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Abstract
We propose an efficient low-light image enhancement algorithm based on an optimization-
based approach for gamma correction parameter estimation. We first separate an input color
image into the luminance and chrominance channels, and then normalize the luminance
channel using the logarithmic function to make it consistent with the human perception.
Then, we divide the luminance image into dark and bright regions, and estimate the opti-
mal gamma correction parameter for each region independently. Specifically, based on the
statistical properties of the input image, we formulate a convex optimization problem that
maximizes the image contrast subject to the constraint on the gamma value. By efficiently
solving the optimization problems using the convex optimization theories, we obtain the
optimal gamma parameter for each region. Finally, we obtain an enhanced image by merg-
ing the independently enhanced dark and bright regions with the optimal gamma parameters.
Experimental results on real-world images demonstrate that the proposed algorithm can
provide higher enhancement performance than state-of-the-art algorithms in terms of both
subjective and objective evaluations, while providing a substantial improvement in speed.

Keywords Low-light image enhancement · Contrast enhancement · Gamma correction ·
Convex optimization · Image fusion · Parameter estimation

1 Introduction

The recent advancements in digital imaging technology have made it possible to acquire
high-quality images using a variety of capturing devices. However, the images captured in
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low-light environments generally exhibit degraded quality because of the limited dynamic
ranges. These low-quality images degrade the performance of subsequent image processing
and computer vision applications such as surveillance, object detection and tracking, and
autonomous driving. Therefore, the development of effective visibility or contrast enhance-
ment algorithms for low-light images is essential, driving a significant amount researches
into improving the quality of low-light images [5, 6, 13–15, 18, 23, 25, 32, 36].

Contrast enhancement techniques attempt to increase the visibility of the input image by
deriving a transformation function that maps input pixel values to output pixel values [10,
11, 38]. Contrast enhancement techniques can be broadly classified into two groups accord-
ing to how their transformation functions are derived: global and local approaches [11].
A global approach maps all pixels in an entire input image using a single transformation
function. On the contrary, a local approach derives the transformation function for each
pixel adaptively using the information in its local neighborhood. However, because a local
approach demands higher computational resources and its level of enhancement is more
difficult to control, global techniques are more widely used in practice [11].

The most commonly used global contrast enhancement technique is histogram equal-
ization (HE) [11] due to its simplicity and effectiveness. HE makes the output histogram
approximate a uniform distribution by spreading intensity values. However, HE tech-
niques may cause over-enhancement of the intensities frequently occurring in an image. To
overcome the limitations of conventional HE and further improve its performance, many
techniques have been proposed [2, 7, 17, 21, 22, 33]. However, these algorithms provide
inferior enhancement performance for low-light images, since they do not consider their
characteristics.

Another widely used global contrast enhancement technique is gamma correction, which
derives its transformation function as a simple power function [11]. While gamma correc-
tion is simple and effective, finding an optimal parameter for a specific image or specific
region of an image is important but challenging, as they have different characteristics, and
thus, have different optimal parameters. To address this challenge, recent gamma correction-
based contrast enhancement techniques have attempted to adaptively find optimal gamma
parameters that maximize the quality of output images [9, 15, 16, 29, 36]. For example,
in [15], Huang et al. determined the gamma parameter as a function of the probability distri-
bution of pixel values in an image. Rahman et al. [29] classified images into several classes
based on their statistical properties, and then, determined the gamma parameter for each
class according to the characteristics of the image. In [36], Yang et al. formulated optimiza-
tion problems using the median of pixel values in an image. However, as the median is a
nonlinear function, the optimal parameter is obtained iteratively, leading to computational
inefficiency for being employed in practical applications.

Recently, inspired by the success of convolutional neural networks (CNNs) in various
image processing and computer vision tasks, many CNN-based low-light image enhance-
ment techniques have been developed [4, 8, 12, 28, 31, 34, 37]. Furthermore, it has been
shown that learning-based approaches that use CNNs provide higher enhancement perfor-
mance than conventional model-based approaches. However, the main disadvantage of the
learning-based approaches is that their performance is highly dependent on the training
datasets. In addition, learning-based approaches generally demand higher computational
and memory complexities than model-based approaches, making it difficult to employ them
in applications with limited computational and memory resources.

