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Abstract
Colorectal cancer refers to cancer of the colon or rectum; and has high incidence rates world-
wide. Colorectal cancer most often occurs in the form of adenocarcinoma, which is known
to arise from adenoma, a precancerous lesion. In general, colorectal tissue collected through
a colonoscopy is prepared on glass slides and diagnosed by a pathologist through a micro-
scopic examination. In the pathological diagnosis, an adenoma is relatively easy to diagnose
because the proliferation of epithelial cells is simple and exhibits distinct changes compared
to normal tissue. Conversely, in the case of adenocarcinoma, the degree of fusion and pro-
liferation of epithelial cells is complex and shows continuity. Thus, it takes a considerable
amount of time to diagnose adenocarcinoma and classify the degree of differentiation, and
discordant diagnoses may arise between the examining pathologists. To address these diffi-
culties, this study performed pathological examinations of colorectal tissues based on deep
learning. The approach was tested experimentally with images obtained via colonoscopic
biopsy from Gyeongsang National University Changwon Hospital from March 1, 2016,
to April 30, 2019. Accordingly, this study demonstrates that deep learning can perform a
detailed classification of colorectal tissues, including colorectal cancer. To the best of our
knowledge, there is no previous study which has conducted a similarly detailed feasibility
analysis of a deep learning-based colorectal cancer classification solution.
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1 Introduction

Deep learning has gained much attention from various research communities as it has
been able to solve many complex tasks with significantly higher accuracy than conven-
tional techniques [11]. In particular, deep learning has been extensively employed in various
fields of healthcare for tasks such as classification and localization of diseases from vari-
ous modalities, segmentation of anatomical structure, survival analysis, and drug discovery.
Comprehensive surveys on medical deep learning are provided in [5, 10, 12, 13]. In some
cases deep learning-based solutions have outperformed the expert human level by reduc-
ing the errors caused by inter and intra-human variations. Subsequently, this resulted into
increased efficiency and more objective results. As such, deep learning has been success-
fully applied in computer vision in recent years and in various applications across several
areas. For example, convolutional neural networks (CNNs) have shown high recognition
rates of human handwriting [16]. Moreover, numerous studies have demonstrated the appli-
cability of deep learning in real-life applications, and various studies on medical image
analysis through deep learning are also underway [12]. For instance, deep learning has been
applied to breast cancer [21] and glaucoma diagnoses [9], resulting in faster and more accu-
rate examination than that of existing image processing techniques. Accordingly, this study
performed pathological examinations of colorectal tissues based on deep learning.

Colorectal cancer has the world’s third-highest cancer incidence rate after lung can-
cer and breast cancer, and is the second leading cause of cancer deaths [2]. Typically, the
diagnosis of colorectal cancer is mainly done by the biopsy of colorectal tissue through
colonoscopy, which is processed, dyed, and prepared on glass slides. Subsequently, a pathol-
ogist diagnoses the slides through a microscopic examination. The size, shape, and location
of the colorectal tissue observed by pathologists vary widely. As shown in Fig. 1, for
normal colonic mucosa, the number and arrangement of epithelial cells remain relatively
constant, and as it progresses to adenoma and adenocarcinoma, the epithelial cells overpro-
liferate and form complex structures. This makes the pathologic examination lengthy and
labor-intensive, and it may sometimes be difficult to obtain consistent diagnoses owing to
conflicting opinions between pathologists. Therefore, automated analysis by computers that
are consistent and objective may play a crucial role in improving diagnostic accuracy by
helping pathologists make microscopic examinations.

Automated analysis solutions for colorectal tissue based on traditional image process-
ing techniques [3, 20] have several limitations. such as an ingerent vulnerability to image
noise and relatively lower capability of generalization. To address these issues, researchers
have conducted numerous studies on colorectal tissue examination using deep learning.
Using a VGG model [15], Francesco Ponzio et al. [14] performed transfer learning [19]

(a) (b) (c) (d) (e)

Fig. 1 Magnified microscopic images of colorectal tissue a normal mucosa, b adenoma, c adenocar-
cinoma (well-differentiated), d adenocarcinoma (moderately differentiated), e adenocarcinoma (poorly
differentiated)

35942 Multimedia Tools and Applications (2021) 80:35941–35953



to classify samples into normal tissues, adenomas, and adenocarcinomas, and the authors
obtained a certain level of accuracy. Classifying samples into three classes (normal tis-
sue, low-grade adenocarcinoma, and high-grade adenocarcinoma), Ruqaya Awan et al. [1]
used a CNN model to detect and classify the gland outlines observed in colorectal tissues.
Accordingly, this study hypothesized that deep learning could classify various colorectal
tissues histologically. For this purpose, ResNet [7], DenseNet [8], and Inception V3 [18],
models with excellent feature extraction performance, were trained to classify colorectal
tissues. According to the training results, all models exhibited a remarkable performance
of more than 0.9 mAP(mean average precision). The objective of this paper is to demon-
strate the feasibility of deep learning based solution for classifying five different cases
of colorectal cancers (i.e., Normal, Adenoma, Adenocarcinoma-well, Adenocarcinoma-
moderate, and Adenocarcinoma-poor), which, to the best of our knowledge, has not yet been
recorded. In particular, none of the existing work has dealt with three detailed classes of
adenocarcinoma.

