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Abstract
With ubiquitous cameras and popular 3D scanning and capturing devices to help us capture
2D/3D scene data, there are many scene understanding related applications, as well as quite
a few important and interesting research problems in processing, analyzing, and understand-
ing the available scene data. During the recent several years, there is a significant advance-
ment in different research directions in this field and quite a few novel 3D scene analysis
and processing methods have been proposed correspondingly in each direction. This paper
provides a review and critical evaluation on the most recent (i.e., within five recent years)
and novel data-driven or semantics-driven 3D scene analysis and processing methods, as
well as several involved 3D scene datasets. For each method, its advantage(s) and disadvan-
tage(s) are discussed, after an overview and/or analysis of the approach. Finally, based on
the review, we propose several promising future research directions in this field.

Keywords 3D Scenes · Survey · Scene analysis · Scene processing ·
Semantics-driven approaches · Data-driven approaches

1 Introduction

Nowadays, more and more different types of 3D sensing devices could help us capture 3D
scene data, such as Acuity Laser [49], Light Detection and Ranging (LIDAR) [68], and
Leap Motion [67]. Those captured 3D scenes include not only indoor scenes, but also out-
door scenes. In addition, in order to deal with different situations or meet different research
requirements, researchers have built different benchmarks [14, 26, 56, 58, 80]. Cordts et al.
[14], Straub et al. [56], and Vasiljevic et al. [58] are built for 3D indoor and/or outdoor scene
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research, while Zheng et al. [80] and Gupta et al. [26] are examples that are more accurate
and more comprehensive than previous benchmarks.

In 2018 and 2019, we have successfully organized four sketch/image-base3d 3D scene
shape retrieval contest (SHREC) tracks [1, 2, 73, 75, 76] which have attracted many interest
from researchers who regarded the topic of 3D scene retrieval as an important and promising
research direction. For these four tracks, we have built two benchmarks which have 10 and
30 scene categories respectively, while each category has 100 3D scene models. Accord-
ing to the track reports [75], we have found that usually a 3D scene retrieval algorithm will
employ the following 3D scene processing and analysis techniques: classification, recogni-
tion, reconstruction/generation, view sampling, and semantics learning. This motivates us
to conduct a survey on related, among others, 3D scene processing and analysis methods to
advance the 3D scene related research, especially 3D scene retrieval.

Compared to 3D objects, 3D scenes are more directly related to our daily life. There are
a large amount of real life relevant application scenarios, such as autonomous driving cars,
3D geometry video retrieval, and 3D AR/VR Entertainment. Therefore, recently researchers
have proposed many 3D scene analysis and processing methods and significantly con-
tributed to this research area. 3D scene retrieval is one part of this area. The research
directions within this area include: a) 3D scene classification, which is to classify 3D
scene models into different certain categories based on a training dataset containing labeled
examples from known categories; b) 3D scene recognition, which is to recognize the
category of a given 3D scene with/without a training dataset; c) 3D scene retrieval, which
is to retrieve 3D scene models given an input query (i.e., a 2D scene sketch/image) pro-
vided by the users; d) 3D scene reconstruction, which is to reconstruct three-dimensional
scene models from multiple 2D projected scene images, whose depth information may be
missing; e) 3D scene generation, which is to generate 3D scene models from 2D images
or nature languages (e.g., “a person besides a table”).

These research directions may involve either data-driven or semantics-driven based tech-
niques: a) Data-driven methods are the methods that are based on the original raw data or
the data preprocessed by some techniques like redundant data points reduction, error data
removal [25], and GPU parallel calculating. b) Semantics-driven methods are the tech-
niques that are not only based on the data, but also incorporate semantic information of the
objects or the context in the 3D scenes. For examples, Rangel et al. [44] proposed a 3D
scene classification method based on semantic labels extracted from 3D scenes. Akase et al.
[6] presented a web-based 3D room layout generation system, which utilizes the semantic
information of each furniture in a 3D room and each furniture’s related objects. In addition,
to improve reconstruction accuracy, Vineet et al. [59] reconstructed a 3D scene by fusing
the 3D map with the semantic information of each objects in the scene, etc.

Section 2 provides an overview by defining several typical related terminologies, and
summarizing the papers to be reviewed in the survey. Sections 3 ∼7 introduce and review
each direction individually. Finally, after a conclusion, several promising future work
directions are proposed in Section 8.

2 Overview

In this section, we first provide a definition for the most commonly used terminologies in
3D scene analysis and processing techniques.

3D scene In computer world, we define a 3D scene as an arrangement of scenery objects
and properties to represent a recognizable place, where the objects that appear, and their
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shapes, sizes, and spatial relationships, as well as the background (i.e., ground, and sky) are
important features to characterize the place.

3D scene shape representations 3D scene contains a list of objects, which are entitled
independent representations to represent their shapes and textures. To represent and easily
maintain the semantic relationship between the objects in a scene, a scene graph data struc-
ture is often used. People have developed quite a few 3D object representations to meet the
needs of practical applications, for example, (1) meshes; (2) point sets; (3) Spline surfaces;
(4) Volumetric representations (i.e., voxels, particle systems, and finite element method
(FEM); (5) Subdivision surfaces (i.e., Loop subdivision surface [36]); (6) Constructive solid
geometry (CSG) (a shape defined based on boolean operations on simple objects); and (7)
Implicit surfaces (a surface defined by a mathematical equation).

Besides the above representations, RGB-D is a popular 3D scene representation to
represent 3D scenes captured by various 3D capturing and sensing devices.

