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Abstract
Diagnosis, detection and classification of tumors, in the brain MRI images, are important
because misdiagnosis can lead to death. This paper proposes a method that can diagnose
brain tumors in the MRI images and classify them into 5 categories using a Convolutional
Neural Network (CNN). The proposed network uses a Convolutional Auto-Encoder Neu-
ral Network (CANN) to extract and learn deep features of input images. Extracted deep
features from each level are combined to make desirable features and improve results. To
classify brain tumor into three categories (Meningioma, Glioma, and Pituitary) the proposed
method was applied on Cheng dataset and has reached a considerable performance accu-
racy of 99.3%. To diagnosis and grading Glioma tumors, the proposed method was applied
on IXI and BraTS 2017 datasets, and to classify brain images into six classes including
Meningioma, Pituitary, Astrocytoma, High-Grade Glioma, Low-Grade Glioma and Normal
images (No tumor), the all datasets including IXI, BraTS2017, Cheng and Hazrat-e-Rassol,
was used by the proposed network, and it has reached desirable performance accuracy of
99.1% and 98.5%, respectively.
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1 Introduction

Brain tumors are collection or mass of abnormal cells in brain which can be cancerous
(malignant) or noncancerous (benign). Brain tumors are categorized as primary or sec-
ondary [23]. A primary brain tumor arises in the brain and most of them are benign, and
a secondary brain tumor originates from cancer cells that spread to the brain from another
organs, such as lung or breast [19, 39]. World Health Organization (WHO) classified brain
tumors into over 120 type of tumors in 4 grades: grade I to VI (low dangerous to high
dangerous), some types of brain tumors are more common, such as Glioma, Meningioma,
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Astrocytoma, and Pituitary [23]. Glioma is a type of brain tumor that starts in the glial cells
of the brain or the spine and are the most common type of primary tumors with a count
about 52 percent of all primary tumors. According to WHO, Glioma tumors can categorized
to several level of malignancy. Grade I to grade IV such grade I tumors are approximately
normal and grade II and grade III tumors are more malignant, respectively and also grade
IV tumors are the most perilous named Glioblastoma Multiform (GBM) [6, 19]. Astrocy-
toma tumor begins in cells called astrocytes that support nerve cells. Some astrocytoma
tumors grow very slowly and others can be aggressive cancers that grow quickly, so there
are grading for this tumor type like Glioma [31]. Meningioma is one of brain tumor type that
arise from meninges layer in brain tissue. Meninges layer covered the brain and spinal cord
like a protector. This type mostly considered as benign tumors because these tumors spread
slowly and have a distinct boundary [23, 31]. Pituitary tumors account for about 15 percent
of all primary tumors and also they are benign but they can cause serious health problems
due to their hurts on sensitive areas of the brain [31]. Medical image analysis especially
tumor images analysis is an open field in image processing and machine vision. In recent
years, with the advent of deep learning through multilayered neural networks, the accuracy
of image processing has grown dramatically. Deep learning (DL) techniques, as a special-
ized form of machine learning approaches, motivate the benchmarks of classification and
segmentation tasks in the field of computer vision [13, 34]. Deep learning employs deep
architectures of learning or hierarchical features learning to performs end-to-end learning.
Hierarchical architectures enable machines to process data with a non-linear approaches for
feature extraction.

Among deep learning approaches, deep Convolutional Neural Networks (CNNs) play a
pivotal role in the analysis of medical images in various research and clinical fields [27]. In
recent years, the concept of deep CNNs have led to meaningful developments in medical
image classification [17, 25, 26, 36, 44, 45]. In general, the machine learning algorithms
have different performance in dealing with multiple representation of data, and because of
this , Success of a machine learning algorithm depends on dataset representation [20, 43].
We used some feature learning techniques for construct a new representation to improve
extracted features from proposed network and raise classification rate. The use of data labels
makes a difference in the type of learning: supervised or unsupervised feature learning.
[3, 20] In this research training an auto-encoder network with non-labeled data, leads to
extracting global features from dataset, thus combining local and global extracted features
represents new dataset for proposed network. Feature learning and high accuracy are the
main advantages of deep CNNs which are accomplished with help of numerous layers and
automated features extraction process and leads to more accurate and robust model [27].
Such architecture employs Convolutional filters as feature extractors to extract robust and
high-level features, so that as one goes deeper within the network, one will generate deeper
complex features.

