P;, were moved to the control points, B;, and the B-spline generated using points B;
then passes through the original points P;.

We are able to obtain the control points B using the given control points P. The values for
B[k] must be calculated such that Eq. 2 is satisfied for all integers &, while 3 is a B-spline basis
of degree 3.

@ Springer



Multimedia Tools and Applications (2021) 80:20971-20989

20975

Pixel

‘ TIM.m] \
> ¥

3y Transparent

Pixel
‘ Max>M
Maxl—os,— o v

Unnecessary

Fig. 3

(b)

Skipping an unnecessary block for direct volume rendering and MIP. a In case of direct volume rendering,
the block is skipped using the user defined transfer function and the maximum and minimum values (7], m]) of
the block (b) In the case of MIP, the block is skipped if the current cumulative value (Max) is greater than the

block maximum value ()

@ Springer



20976 Multimedia Tools and Applications (2021) 80:20971-20989

!

A
v
v . By | ‘
| : ; ; Bisa
L ! Piysg UOI{;'J,L-‘.;.:b'{i,j,kj e
i : % | B
Pi—l: 1 / EPi+3
: “ | 5 3
! R i |
| P.¢ : |

‘ | >
b 4
(b)

Fig. 4 a The B-spline does not pass through the given control points P; b After the control points P; are moved to
the control points B;, the B-spline then passes through the original points P;

0, 2<|x]

1 3
Pk = SyerBIK 18K, pr) = gD 1shi<2 @)
2 1
S-SR, Rl <1
Essentially, we compute B to satisfy the expression w = P; for each i. This
problem can be solved using matrix formulations [2] which is a banded Toeplitz matrix. In

this paper we utilize Ruijters’s method [17] because of its simplicity, while other efficient
methods exist [1, 16].

@ Springer



Multimedia Tools and Applications (2021) 80:20971-20989 20977

Bi+1

(a)

B spline max

Bezier max

(b)

Fig. 5 a One spline can be drawn using both Bezier control points (Z3;.1, Zsi, Z3i+1, and Zsi,») and B-spline
control points (B;_, B, Bi, 1, and B;, ;) b The maximum of the Bezier spline is smaller than the maximum of the
B-spline

2.3 Empty space skipping for B-spline interpolation

After creating new volume data using B-spline interpolation, we are able to use the
existing B-spline volume rendering and empty space skipping without modification.
Previous methods performed an empty space skipping using a B-spline approximation
[25] or B-spline interpolation [19]. Due to the convex hull property of B-splines, the
maximum value of the control points was used for the maximum value of the block.

In Fig. 4(b), the height (y coordinate) values of P;;, P;, Pi i, Piy2, and P; 3
represent the brightness values of the five consecutive voxels. Using B-spline interpo-
lation, new control points (Bi_i, B;, Bi+1, Bi+2, and B;,3) and two smoothly connected

@ Springer



20978 Multimedia Tools and Applications (2021) 80:20971-20989

Z3i41
Zy; ®
[ subdyg;, , subdg;, 4

cirthd
'-n‘.’._w upa Gi+4

— crrhAd o]
Zaf—l = bl{sr_jtl.'i‘:_l' Zai_'_z = SUupa 6i+5

Fig. 6 Subdivision of Bezier spline in one dimension. By increasing the number of control points, we can more

accurately estimate the maximum value (red points) of the curve. For our volume interpolation, this concept is
extended into three dimensions

curve segments (red line) were generated. In this example, one block consists of two
segments (i.e. the block size is two). Previous methods approximated the maximum of
the red curve as B;,; using Eq. 3.

segment,.approx=max (Bi_1, Bi, Bi11, Bi12)

block.approx:zmax( segment;.approx, segment; | + 1.approx ) (3)

= max(Bi_l ,Bi, Bit1, Bita, Bi+3) >= max(spline)

By using the block.approx instead of the block.max in Algorithm 1, existing methods
conservatively preserve image quality, though the efficiency (possibility of skipping blocks)
drops.