3D scene features We can divide 3D scene features into low-level 3D scene features and
high-level 3D scene features. Low-level 3D scene features: characterize a 3D scene at
a lower level, e.g., pixel-level, by focusing on details like colors, textures, shapes (e.g.,
lines, dots), and spatial locations. High-level 3D scene features: represent a scene at a
higher level, e.g., object-level or object-group level, by examining the spatial and semantic
relationships between the objects in the scene.

3D scene semantics information Semantics information is used to interpret a special
entity. There are a lot of semantic information (i.e. objects, object parts and object groups)
existing in 3D scene models. To improve 3D scene analysis and processing accuracy, we
could incorporate such semantic information into the learning process.

3D scene datasets A 3D scene dataset is a collection of 3D scene data spanning over dif-
ferent categories, and often contains both training and testing subsets. Different 3D scene
datasets are built for different purpose, e.g., Cordts et al. [14] released a Cityscapes dataset
for urban street 3D scene analysis, while Vasiljevic et al. [58] curated a Dense Indoor and
Outdoor DEpth (DIODE) dataset for both indoor and outdoor 3D scene analysis.

In this paper, we review very recently (i.e., within five recent years) published
thirty-five (35) papers related to the five research directions (3D scene classifica-
tion/recognition/retrieval/reconstruction/generation). We further group them based on two
different inputs (2D and 3D), as well as two types of approaches (data-driven and semantics-
driven). Table 1 gives the overview of the above information. In the following five sections,
we will review each of the five research directions individually.

Table 1 Overview of the thirty-five (35) 3D scene analysis and processing research papers reviewed in this
paper w.r.t different research directions, inputs, and approaches

Tasks Input (2D) Input (3D) Data-driven Semantics-driven

classification [37, 39, 49, 50, 58] [11, 31] [31, 37, 49, 50, 58] [11, 39]

recognition [5, 67] [36, 44, 65, 69] [5, 44, 69] [36, 65], [67]

retrieval [43] [63](methods 1∼3), [64] [43, 63](methods 1∼2), [64] [63](method 3)

reconstruction [7, 14, 17, 21] [7, 14, 17] [34, 42], [54]

[22, 34, 38, 40, 41] [21, 22, 38, 40]

[42, 46, 54, 62] [41, 46, 62]

generation [4, 30, 33] [20, 57, 66] [66] [4, 20, 30, 33, 57]
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3 3D scene classification

Given a 3D scene model, 3D scene classification is to classify this scene model into one of
the candidate categories.

3.1 Data-driven 3D scene classification

A variety of data-driven based methods have been proposed and many of them work well
under certain circumstances.

Steinhauser et al. [55] proposed a scene classification method based on the data collected
from a LIDAR laser scanner. It can be used to collect and classify the raw data of the real
time surrounding environment of the vehicle into safe condition for driving road and unsafe
obstacles (static obstacles or moving obstacles). They tested the method on the university
campus and forest tracks, and the approach generates good results in estimating safe road
(e.g., untarred road). However, it still has some places to be improved: (a) need to reduce the
time cost of the method so as to run in real time, (b) make the method be able to deal with
the LIDAR failure issues (e.g., a scanner may fail in a small degree range, like 10 degrees),
(c) the algorithm may not work well if there are quite a few moving cars around the vehicle,
or when only a small number of landmarks are visible or the trees beside the road are dense
and hard to distinguish them from each other.

Ramezani and Ebrahimnezhad [43] presented a geometric features-based algorithm for
3D model classification. They extracted geometric features from the faces and vertices of
a 3D model and utilized a histogram of the features for classification. The histogram com-
prises two sets of features for each vertex: (1) the deviation angle of the vertex’s normal
vector from the center-to-vertex vector [43]; (2) the distance between the vertex and the
model’s center. They also adopted mutual Euclidean distance histogram to improve the clas-
sification accuracy, and compared their classification accuracy and efficiency with respect to
two different classifiers which are Probabilistic Neural Network (PNN) and Support Vector
Machine (SVM).

Lin et al. [34] proposed a method for indoor scene understanding based on RGB-D data.
They utilized the Constrained Parametric Min-Cuts (CPMC) [11] framework to generate
candidate cuboids for the 3D objects in a 3D scene, and then classify these cuboids. With 2D
segmentation information, 3D geometry properties, and the contexture relationship between
objects and scenes integrated in this method, the 3D object and 3D scene classification can
be solved together. Compared to the part-based model DPM [22], their method achieved a
good performance improvement on the NYU v2 dataset [51]: the F1-score accuracy, which
is the harmonic mean value of the precision and recall [18], has been increased considerably.

Wang et al. [63] proposed two contributions to solve the two issues existing in scene
recognition/classification: (a) large intra-class variations; (b) label ambiguity. Firstly, they
proposed a multi-resolution CNN architecture, which consists two parts: (a) coarse-
resolution CNNs, which deal with global features and large objects in the scene; (b)
fine-resolution CNNs, which deal with local features and small objects in the scene. They
are complementary to each other. Secondly, for the label ambiguity issue, they adopted two
ways to deal with it: (i) utilizing a confusion matrix technique (by computing the similarity
between any two categories), which can merge those ambiguous scene categories into one
super category (e.g., outdoor athletic, and outdoor track scenes); (ii) using other networks
to predict the label of each scene, which is called soft label. Then, train the model with the
guidance of super category labels and soft labels. However, there still exist some failure
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examples: some scene categories still cannot be easily distinguished with each other, e.g.,
supermarkets and shops are similar if looked from outside.

Aiger et al. [4] proposed a multi-view based CNN model, which has a good accuracy
in classifying water and trees. Compared with the state-of-the-art model Inception-V3 [57],
the related accuracy has been increased from 79% to 96%. The method requires neither
fully segmented labels, nor marked object class boundaries in a scene image, while it only
requires sparsely labeled pixels.