Focusing on the brain, deep CNNs have demonstrated their potential for brain image
analysis in several different domains, with classification efficiency at the detection of brain
disease from Magnetic resonance imaging (MRI) images. Brain tumor classification is an
intricate and a more challenging problem in the area of classification problem. The main
challenges are referred to the following aspects:

1. Brain tumors indicate high variations with respect to intensity, shape, and size [10];
2. Tumors from various pathological types might demonstrate analogous appearances [11];
3. Despite the need for large amount of labeled training data, medical image datasets are

very limited. [41].
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To tackle these challenges the researchers design systems, which assists doctors in diag-
nosing and detecting abnormalities and helps them to make accurate and rapid decisions
[35, 37] Hence, the detection and classification of tumors by machine learning methods is
also an open field for research and development because in previous classic methods there
are still many challenges, including response time. Section 1.1 describes these problems
by explaining the previous methods, but before that it should be mentioned that the pro-
posed method can solve some of these challenges. We propose a deep architecture based
on Convolutional Auto-encoder Neural Network (CANN) to diagnose brain tumors and to
classify them into four types (Astrocytoma, Meningioma, Pituitary, and Glioma) and two
grades (Low- and High-Grade Gliomas). Our proposed network based on feature learning
techniques extracts some global and local features to detect tumors in the MRI brain image
apart from physical features. In more details, the primitive contributions of this manuscript
are listed as follows:

– Feature extraction and feature selection, and the process of classification are executed
in one step, such that tumor regions are not required to be selected and segmented.

– Two different features or representation learning techniques are applied on the pro-
posed network to determine the effect of feature learning and training procedure on the
problem of interest.

– In the proposed classification network, the brain tumors are diagnosed by extracting
global features (high-level features) from the input MR brain images. Furthermore, they
are classified and graded by extracting local features (low-level features).

– The classification networks has been trained from Scratch without any pre-trained
features. The Scratch framework makes model parameters fine-tuned which leads to
simplicity of the proposed network structure in comparison to the pre-trained networks.

– The proposed network does perform detection, classification, and gradation simultane-
ously, such that only one network is utilized to handle these three tasks.

The rest of this correspondence is structured as follows. The next sub-section focuses on
other existing research and study performed in the field or area of brain tumor classification.
Section 2 provides a detailed insight about the proposed framework. Section 3 is dedicated
to learning mechanism. Experimental results and corresponding analysis generated from the
proposed method with some discussions are described in Section 4. Finally, conclusions and
directions for future work are drawn in Section 5.

1.1 Literature review

There have been several attempts to classify brain tumors using ML techniques [7, 10, 12,
15, 46], particularly those of the deep CNN approaches presented in [1, 2, 14, 16, 24, 32,
33, 40].

The proposed approach in [7] utilizes the concepts of wavelet and support-vector
machine (SVM) to classify MR brain images as either normal or abnormal. This research
has been able to represent a way for the efficiency of machine learning methods in clas-
sifying images of brain tumors, however, it has used very limited data to train the model.
In [46], an approach is proposed for classification of different grades of Glioma together
with a binary classification for high- and low-grade using SVM and k-Nearest Neighbors
(k-NN). Despite the positive points, this method has been performed on a small amount of
data in three time-consuming stage. Authors in [15] proposed a hybrid method to classify
brain tumor as normal or abnormal MR brain images. This method uses Discrete Wavelet
Transform (DWT) to obtain and Principle Component Analysis (PCA) to decrease features.
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Finally, it employs feed forward back-propagation Artificial Neural Network (fp-ANN) to
classify images. In this research, training and predicting time have been increased rela-
tively. In [10], authors introduced a method to improve the classification performance of
brain tumors with three feature extraction methods, namely, intensity histogram, Gray Level
Co-occurrence Matrix (GLCM), and Bag-of-Words (BoW) model. This enhancement is
achieved by augmenting tumor region via image dilation as region-of-interest (RoI) and then
by splitting augmented tumor region into ring-form sub-regions. Nevertheless, using region-
of-interest in MRI images is not appropriate way to extract tumor, since all brain tissue
has clues to detect a tumor, so extracting region-of-interest loses a lot of data. The proposed
method in [12] uses multi-model radiomics imaging features to differentiate between HGG
and LGG brain tumors. Extracting radiomics features from raw images using Gray-Level
Co-occurrence Matrix(GLCM) then feature selection using correlation matrix had expected
results.