The maximum values of the blocks are calculated during a preprocessing step. As
shown in Fig. 4, when there are two curve segments, five control points are required to
generate B-splines. In the case of the volume data, the maximum value of (s + 3)? control
points (voxel values) is calculated for each block, where a block consists of s 3 cubic cells.
Therefore, the total amount of preprocessing calculation required is O(size of volume
datax(s + 3)3/ s3).

2.4 GPU parallelization

Parallel programming using GPUs, such as CUDA or OpenCL, includes a multi-level
hierarchy of parallelism. With CUDA, the smallest parallelization unit is a thread, and 32
threads form a warp in which threads simultaneously execute the same instructions. The user
defines the number of threads that form a thread block. Dozens of thread blocks, or thousands
of threads, execute instructions in parallel to render a single image.

In volume rendering, a single thread is usually responsible for each pixel [20]. The
efficiency of threads is significantly impacted under certain conditions such as branch
divergence or memory coalescing [1]. To achieve the best performance, the threads in
a single warp should take samples along the X-axis of the volume data [24].

The optimum shape of a tile (32 pixels), which the warp (32 threads) is responsible for,
depends on the viewing direction. Zhou demonstrated that this tendency exists through various
experiments [26]. Sugimoto proposed an algorithm to determine the optimum shape of the tiles

@ Springer



Multimedia Tools and Applications (2021) 80:20971-20989 20979

[21]. Our study proposes an improved method of determining the shape of a tile by building
upon the Sugimoto’s existing research.

3 Efficient space skipping using Bezier curve subdivision

3.1 Generation of Bezier control points

As described in section 2.3, empty space skipping can be performed by replacing the
block.max in Algorithm 1 with the block.approx in Eq. 3. If the value of block.approx is

Tile(8%4)
al | ,——f”/">r—’,77
LVox L L —1—Yhtan(1}8)
(@
Tile(16*2)
Cacheftine | —1| [ I
\ I — — — ] I —
1\ o |
L¥oxe b || )atap(1/8 "]
(®)
Tile(8*4)
T — — —
> ~ ~ L~
, ~ P // ,//
P g //’ - ) - o L a
L s -
~ //// g /’// ~
- o > P
A\ \\\ ,/’/ > A 2 y
AN o >:9’Yatan(1 2) ~ ool |
©
Tile(16*2)
= c = - ~
A > - e e =1 - 4l e
- g~ _~ ~ -~ e A
’ — - — — - —
A \\,3/ -~ - = - - - y P //» ///
JNoF >, _~\atan(1/2){ P = 7 A
@

Fig. 7 Memory efficiency comparison by tile shape. If the image tile and the volume data are tilted by arctan
(1/8), (a) an 8 x 4 tile requires four memory blocks (b) a 16 x 2 tile requires three memory blocks. If the image
tile and the volume data are tilted by arctan (1/4), (c) an 8 x 4 tile requires seven memory blocks (d) a 16 x 2 tile
requires eight memory blocks

@ Springer



20980 Multimedia Tools and Applications (2021) 80:20971-20989

much greater than the actual maximum value of the curve, unnecessary blocks will be
designated as necessary (false positive). As a result, unnecessary blocks are not skipped and
the efficiency drops [25]. Conversely, if the value of block.approx is smaller than the
maximum of the curve, necessary blocks can be designated as unnecessary (false negative).
Skipping necessary blocks creates defects in the output image. Therefore, it is important to
calculate block.approx such that the value is larger than the curve’s actual maximum but
remains as small as possible.

In this study, we propose a new method that is able to skip more blocks than previous
methods without the loss of image quality by transforming the B-spline into Bezier splines. We
demonstrate the case of a one-variable function for simplicity. One B-spline segment can be
transformed into a cubic Bezier spline as in Eq. 4.