Muller-Budack et al. [41] treated the geolocalization (subdividing the earth into mul-
tiple geographical cells) of a photo as a scene classification problem. To incorporate the
hierarchical knowledge of different spatial resolutions, they adopted a multi-partition CNN
model, which can be used to compute geolocalization loss. Moreover, they extracted the
scene label information from different scene types (indoor, nature, urban, etc) by using the
ResNet model [29], and incorporated the information into the multi-partition CNN model
as well. They ran their method on two benchmarks Im2GPS [28] and Im2GPS3k [61], and
compared with the PlaNet [64] approach and demonstrated that their method has improved
the classification accuracy. This CNN model requires a small number of training images and
does not rely on the retrieval results from any dataset for verification. To further improve
the geolocalization, they could also incorporate other contextual information into the CNN
model, such as specific landmarks, and image styles.

3.2 Semantics-driven 3D scene classification

Unlike data-driven 3D scene classification that only focuses on the scene data itself,
semantics-driven 3D scene classification also considers the semantic relatedness between
objects, or between objects and scenes.

Since it is challenging for robotics to achieve a high accuracy in 3D indoor scene classifi-
cation due to a large number of scene categories in related datasets, Chen et al. [13] proposed
a word vector (a.k.a word embedding) based algorithm for the 3D indoor scene classifica-
tion task. This algorithm first uses GPS to locate a robot’s rough area, e.g., a school, or
a shopping mall. Then it just needs to search the objects belonging to this area instead of
searching all the object categories. They employed different CNN models for different pur-
poses in their approach, which consists of four modules. The first is a typical CNN-based
scene classification module to obtain the top-5 prediction labels. The second is a CNN-
based scene parsing module which is to detect the objects, background and foreground in a
scene. Next, the third module word embedding is to compute the vector for the objects in a
scene image and the vector for the top-5 prediction labels. Finally, the fourth module refines
the rank list of the top-5 labels based on the comparison of the above two vectors. They
adopted ResNet50 as the CNN model. After incorporating the word vector information into
the CNN model, they further increased its classification accuracies on both the Places365
dataset and their selected indoor scenes dataset, which is composed of the school, home and
shopping mall scenes selected from the original Places365 dataset.

Rangel et al. [44] proposed a scene classifier based on the semantic labels recognized
by the Clarifai [54] descriptor. This paper compares the Clarifai-based approach with other
descriptors (i.e., GIST, ESF), and shows that the Clarifai-based descriptor is competitive if
compared with those state-of-the-art ones. Moreover, the Clarifai-based approach performs
the best when dealing with general scenes. For example, after this approach is trained on the
semantic sequences of one type of building scenes, it can obtain good classification results
on the semantic sequences of another type of building scenes.
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4 3D scene recognition

Similar to 3D scene classification, 3D scene recognition can be categorized into data-driven
and semantics-driven approaches.

4.1 Data-driven 3D scene recognition

Behl et al. [7] proposed a new system for estimating 3D scene traffic flow for autonomous
driving. This system addresses the large displacement or local ambiguity (due to lack of
texture or surface reflection) problems which can fail the estimation in existing methods.
It is a recognition-based approach instead of like existing ones relying on local features.
They conducted experiments on 2D bounding boxes calculation, 2D instance segmentations,
and 3D object part predictions. The results demonstrated that the approach improves the
performance by a lot when dealing with large displacement or local ambiguities.

Zhong et al. [81] proposed a method for 3D text recognition in 3D scenes. It helps in
shadow detection and removal. This method segments shadow pixels from background and
text pixels by utilizing the Gabor kernel, then removes their depth information, and finally
converts the 3D texts into a 2D text image. Since it is the first attempt in 3D text recognition,
there are still some room for improvement. For example, the thresholds determined by the
Gabor kernel for shadow detection cannot achieve good performance where there are low
contrast, small fonts, non-uniform illumination effects, and so on.

Shi et al. [50] proposed a variational denoising recursive autoencoder (VDRAE) system
to predict the 3D scene layout of a 3D point cloud indoor scene, as demonstrated in Fig. 1.
This system generates and denoises the predicted 3D object proposals by incorporating the
hierarchical context information of 3D objects. The denoised indoor scenes can improve
the 3D scene recognition accuracy. However, this system is not an end-to-end system. For
example, the hierarchical proposals prediction and denoising steps are done separately.

4.2 Semantics-driven 3D scene recognition

Zhao et al. [79] proposed a framework that can parse scene images at both pixel level and
word concept level. They jointly embedded them into a high-dimensional positive vector
space, as demonstrated in Fig. 2. At the word concept level, their framework incorporates
the semantic word-word relations, i.e., using a hypernym/hyponym based on WordNet [21].
They made rules for the space construction process: making the pixel level features close
to their annotated labels and keeping the semantic relations unchanged. In general, their
framework includes two streams: (a) Concept stream, which is to incorporate the semantic
relationship information into the embedding space; (b) Image stream, which is to segment
the image by using a fully convolutional network. Then, their framework combines the two
streams by a joint loss function to measure the similarity in their image features and word
concept hierarchies, while the weights of the two streams in the loss function are prede-
fined. They selected 150 object categories from the ADE20K dataset [83] to train and test
their framework based on certain evaluation measures, e.g., using weighted intersection-
over-union (IoU) [66] as a baseline flat metric. They also compared their jointly embedding
framework with other models, such as Word2Vec [39]. The results show that their frame-
work has achieved better performance and demonstrated two main advantages: (a) It has
more freedom for the user to label an object at different grained levels (e.g., Husky and
dog categories) without sacrificing the training accuracy. (b) The system is end-to-end, thus
the semantic relationship information can be extended easily in the system. Nevertheless, it
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Fig. 1 A VDRAE-based 3D object layout prediction example. Segmented 3D point cloud as input (top left),
processed by VDRAE system (top right, make the objects in the same category have the same color), and
make fully objects contained in 3D bounding boxes (bottom) [50]

also has some limitations that may affect its performance, such as: (a) the training data and
target data are very different from each other; (b) compared to the label set, the size of the
image dataset is too small.