In this work, we propose an efficient low-light image enhancement algorithm based on
an optimization-based gamma correction parameter estimation. First, we divide the dynamic
range of the image into dark and bright ranges. Second, inspired by the recent success of
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applying convex optimization to image enhancement [19–22], which shows the theoreti-
cal completeness and computational efficiency via closed-form solutions, we formulate the
gamma parameter estimation for each range as a convex optimization problem that max-
imizes the image contrast subject to the constraint on the gamma value. By efficiently
solving the optimization problems, we obtain the optimal gamma parameter for each range.
Finally, we obtain an enhanced image by merging the independently enhanced dark and
bright regions. Experimental results on real-world images demonstrate that the proposed
algorithm provides higher-quality images than state-of-the-art algorithms, while demanding
significantly lower computational complexities.

The remainder of this paper is organized as follows: Section 2 describes the proposed
low-light image enhancement algorithm, and Section 3 discusses experimental results.
Finally, Section 4 concludes this work.

2 Proposed algorithm

Figure 1 shows an overview of the proposed algorithm. The input RGB image is first con-
verted into the YCbCr color space to separate the luminance and chrominance information,
and then the luminance channel is normalized. Then, the input image is segmented into
dark and bright regions. Next, the contrast of the dark and bright regions in the image are
enhanced independently using the optimal gamma correction parameter for each region.
Finally, we obtain an enhanced image by merging the enhanced dark and bright regions.

2.1 Luminance normalization

The perceptual contrast in a color image is mainly determined by the luminance chan-
nel [30]. Thus, we enhance the contrast of the luminance channel while maintaining the
consistency of color information. To this end, in this work, we first obtain luminance infor-
mation by transforming the color space. Specifically, we convert the color input image in
the RGB color space into the YCbCr color space, which is a the most frequently used
color space in digital imaging systems. Y is the luminance component, while Cb and Cr
are the blue-difference and red-difference chrominance components, respectively [30]. The
luminance component Yi is given by

Yi(x, y) = 0.299IR
i (x, y) + 0.587IG

i (x, y) + 0.114IB
i (x, y), (1)

where IR
i , IG

i , and IR
i denote the intensities of the red, green, and blue channels, respec-

tively, of the input image. Then, we normalize the luminance values to the range [0, 1] using
the logarithmic function as

YL(x, y) = logM(Yi(x, y) + ε), (2)

where M = max(Yi(x, y)), and ε is set to 1 to enforce YL to be positive.

2.2 Optimal gamma correction parameter estimation

Gamma correction obtains the output pixel value y given the input pixel value x using the
power function with parameter γ as

y = xγ , (3)
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Fig. 1 Overview of the proposed algorithm. First, we normalize the luminance map of an input image, and
then, separate the luminance map into dark and bright regions. Next, we enhance the contrast of the luminance
map for dark and bright regions independently based on the optimal gamma correction parameter estimation.
Finally, we obtain the output image by fusing the enhanced dark and bright regions

where x and y are normalized to the range [0, 1]. Note that, while gamma correction in (3)
is simple and effective, finding an optimal parameter for a specific image is challenging, as
they have different optimal parameters due to different characteristics. We also observe that,
when γ < 1, gamma correction in (3) improves the brightness and contrast of dark regions
in the image, while pixel value clipping may occur in bright regions. On the contrary, when
γ > 1, it can recover the details of bright regions, but excessively darkens dark regions.
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In this work, to address the aforementioned limitation of gamma correction, we develop
an algorithm that selects two different gamma values for the dark and bright regions of the
image. Thus, we first divide the histogram of the input image into two parts: dark and bright
regions, with a threshold of 0.5. In particular, the bright region contains the pixels with
YL(x, y) > 0.5, whereas those with YL(x, y) ≤ 0.5 belong to the dark region.

Then, we estimate the optimal parameters for the bright and dark regions independently
by considering the statistical properties of the input images inspired by the recent work
in [36]. Specifically, the optimal gamma parameter is determined to equalize the average
and standard deviation of the luminance intensities in each range. In [36], the median value
of the pixel luminance intensities is shown to be effective in enhancing the contrast and
recovering the details in the dark and bright regions, respectively. However, computation
of the median is nonlinear; thus, their algorithm finds the optimal gamma parameters iter-
atively in a set of predetermined parameter candidates, demanding higher computational
resources. Instead, we use the average, which leads to convex optimization, to estimate the
optimal gamma values more efficiently, as we will describe in detail.