-1 3 =3 1718
. s o 113 -6 3 o|| B
Bsplmei(t)f[z t t l]g 30 3 0 By
1 4 1 o|LlBy
-1 3 -3 17[-1 3 -3 17" [-1 3 -3 1778y
:[t3t2t11]3763037630137630 B;
3 3 0 0||3 3 0 0| 6|3 0 3 0|]Bu
1 0 0 of/[1 0 0 0 1 4 1 0|LlBi
=1 3 =3 177 (B +4Bi+Bi)/6 (4)
(A2 ] 36 3 0 (2B; + Bis1)/3
3 3 0 0 (B; +2B;1)/3
10 0 0)L(Bi+4Bii+Bi2)/6
_—1 3 -3 1_ _Z[(fl)
(3 2 4 36 3 0| Zo
=le 2 Al 5 0 ol Z
1 0 o ofl z

= Bezier;(t)

The new control points for i-th curve segment z ), zj, z;, and zj, are calculated from the
given control points By, B;, B, 1, and B, » by using Eq. 5. The Bezier splines, using the new
control points, are exactly the same as the previous B-spline segments.

Bi-1 +4B; + Biy1 2B+ Biy1 Bi+2Bi1 Bi+4Biy1 +Bio
(Zi(—])7Zi07Zilyzi2> = 6 ) 3 ) 3 ) 6 (5)

The ends of the B-spline segments are connected to each other. Therefore, the last
control point of the i-th curve of the Bezier spline overlaps with the first control point

Table 1 The most efficient rotation angle 6 for each tile shape

Tile shape The most efficient 6 (0<60<90°)
32x1 arctan (1/32)

16x2 arctan (1/8)

8x4 arctan (1/2)

4x8 arctan (2)

2%x16 arctan (8)

1x32 arctan (32)

@ Springer



Multimedia Tools and Applications (2021) 80:20971-20989 20981

Table 2 Selected tile shapes depending on the rotation angle 6

Tile shape Rotation angle of proposed method Rotation angle of existing method [21]
32x1 0°<@<arctan (1/16)=3.576° 0°<0<15°

16x2 arctan (1/16)<f<arctan (1/4)=14.036° 15°<6<30°

8x4 arctan (1/4)<0<arctan (1)=45° 30°<6<45°

4x8 arctan (1.0)<O<arctan (4.0)=75.964° 45°<6<60°

2x16 arctan (4.0)<0<arctan (16.0)=86.424° 60°<0<75°

1x32 arctan (16.0)<6<90° 75°<0<90°

of the (i + 1)-th curve. To simplify notation, we define Z3;, =2y, so that Z3; ., =7, =
Zi +1)(-1) holds. One curve segment is represented using both B-spline and Bezier spline
as shown in Fig. 5(a).

segment,.apr_bzr=max(Zsi-1, Zsi, Zsi+1, Z3i+2)

block.approx >= block.apr_bzr::max( segment;.apr_bzr, segment, | .apr_bzr ) (6)
= max (Zsi-1, Zsi, Zsis1, Zsiv2, Z3(i+1)> Z3(i+1)+15 Za(ie1)42 ) >= max(spline)

We use the block.app _bzr of Eq. 6 to replace the existing block.approx. As shown in Fig. 5(b),
our block.app bzr is always less than or equal to existing block.approx because Z; is the
weighted sum of the B; values from Eq. 5 and the B-spline satisfies the convex hull property.
As a result, we are able to skip more blocks, while avoiding the loss of image quality.

The number of Bezier control points for n curve-segments is 37 + 1 in one dimension. The
procedure can be extended to 2D or 3D volume data, where the control points generate
surface-segments and cell-segments, respectively. The 1D procedure is respectively applied
to the x, y, and z-axes for 3D volume data.

Because this method uses 27 (3x3x3) times as much memory as the 3D volume data, the
efficient use of memory was an important consideration. In this method, only one maximum
value (2 bytes) is calculated and stored for each block. We create a temporary buffer for the
current blocks and then reuse buffer memory after obtaining their maximum values. This study
allocated about 54 MB of buffer memory to store Bezier control points for a 2 MB area of
volume data. After calculating the maximum value for the 2 MB area, we reuse the buffer
memory to calculate the next 2 MB area. This computation does not affect the overall
performance because it is only performed once during the preprocessing step using parallel
processing in the GPU.