Miksik et al. [40] presented an augmented reality system for 3D outdoor scene recogni-
tion and reconstruction. This system simulates the 3D outdoor scene map in real-time and
allows users to segment objects manually. With a machine learning model learned from
the existing 3D object/scene datasets and objects drawn by the users, the system can rec-
ognize the scene in a more accurate way. The limitations of this system are in three-fold:
(a) the computational load is heavy; (b) it needs powerful GPUs, which limits the laptop
usage for outdoor scenes; and (c) the learning and prediction processes require users’ voice
commands to switch, and these two functions cannot be used at the same time, while in
the mean time the feedback of the two processes could amplify the errors and decrease the
accuracy.

Yuan et al. [77] proposed a semantic tree-based framework for 3D scene model recog-
nition. Firstly, this framework builds a scene semantic tree based on the semantic ontology
in WordNet [21]. Secondly, the framework can identify the semantic attributes (e.g., object
labels contained in the scenes) that the 2D query image contains via a deep learning-based
recognition approach. And Finally, by measuring the semantic similarity between the 2D
image’s semantic attributes and the nodes in the semantic tree, the framework could recog-
nize the target 3D scene categories. In this framework, the scene semantics of a particular
scene category contain three probability distributions: (a) object occurrence probability, it is
the conditional probability that an object class appears in the scene category, (b) object co-
occurrence probability, it is the conditional probability that both of two object classes appear
simultaneously in the scene category, and (c) spatial relation probability, it is the conditional
probability that two object classes have a certain spatial relation in the scene category.
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Fig. 2 Embed image pixel features and word concepts jointly [79]

5 3D scene retrieval

3D scene retrieval is to retrieve 3D scene models given an input query provided by the users.
This research topic has vast applications such as 3D scene reconstruction, 3D geometry
video retrieval, and 3D AR/VR entertainment.

5.1 Data-driven 3D scene retrieval

Savva et al. [48] advised a system to design and help retrieve 3D indoor scenes. This system
is based on a large-scale learned 3D priors set which is extracted from existing 3D scenes.
These priors are related to static support, position, and orientation. Moreover, by using those
priors, this system provides suggestions for 3D object placement and assembles 3D objects
with regard to desired scene category. However, this system does not consider collision
detection between two objects, which may lead to incorrect placement.

Yuan et al. [74] proposed a sketch/image-based 3D scene retrieval algorithm. The input
query of the approach is a user’s hand-drawn 2D scene sketch or a 2D scene image. This
method represents a 3D scene model by multiple 2D view images sampled from different
viewpoints. Then, they train two CNN models separately on the 2D scene sketches/images,
and the scene view images, as shown in Fig. 3. Finally, the ranking is based on the two CNN
classification results on the corresponding testing datasets.

Li et al, one of the participant groups in two Shape Retrieval Contest 2019 (SHREC’19)
tracks on 3D scene retrieval tracks [2, 73], presented the Maximum Mean Discrepancy
domain adaption method based on the VGG model (MMD-VGG) to tackle 3D scene
retrieval task. The query is a 2D scene sketch/image and the target is 3D scene models.
Those two types of data come from different datasets with diverse data distribution. They
address this task from two settings, learning-based setting and non-learning based setting.
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Fig. 3 VBV-VGG architecture [74]

Liu et al, one more participant group in the two SHREC tracks, proposed a two-stream
CNN-based method. In their method, the 2D scene sketch/images dataset is regarded as
the source domain, and the 3D scene models dataset is regarded as the target domain. It
processes samples from either domain with a corresponding CNN stream. They adopted
triplet center loss [30] and softmax loss for training supervision, the network is trained
to learn a unified feature embedding for each sample, which is then used for similarity
measurement for the retrieval process.

5.2 Semantics-driven 3D scene retrieval

Minh-Triet Tran et al, another participant group in the two SHREC’19 tracks on 3D
scene retrieval, proposed a domain adaptation based method named ResNet50-Based
Sketch Recognition and Adapting Place Classification for 3D Models Using Adversar-
ial Training (RNSRAP). In addition to the training dataset provided, they performed
data augmentation by adding semantic related sketches/images (e.g., add camel, cactus
sketches/images to the desert category). Due to the substantial variance exists in the two
domains (source domain and target domain), the adversarial adaptive method they uti-
lized is to minimize the variance between the source and target domains. As a result, the
trained domain adaptation model can be used for classification in both the source and target
domains.

6 3D scene reconstruction

Similar to 3D object reconstruction, 3D scene reconstruction is to reconstruct a three-
dimensional scene model from multiple 2D projected scene view images, whose depth
information needs to be recovered.

19499Multimedia Tools and Applications (2021) 80:19491–19511



6.1 Data-driven 3D scene reconstruction

Ebrahimnezhad and Ghassemian [20] proposed a space curve-based method to reconstruct
a moving 3D object from stereo rigs which capture image sequences. The space curves are
extracted from the stereo images. This method ensures accurate geometry, and minimizes
the number of outliers. In addition, photometric information is not required after adopting
the new space curve extraction method. Last but not least, by utilizing perpendicular stereo,
the method can estimate the motion of the 3D object more accurately. Based on the esti-
mated motion, they construct multiple virtual cameras to obtain multiple views and extract
the finest visual hull of the 3D object, which is useful for reconstructing poorly-textured
objects.