In [16], authors proposed a deep learning-based CNN for automated grading of Gliomas
(Grade II, Grade III, and Grade IV) in one task and classifying Low-Grade Glioma (LGG)
and High-Grade Glioma (HGG) in another task using digital pathology images. Also split
big dataset into some parts using tilling method was proposed as a pre-process, which is
a time-consuming step. In [33], two types of neural networks (fully connected neural net-
work and CNN) used to classify brain images with different types (Meningioma, Glioma,
and Pituitary). As described in this article, the proposed CNN architecture was composed
of two convolutional layers, two max-pooling layers followed by two fully connected lay-
ers. It has also been stated that employing Vanilla pre-processing has been impressive in
classification accuracy. However, all of these steps slow down the process of tumor classi-
fication, and cascading network connections slows the process even further. In work [24],
an approach that uses CNN to classify brain medical image into healthy and unhealthy, cat-
egorized as low- and high-grades, is proposed. An enhanced version of Alex Krizhevsky
network (AlexNet) deep learning structure on MR brain images are used as their network
architecture. This method can be named as one of the desirable methods. In [1] authors pro-
posed a modified capsule networks (CapsNet) with access to the tumor surrounding tissues
that merges both the tumor coarse boundaries as extra inputs and MR brain images for brain
tumor classification. On the plus side, the researchers has not absorbed the tissue around
the tumor in the brain images. In [2], a method based on CNN and Genetic algorithm is
proposed to classify different types (Meningioma, Glioma and Pituitary) and grades (Grade
II, Grade III, and Grade IV) of brain tumors. Unlike the existing methods that select a deep
neural network architecture, the proposed structure of CNN has been evolved using GA. In
this study, the number of mutations and cross-overs performed for the large problem space
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was not enough, so the model did not take into account all cases. Authors in [40] proposed
a CNN architecture to classify brain tumors into different types (Meningioma, Glioma and
Pituitary) and differentiate among the three Glioma grades (Grade II, Grade III, and Grade
IV). To achieve the most suitable architecture, they evolved the network structure employ-
ing various configurations. The proposed CNN is satisfactory network for classification,
but the extracted features could have been more acceptable. Recent work, [14], has been
adopted a deep transfer learned CNN model and employed a pre-trained GoogLeNet to
extract features from brain MR images. Doing so, the classification of three specific types
of brain tumors (Glioma, Meningioma and Pituitary) has been addressed. In a recent work,
[32], DWT and deep Neural Network (NN) are combined to classify normal and three types
of brain tumors: Glioblastoma, Sarcoma and Metastatic Bronchogenic Carcinoma. In this
study, like most mentioned studies, at first, the tumor is segmented in the image and then
fed into the model. Segmentation is a time-consuming step to preparing images.

Considering the previous methods, several important points are understood. Most of
these methods use limited datasets, and not all possibilities in the images may be con-
sidered. In some methods, primary tumor isolation, such as segmentation or selection of
the tumor regions, is used for the feature extraction step, and some of the information in
the brain tissue which is useful for tumor diagnosing, may be lost. Some researches have
multi-step and time consuming methods, especially methods for manual feature extraction.
However, recent neural network-based methods have performed well in feature extraction
and classification. Deep neural network approaches extract better features from the input
images, and resulting in more accurate output. Therefore, the proposed method is based
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Fig. 2 The hierarchy of the proposed method
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on convolutional neural networks with an appropriate number of layers to learn the fea-
tures to diagnose, classify and grade the tumor using a network in one step and achieve the
desired result. Synchronization of tasks, reducing time, increasing classification accuracy
and reducing missclassification rate are some of the achievements of the proposed method.