Table 3 Volume datasets

Name Dimension Pixel Size (mm) Slice thickness (mm) Size (MB)
ABDOMENI (277) 512x512x277 0.57%0.57 1.00 138.5
ABDOMEN?2 (110) 512x512x110 0.63%0.63 3.00 55.0
HEAD (552) 512x512x528 0.42x0.42 1.00 276.0
LOWER (583) 512x512x583 0.78%0.78 1.50 291.5
KIDNEY1 (370) 512x512x370 0.58x0.58 1.00 185.0
KIDNEY?2 (341) 512x512x341 0.60%0.60 1.00 170.5
CHEST1 (528) 512%512x528 0.66%0.66 0.75 264.0
CHEST?2 (528) 512x512x528 0.66%0.66 0.75 264.0

@ Springer



20982 Multimedia Tools and Applications (2021) 80:20971-20989

Fig. 8 Rendered images of selected volume data (ABDOMEN1, HEAD, LOWER, KIDNEY1, and CHEST1)

3.2 Subdivision of Bezier spline

A single Bezier curve segment can be divided into two or more Bezier curves by adding
control points. Figure 6 shows the result after seven control points are generated from the four
original control points. It is possible to skip more blocks by using the block.app _sub of Eq. 7,
which is the maximum value of the generated control points, instead of block.app bzr. For
example, in Fig. 6, subdg; . 5 is a better approximation of the maximum value of the curve than
Z3i+1. The Equations of the subdivision of the Bezier curve are well known and are described
in Appendix 1.

segment;.apr_bzr >= segment,.apr_sub=max (subdg-1, subdg;, ..., subdgi-s) (7)
Applying the process to 3D volume data, one cell-segment represented by 43 Bezier control

points is subdivided into eight micro-cells with 73 control points. In this step, we also reused
buffer memory that stores 73 values.

4 Efficient GPU rendering using memory coalescing

In this study, the GPU program was created using CUDA. The smallest parallel
processing unit is a thread, and 32 concurrent threads constitute a warp. Each thread
in a warp executes the same instruction, while they are able to access different

memory addresses using their unique thread ID value. If all 32 threads in a warp

@ Springer



20983

Multimedia Tools and Applications (2021) 80:20971-20989

X06°'T £€8'CL Y6'SLT 81°0L ST S0¢E 91°¢S LTSTS 0 Y6'STET (82$) TLSAHD
X06°'1 €L EL ¥9°69C 9TIL LETOE YL'YS ¥6'CIS 0 9T eyl (82$) 11SHHD
X20'C L £5°681 9889 9LT1T £8°0S 6'18¢ 0 €8'668  (I¥€) TAANAII
X81'C LT'TL 18°20T 869 0192C 9¢'1S 88°Tht 0 L8001  (0L€) TAANAI
XI1'C L90L S6°LEE 89 LL'SLE (VA4 €CYIL 0 €7 €951 (€89) YIMOT
XCI'C SL'TL 8970¢ 00'1L 819¢¢ SO'1IS £8°0v9 0 S8 CLY1 (¢s$) AvdH
01D
X¥0'C STIL 16'C9 1L°89 0T'89 sy ¢s8Cl 0 0t'29¢ INHNOd gV
(LLo
X16°1 8969 18691 999 97681 8Ly 8G°€CE 0 €169 INFNOdGV
(v/0) (%) (sur) (%) (su) (%) (sur) (%) (sur)
JudwduRyUD owr) Juuopudy — onerdpS  owmn Suuopudy  onerdpS  owm Suuopudy  onerdpS  owmn Suuopudy  oner dpS  owr uLopudy

uoIsIAIpqnS +¢ (D)

ouryds

10129g Suisn uone1d[ody (g)

[sz] ourds

-g Suisn uone1saoy ()