Song et al. [52] presented an end-to-end system named semantic scene completion net-
work (SSCNet), which is based on convolutional neural network techniques. It is able
to reconstruct a 3D indoor scene by using 3D voxel representations and predict seman-
tic segmentation labels with a 2D depth image as input. This system takes both 3D scene
reconstruction and semantic labels into consideration simultaneously, which were handled
individually in previous work. This system solves two issues: a) extend the receptive field of
the network to effectively capture 3D volume data context information; b) manually build a
3D scene dataset named SUNCG, which provides complete labeled 3D objects information.

Bobenrieth et al. [9] proposed a 3D indoor scene reconstruction method. Due to the rea-
son that some applications require a complete scanning data captured by some scanning
devices like Kinect, which is a time-consuming process, their method only requires a few
shots of the 3D scene, and also no overlapping requirement is required to generate a seam-
less scene. This method aligns these shots by looking for a group of transformations, and
constructs an alignment graph which is used to find a global solution for all the transforma-
tions. However, since their method searches all the possible solutions, the time cost is highly
dependent on the provided number of shots, e.g., it only takes a few seconds for simple
cases, but the time may increase rapidly if the provided number of shots increases sharply.

Penner and Zhang [42] proposed a method to perform soft (keeping depth uncertainty)
3D scene reconstruction and view synthesis. During each stage, their method keeps the
depth uncertainty, which can help to refine the depth estimates of object boundaries during
the 3D reconstruction step. It also helps to adjust view rays and texture mapping rays during
the view synthesis step. Their approach accepts a variety of inputs, which include not only
structured images and wide-baseline captures, but also unstructured images and narrow-
baseline captures.

Dai et al. [16] presented a data-driven based system named ScanComplete, which can
reconstruct a high-resolution 3D scene from an incomplete RGB-D 3D scene scan. This
system utilizes fully-convolutional neural network techniques to train on small subvolumes
of the 3D scene and test on either small or large 3D scenes. In addition, in order to obtain
high-resolution outputs with regard to the 3D scene size, the system adopts a coarse-to-
fine strategy to predict small details and global structure simultaneously. The results show
that it improves the quality of the 3D scene reconstruction with incomplete RGB-D 3D
scan input as well as the semantic segmentation performance when compared with other
methods.

Xu et al. [72] presented a system of reconstructing unknown 3D indoor scenes automat-
ically with a single robot. This system enables the robot to scan and reconstruct the scene
simultaneously, while taking care of both exploration efficiency and high quality scans. The
system utilizes a time-varing 2D tensor field, a 2D image computed over the partial scanned
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scene, to guide the movement and camera control of the robot along its movement path. The
system flexibly guides the camera’s movement instead of using a fixed camera.

In 2018, Guo and Guo [25] presented a method to improve the reconstruction of urban
scenes with buildings based on multi-view images. This method fuses the reconstructed
dense points and line segments. According to the fusion process, it helps remove error
line segments, sample the correct line segments with points, and finally determine and
fuse the corrected line segments and points for the 3D scene. The results show that the
approach provides more accurate edge information in some parts with rare point fea-
tures to represent the 3D urban scenes, such as windows and walls, and the time cost is
acceptable.

Ritchie et al. [46] presented a 3D indoor scene synthesis model that can solve the fol-
lowing three limitations existing in previous work: (1) cannot place reasonable objects in
the scene; (2) fail to take the size of an object into consideration; and (3) time-consuming.
This model is a deep convolutional generative model, which can generate data distribu-
tions. It utilizes a top-down scene image, extracted from a 3D scene and fed into the model
to iteratively synthesize new objects into the 3D scene. The synthesis process involves the
decisions of objects’ categories, positions, orientations, and sizes.

Rematas et al. [45] developed an end-to-end system to reconstruct a 3D soccer field
with moving players from a soccer game video. It can detect the players in the video and
estimate the depth map for each player. Compared to other methods that need to set up many
synchronized cameras in a real soccer field, this system can reduce the cost. However, this
system also has some limitations, e.g., if the system fails to detect the player(s), the player(s)
will not be presented in the reconstruction result, and the overlap between the players may
cause incorrect depth estimation, etc.

In 2019, Dong et al. [19] presented an end-to-end system that allows multiple robots to
collaboratively scan unknown 3D indoor scenes for 3D scene reconstruction. This system
utilizes an approach, named Optimal Mass Transport (OMT), to solve the resource distribu-
tion problem for the robots scanning the 3D indoor scenes. It adopts a divide-and-conquer
scheme to assign tasks to the robots and optimize their paths. The timing and statistics per-
formance information can be found in Fig. 4. However, this system is greedy-based, thus,
may fall into local minimum.

Fig. 4 Performance on both synthetic (rows 2 ∼ 3)and real scenes (rows 4 ∼ 9). Each rows contains the
scene area, # of robots (#R), # of planning intervals (#I), planning time for each planning interval (PT), time
of each planning interval (IT), total scanning time (TT), and all robots’ total movement distance (TD) [19]
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Flynn et al. [24] proposed a 3D scene view synthesis method, which first generates a
multiplane image (MPI), a kind of representation that can model the exterior effects of light
fields such as transparency, and then uses it for view synthesis, based on a sparse set of
views of the 3D scene. This method utilizes and improves the learned gradient descent-
based method (LGD) [3], which is to update the prediction model parameters, by replacing
its update rule with a deep neural network parameters update. This method can deal with
depth complexity, object boundaries, light reflections, and thin structures as well, and the
results demonstrate the state-of-the-art performance.