2 Methodologies

The block-diagram of the proposed framework is shown in Fig. 1. As it is obvious, the
proposed framework can be divided into two main steps; a pre-processing followed by
classification. In pre-processing, the skull stripping is performed to remove non-cerebral

(b) (d)(c)

(a)

(e) (g)(f)

Fig. 3 Augmentation technique: a Original image, b clockwise rotation, c Scaling, d Shifting, e flipping, f
Counterclockwise rotation, g Mirroring
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(non-brain) tissue from anatomical MR brain images. These de-skulled data are employed
as initial-input to CNN. Then a CNN-based deep learning framework is applied to extract
features from input data. The network itself composed of three subnetworks. Deep features
at high- and low-level are respectively extracted by the first and second sub-networks. Both
high- and low-level features are stacked together and fed into a proven classifier, third sub-
network. Finally, the classification task is accomplished and the outcomes are achieved. The
hierarchy of the proposed method is summarized in the Fig. 2.

2.1 Pre-processing

Before feeding the images into the proposed classification network, a pre-processing is
required to comply with the input formats. First, the original images are resized to 240 ×
240 × 1 pixels to match the lowest image size exist in datasets. Secondly, to reduce over-
fitting probability and enhance model performance, learn invariant features and improve
the robustness of the model [42], the MR images are augmented. Although augmentation
process bring some advantages to our model, feeding unrealistic images into the network
may introduce undesirable knowledge to the learning process. Therefore, we limit the image
augmentation to flipping, mirroring, shifting, scaling and rotation clockwise or counter-
clockwise, an example of these techniques are shown in Fig. 3. Employing augmentation
process, we have increased the number of data, so that the final dataset consists of about
20,000 MR images. These images are used for training, validation and testing purposes.

In this paper, as the final stage of pre-processing, we use Brain extraction tool, namely
BET, [38]. BET utilizes a deformable model that expands to fit the brain surfaces by the
application of a set of locally adaptive model forces, an example is shown in Fig. 4. This
technique is useful for the feature extraction stage because all the extracted features are
related to the internal tissue of the brain.

2.2 CANN

Figure 5 illustrates the architecture of the proposed model for brainMR image classification.
As it is clear, the model is based on deep convolutional auto-encoder-based neural network.
In this sub-section, the architecture of CANN is briefly introduced. The sample image from
brain MR images is fed into CANN for the aim of learning the feature description, that
is utilized for classification task. The proposed CANN architecture consists of an encoder
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(a) (b)

Fig. 4 Skull Stripping: a Image of brain with skull, b A de-skulled brain image [18]

network and a corresponding decoder network. Each encoder includes convolution with a
filter-bank, max-pooling and sub-sampling to generate a set of feature-map. The encoder
network includes two convolutional layers followed by a middle layer and each encoder
does execute convolution operation corresponding feature-map. These feature maps are then
batch normalized [21]. Batch normalization is utilized to accelerate the convergence of the
training procedure and decrease the probability of getting stuck in local minima. Since each
encoder layer has its corresponding decoder layer, the decoder network further consists of
two layers.

The convolutional auto-encoder [8] extract the output data, Y, to regenerate the input
data, X and examine it in contrast with original input data. If time iteration goes to infin-
ity, i → ∞, the cost function attains its optimal values. This translates to the fact that
regenerated input data is able to estimate the original input data to a maximum range. The
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classifier
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summary of proposed CANN can be seen in Algorithm 1 f (.) and f̂ (.) mathematically
denote the convolutional encode and the convolutional decode functions, respectively. In
Algorithm 1, the activation functions, η and ζ , are non-linear activation functions. The sig-
moid, the hyperbolic tangent, and the rectified linear, namely Relu, function are three of
which. In this paper, we implement Relu function that is defined as follows:

ReLU (x) =
{

x if x ≥ 0

0 if x < 0
(3)

The minimization of error is accomplished by optimizing the following cost function

J (θ) =
∑
X

ρ
(
X, f̂ (f (X))

)
, θ =

{
w, ŵ, b, b̂

}
(4)

Employing stochastic gradient descent, the weight and error are minimized, and the con-
volutional auto-encoder layer is optimized. Finally, the trained parameters are utilized to
output which are transmitted to the next layer.

The utilized CANN is analogous to the prevalent CNN, where the convolutional layer
is followed by a pooling layer. Further, in CANN after each convolutional auto-encoder a
max-pooling layer is used (see Fig. 5) and the resulting output is sub-sampled by a factor of
2.

Yi,j = max(Xi,j ) (5)

where Xi,j denotes the i-th region of j -th input feature-map and Yi,j denotes i-th neuron of
j -th output feature-map. The number of input and output feature-map are equal.