UONRIA[AI9. ON

(s901]8) BIR(Q

soSewn indjno swres o ojeIULS SpoyIOU [y ") SULIPUAI pue EJep dwnjoA 10y onel diys jo uosuedwo) ¢ 3jqe]

prlnger

AR



20984 Multimedia Tools and Applications (2021) 80:20971-20989
ABDOMENI ABDOMEN2
200 50
150 40
30
100
20
30 10
0 0
O v OV O vV O o O wvio S v oo D O N O v O
T B A R~ T oo g amn e R
HEAD LOWER
500 300
400 250
300 200
150
200 100
100 50
0 0
(= = e I = s T = R o R e T o B e (=B e = o = A = s T =T s R ]
T Y g an g g R = s T
KIDNEY1 KIDNEY?2
120 120
100 100
80 80
60 60
40 40
20 20
0 0
O O m OO N O N O O (= = s s =T s B s B e g B e )
I s R T - Mmoo gdme e g
CHEST1 CHEST2
300 250
250 200
200 150
150
100 100
50 50
0 0

180

Lal vy v
(=3 (a2} O
—_ —_ —

s Previous method[22]

180

v LAl vy
o o O
—_ — —_

s Proposed method

Fig. 9 Rendering time according to the viewing direction. The rendering time was measured while rotating the
viewing direction about the Z-axis. In the figure, the vertical axis is the rendering time (milliseconds) and the
horizontal axis is the degree of rotation (degrees)

request memory data that is close to each other, a single transfer of the memory block
satisfies all threads. On the other hand, if the threads in the warp access memory that
is far from each other, 32 separate memory transfers are required. To minimize this

@ Springer



Multimedia Tools and Applications (2021) 80:20971-20989 20985

memory divergence, we propose an advanced method that allows the threads in the
warp to refer to minimal memory blocks.

Memory can be rearranged during preprocessing for better reference efficiency, however,
this method is difficult to use in medical imaging systems that perform multiple functions, such
as cross-sectional image extraction and segmentation [12]. Our method does not require
reconfiguring the memory.

Because a single thread is responsible for each pixel, a warp processes 32 pixels
simultaneously. Each rectangular region, composed of the 32 pixels that a warp is
responsible for, is called a tile. The output image consists of tiles of the same shape
because of GPU parallelism. The shape of the 32-pixel tiles must be one of the
following configurations 1 x32, 2x 16, 4x8, 8 x4, 16 x2, or 32 x 1 (see Fig. 7). Our
method determines the shape of the tiles depending on the angle between the X-axis
of the output image and the X-axis of the volume data.

In Fig. 7, each tile is shown as a black rectangle composed of small squares, and
the scanlines of the volume data are represented by blue lines. We can assume that
the horizontal direction of each tile is parallel to the X-axis of the output image, and
the GPU memory blocks (i.e. cache lines) are arranged along the X-axis of the
volume data, without losing generality. Therefore, the cache lines (blue lines) are
parallel to the X-axis of the volume data.

In order to supply memory to all of the threads of a tile, it is necessary to read a
block of memory several times from the volume data. In Fig. 7(a), there is an 8 x4
tile, where four different cache lines are transferred when a warp refers to the memory
of the volume data. In the same situation, using a 16 x 2 tile is more efficient because
it only requires three cache lines as shown in Fig. 7(b). Even though the spacing of
the blue lines is dependent on the image magnification selected by the user, the
relative comparison is the same.

Because the viewing direction changes according to the user’s input, the angle
between the black tile and the blue cache lines also changes. Because the 8 x 4 tile in
Fig. 7(c) requires seven memory references while the 16 x 2 tile of Fig. 7(d) requires
eight, the optimal tile shape should be calculated for every frame. We regard
determining the best tile shape as filling the tile with the minimum number of tilted
parallel lines.

When the angle between the X-axis of the image and the X-axis of the volume
data is 6, the shape of each tile and corresponding rotation angle for maximum
efficiency are presented in the Table 1. It is ideal when the width / height value of
the tile is equal to zan 6, as shown in Fig. 7(b) and (c). For reference, a mathematical
explanation is given in Appendix 2.