As mentioned earlier, we obtain the optimal gamma parameter by equalizing the average
and the standard deviation of the luminance intensities in each region. Because the optimal
parameter estimation procedures in the two regions are almost identical, we describe only
the dark region, i.e., 0 < γd ≤ 1. Specifically, let sd = [sd,1, sd,2, . . . , sd,Nd

]T denote the
vector of original pixel values in the dark range. Then, each pixel value in sd is transformed
by gamma correction in (3) with parameter γd . Therefore, the gamma-corrected pixel values

in the output image can be compactly written as φγd (sd) =
[
s
γd

d,1, s
γd

d,2, . . . , s
γd

d,Nd

]T

. We

attempt to improve the brightness and contrast by equalizing the average intensity value of
the output image with the standard deviation of intensities in the input image. In addition,
the optimal parameter γd should satisfy the constraint 0 < γd ≤ 1 to increase the brightness.
Thus, we can formulate a constrained optimization problem, i.e.,

minimize
γd

(
1

Nd

1T φγd (sd) − σd

)2

subject to 0 < γd ≤ 1,
(4)

where 1 denotes a column vector, all elements of which are one. In addition, σd and Nd are
the standard deviation of pixel values and the number of pixels in the dark range, respec-
tively. Note that the cost function in (4) is convex, since it is an exponential function, and
the feasible constraint set is convex. Thus, the optimization in (4) is a convex optimization
problem, which ensures that a solution, if it can be found, is a global solution, and it can be
solved efficiently by employing convex optimization theories.

To solve the optimization, we first define the LagrangianL : R×R×R → R associated
with the problem in (4) as

L (γd, μ, λ) =
(

1

Nd

1T φγd (sd) − σd

)2
− μγd + λ(γd − 1), (5)

where μ and λ are the Lagrange multipliers for the constraints. Then, we can write the
Karush-Kuhn-Tucker (KKT) conditions [3] for (5) as

0 < γd ≤ 1, (6)

μ, λ ≥ 0, (7)

μγd = 0, (8)
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λ(γd − 1) = 0, (9)

2

Nd

(
1

Nd

1T φγd (sd) − σd

) Nd∑
i=1

s
γd

d,i ln sd,i − μ + λ = 0. (10)

From the primal feasibility in (6) and the complementary slackness in (8), μ = 0. Thus, we
can rewrite the KKT conditions in (6)–(10) as

0 < γd ≤ 1, (11)

λ ≥ 0, (12)

λ(γd − 1) = 0, (13)

2

Nd

(
1

Nd

1T φγd (sd) − σd

) Nd∑
i=1

s
γd

d,i ln sd,i + λ = 0. (14)

Since we now have a single complementary slackness condition in (13), we consider two
cases:

Case 1: γd = 1.
Case 2: λ = 0.

In Case 1, since 0 < sd,i ≤ 0.5,
∑Nd

i=1sd,i ln sd,i < 0. Thus, in (14), the term 1
Nd

1T φ1(sd)−
σd = 1

Nd

∑Nd

i=1sd,i − σd must be non-negative. However, both values, 1
Nd

∑Nd

i=1sd,i and σd ,
depend on the pixel value distributions of the input image; thus, it may become negative,
which violates the stationarity condition in (14). In Case 2, the stationarity condition in (14)
becomes

2

Nd

(
1

Nd

1T φγd (sd) − σd

) Nd∑
i=1

s
γd

d,i ln sd,i = 0. (15)

Thus, we obtain the optimal γd that satisfies (15). Let us recall that sd,i denotes a pixel value
in the dark region, i.e., 0 < sd,i ≤ 0.5. Therefore,

∑Nd

i=1 s
γd

d,i ln sd,i < 0 always holds true,
and we can rewrite (15) as

1

Nd

1T φγd (sd) − σd = 1

Nd

Nd∑
i=1

s
γd

d,i − σd = 0, (16)

and find the solution to (16).
In this work, since (16) is differentiable, we employ Newton’s method [27] to find the

optimal solution iteratively. Specifically, let γ (n)
d denote the value of γd at the nth iteration.

Then, starting from γ
(1)
d = 1, we update γd by

γ
(n)
d = γ

(n−1)
d −

∑Nd

i=1s
γ

(n−1)
d

d,i − σd

∑Nd

i=1s
γ

(n−1)
d

d,i ln sd,i

, n = 2, 3, . . . (17)

until convergence. More specifically, we define the convergence rate at the nth iteration as
ξ (n) = |γ (n)

d − γ
(n−1)
d | and run the iteration until ξ (n) < 10−7.