The proposed decoding technique is demonstrated in Fig. 5. In the decoder network, each
decoder up-samples its feature-map employing the stored max-pooling indices from the
related encoder feature-map. This phase provides sparse feature-map [4]. The corresponding
feature-map is then convolved with a trainable decoder filter bank to regenerate the input
image. Next, we briefly review the proposed CNN architecture.

2.3 CNN

As illustrated in Fig. 5, the deep CNN consists of 5 convolutional layers and 5 max-pooling
layers, followed by two fully-connected layers. The fully-connected and soft-max layers are
used to predict and classify output. The drop-out layer is used to avoid over-fitting.

Suppose that the proposed CNN composed of L layers, the output state of the �-th layer
is denoted X�, � ∈ {1, . . . , L}. Moreover, suppose that X0 refers to the input data. In each
layer, there exist two trainable parameters, i.e. the weight matrix w� and the bias vector b�.
As illustrated in Fig 5, the input data are fed into a convolutional layer. This layer performs
a 2-D convolutional operation with a window of weights slides across an image, named
convolutional kernel, w�. During the scanning process, these weights remain unchanged.
Consequently, convolutional layers are able to learn robust features. The bias vector, b�, is
then added to the outcome feature maps, where an element-wise non-linear activation σ (.)
is normally performed afterwards. Eventually, to choose the superior features through non-
overlapping square windows per feature map a max-pooling layer is typically followed. This
process can be formulated as follows:

X� = p (σ (w� ⊗ X�−1 + b�)) (6)

where ⊗ and p represent the convolution and max-pooling operation, respectively.
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Multiple convolution and max-pooling layers are stacked together to build the hierarchi-
cal feature extraction architecture. Further, one fully-connected layer combines correspond-
ing features into a 1-D feature vectors. Inputs to fully-connected layer is first processed
with non-linear transformation via weight and bias vectors, {w�, b�}, and the element-wise
non-linear activation fuction in then followed:

X� = σ (w� ⊗ X�−1 + b�) (7)

Here, a piecewise rectified-linear non-linearity, i.e. ReLU, is applied (see 3)).
A soft-max layer, with the number of neurons equal with the number of classes to be

classified, is the final classification layer. We generally need the network output to be a
vector of label probabilities, that sum up to unity [29]. Thus, we use probability-based loss
functions, e.g. cross entropy, for classification tasks. The soft-max function satisfies this
constraint

Soft–max (xi) = exi∑
j exj

(8)

Note that, applying soft-max, ReLU (x) is normalized to sum up unity.
The loss function is employed to measure the difference between the output of the CNN

and the true image label, i.e. loss. Minimizing the value of loss function is the main aim of
training the CNN. The cross-entropy loss function together with soft-max output activation
is commonly utilized for classification tasks. The cross-entropy loss calculates the cross
entropy between the predicted distribution of CNN and ground truth distribution as follows:

hc (s, r) =
n∑

i=1

−ri (x) ln (si (x)) (9)

where s is the estimate for true distribution r, and n denotes the number of classes.

3 Trainingmechanism

In proposed framework, training mechanism composed of two training phases with an inter-
ruption among them to combine all features and extract more deeper ones. During training
process two set of parameters, CANN and CNN parameters, should be initialized and
updated. The former includes weight parameters of encoder and decoder,

{
w, ŵ

}
, layers

and the latter includes weights corresponding to CNN layers.
The first phase of training is related to training CANN network. This phase is performed

by unlabeled training data to regenerate original input data and acquire best parameters
corresponding to auto-encoder model. An auto-encoder model with optimized weights on
convolutional layers is the production of this phase. The optimized model is now qualified
to extract some more appropriate features and merge them with other features. Following
this phase, the next phase of training is proceed with an interruption, which links middle
layer of auto-encoder model and construct a new model. Current model is composed of
an encoder part and a CNN architecture. Doing so, the optimized weights of the encoder
part are loaded into current model and other weights are initialized in similar manner. The
labeled data are then fed into the current model and next phase of training begins.