Next, the most efficient shape of tiles, corresponding to the given # from the user
input, should be determined. Table 2 presents a comparison between our method and
the previous method [21]. The previous study determined the shape of the tiles
according to the rotation angle # without basis in mathematics, while our method is
based on the proof given in Appendix 2. As a result, when 6=25° for example, the
existing method selects a 16 x 2 tile, while the proposed method selects an 8 x 4 tile.

When developing a software system, the shape of the tiles is determined by selecting the
shape of a CUDA thread block. For example, if the efficient tile is 4 x 8, we determine the
shape of the thread block to be 4 % 64 (assuming the thread block is composed of 256 threads)
[21].

@ Springer



20986 Multimedia Tools and Applications (2021) 80:20971-20989

5 Experimental result

The experiments were conducted on a PC equipped with an Intel Core i5 CPU, 8 GB RAM,
and a GeForce GTX 960 GPU. We implemented our method using Visual studio C++ and
CUDA on a Windows 10 operating system. The volume datasets are presented in Table 3, and
the rendered images from selected datasets are shown in Fig. 8. We implemented B-spline
interpolation MIP volume rendering with empty space skipping without quality loss. Because
the characteristics of the B-spline are fully elucidated in existing studies [11, 17, 23, 25], no
relative comparison of image quality was performed.

Table 4 shows the improvement in speed of the proposed method as compared to other
methods. The visualization time of the existing method and the proposed method were
measured for each dataset. The rendering time is the average value when the viewing direction
is rotated about the Z-axis.

By using the existing B-spline skipping method [25] (refer section 2.3), we were able to
skip approximately 45 ~51% of the data (column A). By using the proposed Bezier spline
method, 66 ~71% of data can be skipped with no loss in image quality (column B). The
subdivision method discussed in section 3.2 was used to more accurately calculate the
maximum density values. The skip ratio was increased to 69 ~73% using subdivision (column
C). The rendering speed of the subdivision method was increased by about 10% despite the
slight improvement (2 ~3%) of the skip ratio. As a result, the proposed method outputs the
same image as existing methods [25] and improves the rendering speed by a factor of 2.
Practical volume data can be visualized at an interactive speed.

Rendering time is directly related to the size of the volume data, and the skip ratio is related
to the characteristics of the distribution of volume data. For example, if a skeletal section with
a large voxel value occludes an air section with a small voxel value, the skip probability is
increased.

To demonstrate the performance of the tile shape selection method proposed in section 4,
we compared the rendering time of the proposed method with the previous method [21]. The
experiment was based on our subdivision method (Table 4 column C). Additionally, we added
a simple optimization method.

For each pixel, the center of each ray is sampled when the ray starts, taking into
consideration that the value in the volume center of medical images is relatively large.
This does not affect the MIP image quality [22] because the maximum value among
samples along the ray is calculated. We are able to skip more blocks because the ray
starts with a large cumulative value in Fig. 3 [5, 6]. Although the existing method [21]
is separate from the acceleration proposed above, all accelerations were applied equally
to the proposed and existing methods to measure the effectiveness of the method
proposed in section 4.

Figure 9 shows the rendering times, which were measured by rotating the viewing direction
around the Z-axis. As seen from this figure, the proposed method was more efficient than the
existing method. Although the performance improvement of proposed method is not large, this
study is significant in that it demonstrates the method’s ability to calculate the best tile shape
theoretically and then verified it experimentally.

Rendering time is able the best when the axis of the volume data is parallel to the axis of the
image, and performance is degraded when the axes are oblique. This occurs because memory
references are not efficient, which is seen in most object-order volume visualizations [7].