Next, we obtain the optimal gamma value γb for the bright range in a similar manner.
However, the optimal gamma value should satisfy the constraint 1 < γb ≤ 10 in the opti-
mization in (4). In addition, the standard deviation of pixel values in the bright region is set
to σb = 1 − σd , assuming that the dark pixels are dominant in low-light images.
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2.3 Fusion of corrected images

The two optimal gamma values γd and γb are then used independently to enhance the lumi-
nance intensities Yd and Yb in the dark and bright regions, respectively, via (3). Next, we
apply an image fusion technique, which is the process of combining relevant information
from multiple images into a single image [30], to obtain the output luminance map. Specif-
ically, we obtain the enhanced luminance map Yo by the weighted sum of the two gamma
corrected images adaptively as

Yo(x, y) = w(x, y)Y
γd

d + (1 − w(x, y))Y
γb

b (x, y), (18)

wherew(x, y) is a spatially varying weight to control the relative contribution of each region
to the enhanced luminance, given by

w(x, y) = exp

(
−Yb(x, y)2

2σ 2
w

)
. (19)

The parameter σw , which determines the sensitivity of the weight to the luminance value in
the dark range, is fixed to 0.5 to provide the best subjective quality.

2.4 Adaptive color restoration

The proposed algorithm enhances the contrast of the image in the luminance domain in (18).
Thus, we should obtain the color channels of the enhanced image from the luminance chan-
nel. Therefore, in this work, based on the observation that higher saturation values in the
bright regions in images cause dazzling, we attenuate the saturation of pixel colors with
bright intensity. More specifically, we use the following mapping

I c
o (x, y) = Yo(x, y)

(
I c
i (x, y)

Yi(x, y)

)s(x,y)

, (20)

where Yi and Yo are the luminance values of the input and output images, respectively.
I c
i and I c

o are the input and output color components, respectively, where c ∈ {R,G,B}.
The exponent s, which is less than 1, is a saturation parameter and represents the cor-
relation between the input and output color components. In this work, we set s(x, y) =
1 − tanh(Yb(x, y)) to make it luminance-adaptive.

3 Experimental results

We evaluate the performance of the proposed low-light enhancement algorithm on the test
images in the Exclusively Dark (ExDark) dataset [24] both qualitatively and quantitatively.
The dataset contains 7,363 images captured under low-light conditions. We report the results
on five images: Bicycle, Bus, Table, Station, and Street in the dataset as shown in Figs. 2,
3, 4, 5 and 6. We compare the performance of the proposed algorithm with those of five
conventional low-light image enhancement algorithms: Huang et al.’s algorithm [15], Lim
et al.’s algorithm [23], Guo et al.’s algorithm [13], Yang et al.’s algorithm [36], and Loh and
Chan’s algorithm [25]. The proposed algorithm is implemented in two ways for formulating
the cost function in (4): using the median value (Median) and using the average value (Aver-
age) of the pixel luminance intensities. All parameter settings in the conventional algorithms
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 2 Low-light image enhancement results for the Bicycle image. The input image in a is enhanced by
bHuang et al.’s algorithm [15], c Lim et al.’s algorithm [23], dGuo et al.’s algorithm [13], eYang et al.’s algo-
rithm [36], f Loh and Chan’s algorithm [25], the proposed algorithms using g the median and h the average

were determined to provide the best overall subjective quality. For reproducibility, we also
provide our MATLAB implementation on our project website.1

Figures 2–6 compare the enhancement results for the test images. Huang et al.’s algo-
rithm tends to under-enhance dark regions in input images, providing dark results, e.g.,
the front of the bus in Fig. 4b and the road in Fig. 6b. While Lim et al.’s algorithm per-
forms well in contrast enhancement, it provides blurred results with detail losses due to its
excessive denoising, especially on the surface of the road in Fig. 2c and the mountain in
Fig. 5c. Guo et al.’s algorithm produces overall good enhancement results, but tends to yield
over-exposure artifacts, e.g., the legs in Fig. 3d. Yang et al.’s algorithm and the proposed
algorithm using the median tend to lose color saturation, because the median is less effec-
tive in measuring the contrast of the image. Moreover, Yang et al.’s algorithm results in
the intensity reversal, e.g., the bright window in Fig. 3e. In contrast, Loh and Chan’s algo-
rithm and the proposed algorithm provide comparable and better enhancement results with
less visible artifacts. However, as will be discussed later, the proposed algorithm requires
significantly less computational resources than Loh and Chan’s algorithm.