Supposed that X = [xi] ∈ R
n×n, i = {1, . . . , N}, are examples of unlabeled data which

is used to train the CANN, where n denotes the dimension of input data and N denotes
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the number of training samples. Since the auto-encoder is an unsupervised learning and
applies the back-propagation scheme to reconstruct the input data, every layer has an output.
Supposed that Y = [yi] ∈ R

n×n, i = {1, . . . , N}, represents the output of last layer. At the
end of training process the output feature maps would be a realization of the input data, i.e.
Y ∼= X. Every training phase is carried out in two passes: Forward Pass and Backward Pass.
Thus, we can describe the entire mechanism of training as follows:

(1) First Phase of Training: Forward Pass

Step 1: Initializing the parameter pair,
{
w, ŵ

}
, randomly with uniform distribution.

Step 2: Extracting features and lowering the dimension of each input feature maps using
the following formula:

yi =
N∑

i=1

xiw (10)

Step 3: Assigning the max value to every stride on each input data layer to produce the
output of max-pooling layer.

Step 4: Expanding the input data of each layer by repeating rows and columns to generate
the output of up-sampling layer.

Step 5: Extracting features and expanding the feature maps in each layer convolutional
layer of decoder unit using the following formula

yi =
N∑

i=1

xi ŵ (11)

(2) First Phase of Training: Backward Pass

Step 1: Calculation of the output error using corresponding loss function loss function;
Step 2: Updating and optimizing the pair

{
w, ŵ

}
by the following cost function:

J (θ) =
∑
X

ρ (X,Y), θθθ = {
w, ŵ

}
(12)

(3) Second Phase of Training: Forward Pass

Step 1: Applying the following function on the input data of each layer to evolve them
into feature maps.

yi =
N∑

i=1

xiθθθ (13)

Step 2: Assigning the max value to every stride on each input data layer to produce the
output of max-pooling layer.

Step 3: Vectorizing the final feature map by flatten layers to pass to the former layers.
Step 4: Employing drop-out layer. This layer help to remove some nodes together with

their corresponding weights from final layer and decrease the probability of over-
fitting in each iteration.

Step 5: Applying (8) for normalization purpose.

(4) Second Phase of Training: Backward Pass

Step 1: Employing (9) to calculate the whole network errors and optimizing all weights.
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Step 2: Applying the SGD cost function on weights and optimizing parameters to improve
the output of each layer during training process.

What achieved after executing this phase would be a model with the optimized parameters
and minimum misclassified errors with ability to classify unlabeled test data.

It is worth mentioning that, the proposed network consists of 10 convolutional layers to
extract features in all steps. Increasing or decreasing network convolutional layer deterio-
rates the classification accuracy, because a network with less layer does not train well and
does not extract some more important features from input data images. Moreover, a net-
work with more convolutional layer has more parameters, that increase the probability of
over-fitting. As shown in Fig. 6, the proposed network with 10 convolutional layer has best
performance in MR brain Images classification.

4 Experimental results and discussion

This research performs 3 brain tumor classification scenarios on 4 standard datasets includ-
ing MRI images. All scenarios use deep feature learning extracted by proposed classifier
network.

4.1 Datasets

In all body imaging techniques, Magnetic Resonance Imaging (MRI) is an efficient tech-
nique to illustrate (show) brain tissue. MRI system setting categorized into different class
modality, such as T1 and T2 (also known as T1-Weighted and T2-Weighted). Also T1-CE
and T2-CE are contract enhancement of T1 and T2 image modalities. Other changed modal-
ity known as Flair and Density Proton, which are less used. for current study, we used 4
different datasets, which have all images modalities, as follows:

– IXI dataset [22], contains 582, 3D (256 × 256 × 140), MRI volumes from normal,
healthy subjects;

Fig. 6 The effect of number of convolutional layer on model accuracy
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Table 1 Confusion matrix of proposed architecture for scenario 1

Predicted

Category Meningioma Glioma Pituitary

Meningioma 800 11 6

Actual Glioma 0 872 6

Pituitary 12 0 792

– BraTS 2017 datasets [5, 28, 30], contains 3D (240 × 240 × 155) MRI volumes of 285
high- and low-grade glioma cases;

– Cheng datasets [9], contains 3064, 2D (512 × 512), MR images with three types of
brain tumor, i.e. meningioma, glioma, and pituitary;

– Dataset acquired fromHazrat-e-Rasool General Hospital [2], containing 230, 2D (256×
256), MR images of three kinds of tumor, i.e. meningioma, glioma, and astrocytoma.