@ Springer



Multimedia Tools and Applications (2021) 80:20971-20989 20987

6 Conclusion

This paper proposed a high-quality MIP rendering technique for medical visualization sys-
tems. In order to perform cubic interpolation at high speed, we efficiently skip the empty space
in volume data. We proposed a Bezier spline-based calculation method that adds control points
in order to calculate the maximum value of each block. The convex hull property of the Bezier
spline allows this acceleration without the loss of image quality. In addition, spline subdivi-
sions can be used to more accurately calculate the maximum values and skip more blocks. As a
result, we have achieved 2 times the performance without changing the image quality, as
compared to the existing method. In addition, the additional memory usage was limited by
reusing block memory.

We also proposed a method to improve the efficiency of memory reference when
performing visualizations with the GPU. The thread group of GPUs executed in parallel sees
improved performance when all referring to nearby memory. The most efficient tile shape was
determined depending on the viewing direction. The proposed method was described theoret-
ically and the experimental results confirmed that it is an improvement over the existing
method.

This study was limited in that section 3 does not consider the numerical error of floating-
point operations. It is worth noting that subdivision takes a long time, although it is performed
only once. In section 4, the rendering speed variation can be large depending on the direction
of observation. In the future, this research can be extended to general direct volume rendering
using transfer functions.

Appendix 1

Subdivision of Bezier curve

subdgi-| = Z3i1
Z3i- Z3;

subdg; — £ 43

Z3i- 273+ Z3;
subdgis) = 3i-1 + 43 + Z3it1

Z3i-1 + 3Z3; + 3231401 + Z3i42
subdg;i 2 = A

Z3i + 275 Z3;
subd6,-+3 _ 3i + 31+I4+ 3i42

Zsins + Zy
subdg;a = %

subdeiys = Z3i12
Appendix 2
Proof of Tables 1 and 2
We prove the Table 1. “The most efficient tile shape is w x h if rotation is arctan (h/w).”

Memory transfer time is proportional to the height of rotated tile (HRT). We define the
HRT when the tile width is w and the tile height is h as HRT,, ,=hcosf+w

@ Springer



20988 Multimedia Tools and Applications (2021) 80:20971-20989

sin 0 (assuming 0 <0 < 7/2). The HRT is minimized when arctan (h/w) = 0, because:
mginHRTWJ, = meinh cosf + wsin @

minimum at : h cos § = wsin 0

hcosO

_ W
wsin0

GPU cache line

Now we prove the first row of Table 2. “32x1 tile is efficient when 0 < 6 < arctan(1/16)”.

If O is close to 0, we obviously select 32x1 tile. As 0 increases, we select the 32x1 tile if
HRT3, ) <HRT\g, and select the 16 x 2 tile if HRT5; > HRT)s,. The boundary 6 value
between them is when HRT3, = HRT}6,. We select the 32x1 tile when 0 <0 <arctan(1/16)
because:

1cosf+32sinf =2cosf + 16sinf

0 = arctan(1/16)

Acknowledgments This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(Ministry of Science and ICT) (No. 2017R1IE1A1A03070494).

Code availability Not applicable.

Funding This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(Ministry of Science and ICT) (No. 2017R1E1A1A03070494).

Data availability Not applicable.
Declarations

Conflicts of interest/competing interests Not applicable.

@ Springer



Multimedia Tools and Applications (2021) 80:20971-20989 20989

References

1. Champagnat F, Le Sant Y (2012) Efficient cubic b-spline image interpolation on a GPU. J Graphics Tool
16(4):218-232

2. de Boor C (1978) A Practical guide to splines. Springer-Verlag, New York

3. Eklund A, Dufort P, Forsberg D, La Conte SM (2013) Medical image processing on the GPU — past, present
and future. Med Image Anal 17(8):1073-1094

4. Kaufman AE, Mueller K (2005) Overview of volume rendering. The Visualization handbook 7:127-174

5. Kwon O, Kang ST, Kim SH, Kim YH, Shin YG (2015) Maximum intensity projection using bidirectional
compositing with block skipping. J X-ray Sci Technol 23(1):33—44

6. Kye H, Sohn BS, Lee J (2012) Interactive GPU-based maximum intensity projection of large medical data
sets using visibility culling based on the initial occluder and the visible block classification. Comput Med
Imaging Graph 36(5):366-374