1https://github.com/gitofinho/Optimal-Gamma-Correction-Parameter-Estimation
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 3 Low-light image enhancement results for the Table image. The input image in a is enhanced by
b Huang et al.’s algorithm [15], c Lim et al.’s algorithm [23], d Guo et al.’s algorithm [13], e Yang et al.’s
algorithm [36], f Loh and Chan’s algorithm [25], the proposed algorithms using g the median and h the
average

Next, we compare the results of the proposed algorithm with those of the conven-
tional algorithms using four objective quality metrics: natural image quality evaluator
(NIQE) [26], measure of enhancement (EME) [1], patch-based contrast quality index
(PCQI) [35], and quality-aware relative contrast measure (QRCM) [6]. In all metrics, a
higher score implies better performance.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 4 Low-light image enhancement results for the Bus image. The input image in a is enhanced by
b Huang et al.’s algorithm [15], c Lim et al.’s algorithm [23], d Guo et al.’s algorithm [13], e Yang et al.’s
algorithm [36], f Loh and Chan’s algorithm [25], the proposed algorithms using g the median and h the
average

Multimedia Tools and Applications (2021) 80: –180421802718036



(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5 Low-light image enhancement results for the Station image. The input image in a is enhanced by
b Huang et al.’s algorithm [15], c Lim et al.’s algorithm [23], d Guo et al.’s algorithm [13], e Yang et al.’s
algorithm [36], f Loh and Chan’s algorithm [25], the proposed algorithms using g the median and h the
average
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 6 Low-light image enhancement results for the Street image. The input image in a is enhanced by
b Huang et al.’s algorithm [15], c Lim et al.’s algorithm [23], d Guo et al.’s algorithm [13], e Yang et al.’s
algorithm [36], f Loh and Chan’s algorithm [25], the proposed algorithms using g the median and h the
average

– NIQE: The NIQE metric [26] quantifies the naturalness of an image using statistical
features, which are derived from a set of natural undistorted images, related to a natural
scene statistics model.

– EME: EME [1] approximates the average contrast in an image by computing scores
based on the minimum and maximum intensities in the non-overlapping blocks and
then averaging them.
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– PCQI: PCQI [35] predicts the human perception of contrast variations between an
image pair based on adaptive representations of local patch structures, i.e., mean
intensity, signal strength, and signal structure.

– QRCM: The QRCM metric [6] quantifies the relative change in contrast and distortion
on the output image relative to the input image by measuring the gradient magnitude
difference between the input and output images.

Table 1 shows the quantitative comparisons of the low-light image enhancement results
on the test images. For each metric, the best and the second best results are boldfaced and
underlined, respectively. First, since the proposed algorithm enhances the contrast via the
optimal parameter, the proposed algorithm shows the highest NIQE scores, providing the

Table 1 Quantitative comparison of the image enhancement results using four quality metrics: NIQE [26],
EME [1], PCQI [35], and QRCM [6]. For each metric, the best and the second best results are boldfaced and
underlined, respectively