6.2 Semantics-driven 3D scene reconstruction

Vineet et al. [59] proposed an end-to-end 3D scene reconstruction system. This system can
efficiently perform dense, large-scale semantic 3D scene reconstruction. This system can
also deal with moving objects in the 3D scenes by fusing the semantic information of the
objects with the 3D map. The core of the system is that they adopt a hash-based fusion
approach and a volumetric mean-field (a technique that can gradually refine the edges of
each voxel in iterations [60]) based optimization approach for 3D scene reconstruction and
object labeling separately.

To improve the 3D scene reconstruction accuracy, Blaha et al. [8] presented a 3D scene
reconstruction method that takes both 3D scene reconstruction and semantic labeling into
consideration at the same time, because these two themes can affect each other. This method
is adaptive, which means it only reconstructs the necessary regions (near to the predicted
surfaces) of the 3D scenes. This can save much memory and time, and as a result, it can
reconstruct large-scale scenes.

Savinov et al. [47] proposed an approach for dense semantic 3D reconstruction. It utilizes
two schemes: one is continuous regularization and the other one is ray potentials. While
ray potentials means that a ray is composed of voxels, and its information is contained in
the pixels of the observed images. Therefore, by using correct ray potentials, it can achieve
more accurate reconstructions. While, continuous regularization is performed to handle the
noise in the input data. Particularly, this approach can also reconstruct thin objects due to the
accurate representation of the input data, which is optimized by continuous regularization
on the surfaces.

Ma et al. [38] presented a hybrid framework to reconstruct semantic 3D dense models
from monocular images. This framework utilizes the conditional random fields (CRFs)-
based [32] method as the baseline method. It considers the correlation between 3D space
points and image pixels, which helps to obtain consistent object segmentation from multi-
view images. With those semantic information from images, it can remove the noisy points
in the 3D space, correct wrongly-labeled voxels, and fill the space where points are difficult
to recover during the reconstruction process.

7 3D scene generation

3D scene generation is to generate 3D scene models guided by the purpose of the generation
method. Since many professionals such as autonomous vehicle designers, game developers,
VR/AR engineers, and architects are increasingly using virtual 3D scenes for prototyping
as well as end products design, the demand for related 3D scene data is high, which triggers
the need of 3D scene generation.

19502 Multimedia Tools and Applications (2021) 80:19491–19511



7.1 Data-driven 3D scene generation

Zhang et al. [78] proposed a 3D indoor scene modification framework to help users to enrich
3D indoor scenes with many small objects with regard to three scheduling rules related
to: (a) object category, (b) object placement, and (c) object arrangement. The modification
process could make the scenes more realistic based on the users’ preferences. It adopts a
cost function that integrates both the constraints proposed by the framework and the user-
specified scheduling rules. However, it fails to involve the occurrence information of small
objects. For example, the laptop and mouse objects normally appear in the same place, while
the framework may separate them far away from each other.

7.2 Semantics-driven 3D scene generation

Akase and Okada [6] proposed a web-based system that deals with 3D room layout
according to users’ preferences. Their method is based on the Interactive Evolutionary Com-
putation (IEC) method [5], and they used a predictive approach to narrow down the search
space and adopted a multi-screen interface to reduce the fatigue of each user by using
IEC. They created a semantic database which hosts the information of each single furniture
object. This helps us to know each furniture’s related objects. In addition, by computing
the feature elements’ importance, they performed a conjoint analysis on user preferences to
generate satisfactory 3D scenes, and it achieved high user satisfaction.

Fisher et al. [23] proposed an activity-centric scene generation technique. It first anchors
an observed 3D scene, then scans the activities supported by the 3D scene environment.
Based on those activities, they finally determined semantically reasonable arrangements of
the retrieved objects from an object database. The limitation of this technique is that it is
expected to support a more general class of activities.

Walczak and Flotynski [62] presented a scene generation method by first creating
semantically described 3D meta-scenes (3D content representations), and then generat-
ing customized 3D scenes based on those 3D meta-scenes. The advantages of using the
semantics include: (1) making 3D scene customization simple; (2) supporting high-level
abstraction operation and complex content customization.

Ma et al. [37] proposed a sub-scene level framework that can generate 3D indoor scenes
by using natural language commands. It contains two steps: (1) retrieve related sub-scene(s)
from a 3D scene database; (2) synthesize a new 3D scene by using the sub-scenes and
the current 3D environment. To bridge the gap between user language commands and
scene modeling operations, they adopted a representation named Semantic Scene Graph
(SSG), which contains objects’ information, attributes and relationships to encode geo-
metric and semantic scene information. To demonstrate the scalability of their framework,
they need to train their model on a larger set of group relations and natural language
commands.

Li et al. [33] presented a non-convolutional generative recursive neural network (RvNN)
which also focuses on indoor 3D scenes. This network can learn hierarchical scene struc-
tures by utilizing a variational autoencoder (VAE) [10]. Figure 5 shows an example scene
hierarchy. Besides the semantic object-object relations, they also proposed three grouping
operations (support, surround, and co-occurrence), and utilized object co-occurrences dur-
ing the generation process. However, global scene hierarchies have some limitations due to
certain reasons like imperfect training data, and unsatisfactory performance on complicated
scenes (i.e. messy offices), so a network that can learn sub-scene level structures by itself
may address this issue.
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Fig. 5 A training set bedroom example with the corresponding scene hierarchy. The root node have five
children which are one floor node and four wall nodes. Then each wall has its own subtree with more detailed
object-object relations [33]

8 3D scene datasets

8.1 Cordts et al.’s Cityscapes dataset (2016)

Cordts et al. [14] built a 2D scene image dataset, named Cityscapes, which contains
urban street scenes recorded by stereo video for 50 cities. This dataset is composed of
finely-annotated and coarsely-annotated images. 5,000 finely-annotated images are manu-
ally selected from 27 cities, which contain highly diverse objects, background and layouts.
20,000 coarsely-annotated images are automatically selected from the videos. In order to
increase the annotation speed, the object boundaries are not as accurate as finely-annotated
images, but they still have a 97% segmentation accuracy.