4.2 Evaluation

In this section, we describe the evaluation criteria and simulation results of the proposed
architecture for three different scenarios, that had been carried out on the particular dataset,
described on Section 4.1. The following subsections are detailed description and evaluation
of the scenarios.

In this paper the performance of the proposed method is evaluated in terms of Accuracy,
Precision, Recall and Fmeasure. The terms are defined as follows:

Classif ication Accuracy = T P + T N

T P + T N + FP + FN
(14)

Precision = T P

T P + FP
(15)

Recall = T P

T P + FN
(16)

Fmeasure = 2 × Precision × Recall

P recision + Recall
(17)

where T P (True Positive) denotes condition in which both prediction and actual value
are positive or correct, T N (True Negative) represents the cases when both actual ad pre-
dicted value are negative or incorrect, FN (False Negative), denotes the cases in which the

Table 2 Performance metrics for the first scenario

Meningioma Glioma Pituitary

Precision per Class 0.985 0.986 0.983

Recall per Class 0.979 0.990 0.986

Overall Accuracy 0.985

Overall Precision 0.985

Overall Recall 0.985

Mean Class Accuracy 0.985

F-Measure 0.986

19921Multimedia Tools and Applications (2021) 80:19909–19929



Table 3 Confusion matrix of the proposed architecture for scenario 2

Predicted

Category Normal Brain LGG HGG

Normal Brain 1110 21 0

Actual LGG 9 917 0

HGG 0 27 1167

Table 4 Performance metrics for the second scenario

Normal Brain LGG HGG

Precision per Class 0.951 0.950 1.0

Recall per Class 0.981 0.990 0.977

Overall Accuracy 0.991

Overall Precision 0.990

Overall Recall 0.992

Mean Class Accuracy 0.992

F-Measure 0.992

Table 5 Confusion matrix of the proposed architecture for scenario 3

Predicted

Category Normal Brain Astrocytoma Meningioma Pituitary LGG HGG

Actual Normal Brain 1103 0 0 0 0 0

Astrocytoma 0 986 0 0 0 0

Meningioma 0 0 502 0 0 0

Pituitary 0 0 0 812 0 0

LGG 5 0 0 0 430 10

HGG 0 0 0 0 16 681

Table 6 Performance metrics for the last scenario

Normal Brain Astrocytoma Meningioma Pituitary LGG HGG

Precision per Class 0.955 1.0 1.0 1.0 0.966 0.985

Recall per Class 1.0 1.0 1.0 1.0 0.966 0.978

Overall Accuracy 0.993

Overall Precision 0.991

Overall Recall 0.990

Mean Class Accuracy 0.990

F-Measure 0.990
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prediction values is incorrect and actual value is correct, and finally, FP (False Positive)
represents cases, where the prediction is correct and the actual value is incorrect.

4.2.1 Scenario 1

The classification differences in the scenarios depend on the datasets used by the proposed
network. The first scenario deals with classification of brain tumors into three types, Menin-
gioma, Glioma, and Pituitary. The number of neurons in the last layer of the network varies
according to the number of input datasets in the network. In the first scenario, only the
Cheng dataset [9] was used, which consists of images of three tumors. Table 1 summa-
rize system’s performance of the proposed classifiers as confusion matrix for this scenario.

(a)

(b)

Fig. 7 Accuracy (a) and loss (b) variations, training and validation, for scenario 3
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The predicted and actual values are respectively assigned to x-axis and y-axis. According to
confusion matrix of the scenario, all of the performance measures are calculated in Table 2.

4.2.2 Scenario 2

The second scenario diagnoses between normal and abnormal brain images and differenti-
ates between two Glioma grades, i.e. HGG and LGG. Data from [5, 22, 28, 30] are combined
and are utilized in this scenario. Tables 3 and 4 demonstrates the confusion matrix and
performance metrics for the second scenario, respectively.