Bicycle Bus Table Street Station

NIQE Huang et al. [15] 4.57 3.96 3.70 2.92 3.45

Lim et al. [23] 4.24 4.82 3.84 3.76 5.56

Guo et al. [13] 5.95 4.73 4.10 3.38 3.53

Yang et al. [36] 6.47 4.67 4.11 3.11 4.05

Loh and Chan [25] 4.95 5.00 3.31 3.11 4.77

Proposed (Median) 6.36 4.78 4.15 3.97 3.95

Proposed (Average) 6.91 6.26 4.60 4.81 4.17

EME Huang et al. [15] 86.53 36.96 40.47 32.58 103.21

Lim et al. [23] 92.44 45.05 98.22 48.87 102.61

Guo et al. [13] 87.52 37.45 43.75 30.43 106.24

Yang et al. [36] 53.72 43.23 44.39 31.20 114.05

Loh and Chan [25] 35.50 27.57 19.79 32.26 72.08

Proposed (Median) 67.31 45.31 41.33 33.79 117.19

Proposed (Average) 94.01 45.42 43.84 36.10 120.91

PCQI Huang et al. [15] 970 13,312 1,797 9,546 4,349

Lim et al. [23] 1,346 11,971 1,969 9,363 4,780

Guo et al. [13] 1,284 13,590 1,936 9,827 4,582

Yang et al. [36] 1,132 13,063 1,822 9,449 4,661

Loh and Chan [25] 1,106 13,664 1,839 9,735 4,636

Proposed (Median) 1,148 13,329 1,814 9,848 4,247

Proposed (Average) 1,060 13,771 1,923 9,918 4,840

QRCM Huang et al. [15] 0.0125 0.0382 −0.0038 0.0126 −0.0202

Lim et al. [23] 0.0038 0.0658 0.0095 0.0084 0.0078

Guo et al. [13] 0.0413 0.0435 −0.0100 0.0465 0.0264

Yang et al. [36] 0.1541 0.0980 0.1064 0.1190 0.0591

Loh and Chan [25] 0.1065 0.0732 0.0388 0.0608 0.0313

Proposed (Median) 0.1477 0.1013 0.0121 0.0537 0.0309

Proposed (Average) 0.2095 0.1278 0.0236 0.0529 0.0284
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Table 2 Average computation times in seconds of Huang et al.’s algorithm [15], Lim et al.’s algorithm [23],
Guo et al.’s algorithm [13], Yang et al.’s algorithm [36], Loh and Chan’s algorithm [25], and the proposed
algorithms for the test images

Huang et al. Lim et al. Guo et al. Yang et al. Loh and Chan Proposed Proposed

(Median) (Average)

0.57 64.71 1.22 2.53 23.81 2.42 0.13

most natural results. Second, the proposed algorithm also provides the best overall perfor-
mance in terms of EME and PCQI, since the proposed algorithm effectively maintains local
details. Third, Yang et al.’s algorithm [36] and the proposed algorithm provide compara-
ble performance in terms of QRCM. Finally, the median-based formulation in the proposed
algorithm provides comparable or even better performance than Yang et al.’s algorithm. By
using the average-based formulation, the proposed algorithm further improves the enhance-
ment performance by significant margins. To summarize, since the proposed algorithm
provides higher-quality images, it yields the overall highest scores in terms of these metrics.

Finally, we evaluate the computational complexity of the proposed algorithm with those
of conventional algorithms. Table 2 compares the execution times required to process all
test images shown in Figs. 2–6. We used a PC with a 2.2 GHz CPU and 8 GB RAM in this
test. All algorithms were straightforwardly implemented in MATLAB without code opti-
mization. Lim et al.’s algorithm [23] requires the longest computation time, since it employs
an iterative image decomposition scheme. Loh and Chan’s algorithm [25] also requires sig-
nificant computation time due to its patch-based processing. Huang et al.’s [15], Guo et
al.’s [13], and Yang et al.’s algorithms [36] shorten the time significantly. The proposed
algorithm using the average value drastically reduces the time further by efficiently solving
the convex optimization problem, which is iteratively solved in [36] due to its nonconvex
formulation. The advantage of the proposed average-based formulation is confirmed by
the fact that the computation times of Yang et al.’s algorithm and the proposed algorithm
using the median value are comparable. Note that we iteratively apply the formula in (17)
to find an optimal solution, but the average number of iterations for all test images is only
3.42. These results indicate that the proposed algorithm performs better than conventional
algorithms while demanding significantly less computational resources. Therefore, the pro-
posed algorithm is efficient enough to be employed in a wide range of practical applications,
even in devices with limited computational resources, which is infeasible with conventional
algorithms [13, 15, 23, 25, 36].

4 Conclusions

We proposed an efficient gamma correction-based low-light image enhancement algorithm
by developing an optimization-based parameter estimation scheme. We first separated an
input image into the luminance and chrominance channels, and then normalized the lumi-
nance image. Next, we divided the luminance image into dark and bright regions, and then
formulated a convex optimization problem for each region to maximize the image con-
trast subject to the constraint on the gamma value. By efficiently solving the optimization
problems using convex optimization theories, we obtained the optimal gamma correction
parameter for each region. Finally, we obtained an enhanced image by merging the enhanced
dark and bright regions obtained using the optimal parameters. Experimental results on
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real-world images demonstrated that the proposed algorithm outperforms state-of-the-art
algorithms in terms of both subjective and objective qualities, while requiring significantly
lower computational complexities.
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