8.2 Hua et al.’s SceneNN dataset (2016)

Hua et al. [31] created a richly annotated RGB-D indoor scene dataset named SceneNN. It
contains 100 scenes categories annotated at vertex, mesh and pixel level, respectively. This
multi-level annotation was designed to promote its usage in diverse related applications.

8.3 Xiang et al.’s ObjectNet3D dataset (2016)

Xiang et al. [70] released a large scale dataset called ObjectNet3D containing 100 categories
of scene data. There are 90,127 scene images comprising 201,888 objects, and 44,147 3D
objects in the dataset. It has performed 2D images-3D shapes alignment, and also provides
pose and shape annotations for the 3D shapes.
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8.4 Handa et al.’s SceneNet network and dataset (2016)

Handa et al. [27] designed an automatic 3D scene data synthesis framework to generate
synthetic 3D scenes by utilizing existing CAD repositories, and generated about 10,000
synthetic views for five different types of 3D indoor scenes.

8.5 Song et al.’s SUNCG dataset (2017)

Song et al. [53] constructed a SUNCG dataset, a synthetic 3D scene database with manually
labeled voxel occupancy and semantic labels. This dataset has 84 categories, and 45,622
different scenes and 2,644 objects across those categories.

8.6 Yuan et al.’s SceneSBR2019 and SceneIBR2019 dataset (2019)

Yuan et al. [73] and Abdul-Rashid et al. [2] compiled two 3D scene retrieval benchmarks,
named SceneSBR2019 and SceneIBR2019. SceneSBR2019 is using 2D scene sketches as
the input query while SceneIBR2019 is using 2D scene images as the input query. Both
benchmarks contain 30 categories, which were selected from the Places88 dataset [82]
scene labels. The 88 categories of the Place88 dataset are also shared by the ImageNet
[17] and SUN datasets [71]. SceneSBR2019 contains 25 scene sketches for each category,
while SceneSBR2019 contains 1,000 scene images for each category. Both SceneSBR2019
and SceneIBR2019 share the same 3,000 3D scene models, which is the target dataset.
It is currently the first and largest benchmark for 2D scene sketch/image-based 3D scene
retrieval.

8.7 Zheng et al.’s Structured3D dataset (2019)

Zheng et al. [80] built a synthetic dataset, named Structured3D, to meet the increasing
demand of symmetries (e.g., lines, cuboids, surfaces) for 3D indoor scene reconstruction
and recognition. They first collected a lot of 3D indoor scenes designed by professional spe-
cialists. Then, they extracted 3D structures (ceiling, floor, wall, etc) annotations as ground
truth from those 3D scenes. Finally, based on the extracted 3D structures, they synthesized
and generated high-quality (photo-realistic) 2D scene images.

8.8 Straub et al.’s Replica dataset (2019)

Straub et al. [56] created a dataset, named Replica, which contains 18 different indoor
scenes. Compared to other 3D scene datasets such as [15] or [12], the Replica dataset is
more realistic because it captures the full indoor scenes and has no missing surfaces. In
addition, for each mesh primitive, Replica introduces high dynamic range (HDR) textures
by changing the settings of the RGB texture camera. Moreover, Replica also contains glass
and mirror reflectors surface information, which also can be rendered and make the 3D
scenes appear more realistic.

8.9 Vasiljevic et al.’s DEpth dataset (DIODE) dataset (2019)

Vasiljevic et al. [58] curated a RGB-D 2D scene image dataset, named Dense Indoor and
Outdoor DEpth Dataset (DIODE), which contains both indoor and outdoor scene categories.
Most existing datasets only contain one domain (either indoor or outdoor) since due to
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different scene types of the two domains, indoor and outdoor scene images are obtained
with different types of sensor suites. As a result, it is difficult to obtain a good accuracy for
related cross-domain problems. This dataset adopts one sensor type, thus making the indoor
and outdoor scenes have the same scene type.

8.10 Gupta et al.’s large vocabulary instance segmentation dataset (LVIS) dataset
(2019)

Gupta et al. [26] constructed a 2D scene image dataset, named Large Vocabulary Instance
Segmentation dataset (LVIS), which contains about 2 million object segmentation masks
for more than 1,000 object categories, and about 164K 2D scene images in total. Compared
to some related datasets, e.g., COCO [35], LVIS provides a more accurate mask for each
segmented object instance, thus will be more beneficial in improving the accuracy of a
learning method for scene image object detection or segmentation.

9 Conclusions and future work

9.1 Conclusions

3D scene analysis and processing is important for many applications such as autonomous
driving cars and AR/VR industries. Recently, it has received more and more attentions. To
improve the performance of related deep neural network models, a large amount of 3D
scene data are required. With the increasing popularity and power of 3D scene sensing and
capturing devices, it is more and more convenient to obtain more accurate 3D scene data.

This paper aims to provide a comprehensive survey of most recent state-of-the-art 3D
scene analysis and processing research methods. We summarize this research area from five
directions: (1) 3D scene classification; (2) 3D scene recognition; (3) 3D scene retrieval;
(4) 3D scene reconstruction; and (5) 3D scene generation. For each direction, we further
classify the involved methods into data-driven and semantics-driven methods. In addition,
we also review several most recent and popular 3D scene datasets in this research area. Each
dataset meets the needs of one or more research directions in this area.