Fig. 8 Visualization of deep
features extracted from a first
sub-network and b second
sub-network

(a)

(b)
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4.2.3 Scenario 3

The last scenario gets involved with diagnosis (i.e. differentiates between normal and
abnormal MR brain images), classification (i.e. classifies brain images as Meningioma,
Astrocytoma, and Pituitary), and grading Gliomas (i.e. discriminates between High-Grade-
Glioma (HGG) and Low-Grade-Glioma (LGG)). Data from [2, 5, 9, 22, 28, 30] are
combined and are utilized in scenario 3. This scenario is the main purpose of this study,
which is the basis for providing a method based on convolutional networks to be able to
simultaneously diagnose a tumor in the brain and its type and grade. Finally, by combin-
ing the above datasets, the model is able to learn features from images of the six classes
mentioned, so that it can correctly predict the label of brain images from the six available
categories. The confusion matrix and performance metrics of the last scenario are shown in
Tables 5 and 6, respectively.

The accuracy and loss variations during training and validation phases from the main
scenario (scenario 3) are demonstrated in Fig. 7. As it is obvious in training process of the
proposed network, the accuracy and loss function converge to specific values and the train-
ing process is accomplished properly. During the training phase the accuracy may decrease.
This reduction might be due to the fact that cost function get trapped in local minima. In such
cases, the network needs to be trained in the plenty of iterations, so that learning algorithm
converges to global minima and parameters optimize. Consequently, the transient behavior
of network should be ignored.

5 Conclusion

As mentioned in Section 2, basic machine learning methods, such as SVM, DWT, PCA or
obsolete feature extraction methods, do not provide the expected results in brain images
classification. However, neural network-based methods, especially convolutional networks,
provide more accurate and desirable results. On the other hand, training neural networks
from scratch requires large and numerous datasets, but in the field of medical images, data,
especially images, are limited and scarce. Therefore, in this study, the number of images
increased using the data augmentation method and the problem of data shortage for the net-
work was solved (More data, convenient features, better learning). The proposed network,
based on convolutional auto-encoder, uses modified brain images (de-skulled) for learning.
Due to the number of layers and the network architecture, feature learning fromMRI images
is done correctly so that the classification accuracy is greatly increased. Deep feature learn-
ing utilized to use proposed network in multi task classification. The brain tumor diagnosis
is a binary classification and needs some global features, while, the brain tumor classifica-
tion or grading is a multi-class classification which needs local features and more details.
Combining high and low level features leads to classifying all images in one step using
one network. A small number of high and low level features extracted by sub-networks of
proposed network are shown in Fig. 8:

As discussed above, the improvement of classification results is due to deep feature
learning. According to the Section 4.2 (see Tables 2, 4 and 6), in all scenarios the proposed
framework has performed the classification task with high precision. In Table 7, we draw a
comparison between the proposed structure and some other previous literature with similar
tasks. It is obvious that the proposed framework gives superior performance findings, com-
pared to other existing method which uses different architecture and methods. This shows
the reliability of the proposed system.
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In summary in this paper, a new novel strategy is proposed to classify brain tumors
into three types: Meningioma, Glioma, and Pituitary with accuracy of 99.3% in first study,
diagnose between normal and abnormal brain images and differentiates between LGG
and HGG with accuracy of 99.1% in second study, and further doing diagnosis task and
classifying brain images into three types:Meningioma, Astrocytoma, and Pituitary, and
two Glioma grades: LGG and HGG, with accuracy of 98.5% using a custom deep CNN
structure. The performance criterion for the proposed approach has been compared with
other state-of-the-art methods, and the results demonstrate the ability of the model for brain
tumor classification task, in multi-task manner.

By examining Tables 2, 4 and 6, and the Precision and Recall criteria, the performance
of the model can be examined. In the field of brain tumor analysis, a mistake may threaten
a human life, the Recall criteria is particular importance. The value of this criterion is close
to one, which means the model is able to identify tumor and classify it correctly and grade
them in terms of being cancerous and dangerous. In all three scenarios, the Recall value is
above 0.98, which means that the performance of the model is desirable and there is no risk
to life. The accuracy of the classification models, which eventually turn into CAD systems,
is very important because it is tried that despite these systems, doctors do not need to identify
anomalies and illnesses. For all the convenience that these systems have for physicians, it is
difficult to rely on these computer methods. Therefore, the method must be very accurate.
For example, the proposed method has an Precision criterion of close to one in all three
scenarios, which means that every time it predicts a label for a image, the label is really true
and accurate (all images labeled as tumors are really tumors).
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