7. Lacroute P, Levoy M (1994) Fast volume rendering using a shear-warp factorization of the viewing
transformation. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques. pp. 451458

8. Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graph Appl 8(3):29-37

9. Levoy M (1990) Efficient ray tracing of volume data. ACM Trans Graph 9(3):245-261

10. Marschner SR, Lobb RJ (1994). An evaluation of reconstruction filters for volume rendering. In:
Proceedings Visualization'94, IEEE, pp. 100-107

11. Mihajlovic Z, Budin L, Radej J (2004) Gradient of B-splines in volume rendering. IEEE Mediterranean
Electrotechnical Conference. IEEE, In, pp 239-242

12. Misaki Y, Ino F, Hagihara K (2017) Cache-aware, in-place rotation method for texture-based volume
rendering. IEICE Trans Inf Syst 100(3):452-461

13. Mora B, Ebert D.S (2005) Low-complexity maximum intensity projection. ACM Trans Graph 24(4):1392—
1416

14. Mroz L, Kénig A, Groller E (1999) Real-time maximum intensity projection. In: Data Visualization'99,
springer, pp 135-144

15. Mroz L, Hauser H, Groller E (2000) Interactive high-quality maximum intensity projection. Comput
Graphics forum 19(3):341-350

16. Nehab D, Maximo A, Lima S, Hoppe H (2011) GPU-efficient recursive filtering and summed-area tables.
ACM Trans Graph 30(6):176

17. Ruijters D, Thévenaz P (2010) GPU prefilter for accurate cubic B-spline interpolation. Comput J 55(1):15—
20

18. Schreiner S, Galloway RL Jr (1993) A fast maximum-intensity projection algorithm for generating magnetic
resonance angiograms. IEEE Trans Med Imaging 12(1):50-57

19. Shin Y, Kye H (2016) High quality volume visualization using B-spline interpolation. J Korea Comput
Graphics Soc 22(3):1-9 (in Korean)

20. Smelyanskiy M, Holmes D, Chhugani J, Larson A, Carmean DM, Hanson D, Dubey P, Augustine K, Kim
D, Kyker A, Lee VW, Nguyen AD, Seiler L, Robb R (2009) Mapping high-fidelity volume rendering for
medical imaging to CPU, GPU, and many-core architectures. IEEE Trans Vis Comput Graph 15(6):1563—
1570

21. Sugimoto Y, Ino F, Hagihara K (2014) Improving cache locality for GPU-based volume rendering. Parallel
Comput 40(5):59-69

22. Sun 'Y, Parker DL (1999) Performance analysis of maximum intensity projection algorithm for display of
MRA images. IEEE Trans Med Imaging 18(12):1154-1169

23. Unser M, Aldroubi A, Eden M (1993) B-spline signal processing: part II - efficient design and applications.
IEEE Trans Signal Process 41(2):834-847

24. WangJ, Yang F, Cao Y (2017) A cache-friendly sampling strategy for texture-based volume rendering on
GPU. Visual Inform 1(2):92-105

25. Zhang C, Xi P, Zhang C (2011) CUDA-based volume ray-casting using cubic B-spline. In: 2011
International Conference on Virtual Reality and Visualization, IEEE, pp. 84-88

26. Zhou D, Du H, Zhao F, Kan H, Li G, Qiu B (2016) Improving efficiency for CUDA-based volume
rendering by combining segmentation and modified sampling strategies. Int J Simul Syst, Sci Technol
17(42):1-9

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Acceleration techniques for cubic interpolation MIP volume rendering
	Abstract
	Introduction
	Related works
	Empty space skipping
	B-spline interpolation
	Empty space skipping for B-spline interpolation
	GPU parallelization

	Efficient space skipping using Bezier curve subdivision
	Generation of Bezier control points
	Subdivision of Bezier spline

	Efficient GPU rendering using memory coalescing
	Experimental result
	Conclusion
	Appendix 1
	Subdivision of Bezier curve

	Appendix 2
	Proof of Tables�1 and 2

	References