9.2 Challenges and future work

9.2.1 Challenges

– Accuracy improvement in 3D scene analysis and processing. So far, the scholars
and researchers have made great progress in the analysis and processing of single 3D
object. However, the accuracy of the 3D scene analysis and processing is not as good as
expected. Compared to 3D objects, 3D scenes are more complicated. 3D scenes usually
contain multiple 3D objects, each having spatial and semantic relationships with others.
For example, in a 3D kitchen scene model, if there is a bowl in a sink, then a spatial
relationship has been established between the bowl and the sink. On the other hand, it is
much more likely to find that both a table and a chair will simultaneously appear in the
same (kitchen) scene model than that for both a table and an elephant due to their closer
semantic relationship in the context of 3D scenes. Due to the high level of complexities
existing in 3D scenes, it is still a challenging and open task to significantly improve the
accuracy in analyzing and processing 3D scenes.
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– Lack of a large-scale and/or multimodal 3D scene benchmark dataset. As we know,
the size of a training dataset has great influence on the generalization performance
of a machine learning algorithm, especially for a deep learning algorithm. According
to our knowledge, at present there is no such widely-used large-scale 3D dataset that
can be considered as big in terms of either number of categorical classes or number
of variations in each category. 3D scenes are basically stemmed from our daily life,
but in quite different forms. For example, we could have more than one thousand of
settings for our offices and bedrooms. Considering much less 3D scene data available
online if compared with single 3D object data as well as several different 3D scene
representations (i.e., 3D graphical models, RGB-D videos, and range scans), it will
be a much more challenging task to collect a large-scale and/or multimodal 3D scene
benchmark dataset. In fact, this has become a bottleneck in the development of 3D
scene analysis and processing research direction.

9.2.2 Future work

The review entitles us to identify current obstacles, as well as next trends. Based on them,
we propose several important and challenging future research directions.

– Developing a semantics-driven machine learning model specifically for 3D scene
classification and recognition. Since a 3D scene model is composed of one or more
3D objects, the semantic information existing in the 3D scene model encodes both the
relationship between objects and that between the scene objects and the corresponding
scene category, and is thus very useful for the 3D scene classification and recognition
problems. For instance, in 2020, we proposed a semantic tree-based 3D scene recog-
nition framework [77] which can effectively capture the scene semantics information
and thus significantly improves the scene recognition accuracy. Therefore, to improve
either the accuracy or efficiency of a 3D scene classification or recognition algorithm,
utilizing semantic information of 3D scenes deserves more attentions

– Application-oriented 2D scene-based 3D scene reconstruction and generation.
Reconstructing a 3D scene based on single or multiple images and automatically gener-
ating synthetic 3D scene data based on a certain type of input (e.g., sketches, text, and
natural languages) have a lot of application potentials in our daily lives. For instance,
creating 3D scene contents for a new 4D immersive program, like the Disney World’s
Avatar Flight of Passage Ride [65], or imaginary scenes for preschool education.

– Developing a novel machine learning model specifically for 3D scene retrieval to
bridge the semantic gap between the query and target datasets. Since either hand-
drawn 2D scene query sketches or realistic 2D scene query images differ a lot from
target 3D scene models or views, it makes 2D scene sketch/image-based 3D scene
retrieval a challenging research direction. Our initial results [77] has demonstrated that
employing the semantics existing in 3D scenes can evidently improve 3D scene recog-
nition rate. Therefore, considering the semantic gap [69], it is promising to further
enhance the 3D scene retrieval performance by designing a learning-based frame-
work which can automatically learn the semantics, and help to conduct the retrieval at
semantics level.

– Curating a large-scale and/or multimodal 3D scene benchmark dataset. To meet
the requirements of current machine learning algorithms, a large-scale dataset is
required for each of the five research directions in 3D scene analysis and process-
ing. While, currently for most of them such datasets are stilling pending, for example
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a large-scale 3D scene retrieval benchmark. In addition, most of the existing popular
3D scene datasets contain only a certain type of 3D scene data. For example, Struc-
tured3D [80] comprises only 3D indoor scenes, while Cityscapes [14] consists of only
street scenes. Thus, to examine the scalability of related algorithms, it is necessary to
build 3D scene benchmarks that support diverse modalities of 3D scenes as well.

– Building an adaptive machine learning model for different kinds of scene data.
Besides building a 3D dataset with various types of 3D scene data, we can propose a
new machine learning model which is versatile enough to handle different modalities of
3D scene data. This is challenging but promising since it has great potentials in related
practical application scenarios which typically involve big data and cloud computing.
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PH (2015) The semantic paintbrush: Interactive 3D mapping and recognition in large outdoor spaces.
In: Proceedings of the 33rd Annual ACM conference on human factors in computing systems, CHI’15,
pp 3317–3326, New York, NY, USA, ACM

41. Müller-budack E, Pustu-Iren K, Ewerth R (2018) Geolocation estimation of photos using a hierarchical
model and scene classification. In: Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part XII, pp 575–592

42. Penner E, Zhang L (2017) Soft 3D reconstruction for view synthesis. ACM Trans Graph 36(6):235:1–
235:11

43. Ramezani M, Ebrahimnezhad H (2011) A novel 3D object categorization and retrieval system using
geometric features. Int J Inform Commun Technol Res (IJICTR) 4(1):9–20

44. Rangel JC, Cazorla M, Garcı́a-varea I, Martı́nez-Gómez J, Fromont É, Sebban M (2016) Scene
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