The paper is structured as follows. Section 2 describes related works, whereas Section 3
describes the extraction method of the dataset and the CNN used for training. Section 4
describes the experimental process and results. Finally, Section 5 concludes the study and
discusses future works.

2 Related works

Simon Graham et al. [6] segmented the gland epithelial cells for all slide images of a
colorectal cancer dataset. By so doing, the authors helped to reduce the difficulty of man-
ual segmentation and uncertain decision-making in pathology. To perform this study, the
researchers proposed a complete CNN that re-introduces the original images at numerous
points in the network to compensate for information loss due to max pooling.

Francesco Ponzio et al. classified colorectal tissues into the three types, namely normal,
adenoma, and adenocarcinoma. For the experimental data, they extracted 109 areas using
27 original slides and generated 13,500 image patches from the areas. The authors then used
a VGG 16 model where the colorectal tissues were not relatively deep, demonstrating the
feasibility of the classification with a certain level of accuracy.

Ruqaya Awan et al. stated that the extent of gland formation determines the grade of
adenocarcinoma. They measured the extent of gland formation using the ”best alignment
metric” (BAM), a new measurement method, and classified colorectal tissues into normal,
low-grade cancer (well- differentiated and moderately differentiated), and high-grade can-
cer (poorly differentiated and undifferentiated). The study demonstrated that the grade of
adenocarcinoma could be classified by detecting the outlines of glands.

Nassima Dif and Zakaria Elberichi[4] proposed a dynamic ensemble deep learning
method to address the limitation of deep learning methods in histopathological image anal-
ysis owing to the restricted number of medical images available for training. They applied
the particle swarm optimization algorithm to select component models which were then
ensembled by averaging or voting methods.

The present study performed a detailed adenocarcinoma classification and categorized
colorectal tissues into a normal, adenoma, and adenocarcinoma (well differentiated, moder-
ately differentiated, poorly differentiated). This study presents a more precise classification
method than the colorectal tissue classifications methods of previous studies using deep
learning. Furthermore, as this study used 693 original data slides, a large number of
colorectal tissues were studied compared to previous studies.
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Table 1 Data composition

Normal Adenoma Adenocarcinoma Total

Well Moderately Poorly

# of original slides 152 362 100 42 37 693

# of data areas 348 353 360 342 348 1751

# of training data patches 935 916 880 880 1000 4611

# of test data patches 121 121 111 109 109 571

3 Data set andmethod

3.1 Datasets

The colorectal tissue images were selectively obtained by scanning glass slides prepared
from 850 colorectal tissues collected via colonoscopy from Gyeongsang National Univer-
sity Changwon Hospital from March 1, 2016, to April 30, 2019. This study was approved
by the Institutional Review Board of Gyeongsang National University Changwon Hospi-
tal with a waiver for informed consent (2019-05-008) Moreover, through the examination
of an experienced pathologist, the colorectal tissues were classified into normal, adenoma,
and adenocarcinoma, and, in cases of adenocarcinoma, the tissues were classified into three
differentiation types of well differentiated, moderately differentiated, and poorly differenti-
ated, based on which the data were labeled. The degree of differentiation was determined by
how much the shape of the gland was maintained: well differentiated if maintained at more
than 95%, moderately differentiated at 50% to 95%, and poorly differentiated at less than
50%. The training and test data patches for each class were composed, as shown in Table 1.

To facilitate an efficient learning process, the training data slides were processed and
composed in two steps. In the first step, only the parts in the original slides (Fig. 2a) anno-
tated according to the classification of the pathologist were manually extracted into the
areas shown in Fig. 2b. In the second step, the image patches were extracted from the areas
obtained in the first step. Moreover, the processed areas were treated in the form shown in
Fig. 3a, using the algorithm presented in Fig. 4, in which it is assumed that patch images

(a) (b)

Fig. 2 a An example of an hematoxylin and eosin (H&E) images labeled by a pathologist and b a magnified
image of data areas used to generate the training data
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(a) (b)

Fig. 3 aWindow sliding-based training data patch generation process and b example of a training data patch
extracted from the same data area

Fig. 4 Training data patch generation algorithm
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are square rectangles. That is to say, the parts overlapping (IOU) with the subsequently pro-
cessed data are set to 0.3 and moved from the upper-left to the right, similar to Fig. 3a. The
training data is cropped to a size of 400 x 400 (lines 10–13).

Once the data in one row are completely extracted, it is moved to the next row (line 9,
14). Here, the portions where the data of the upper and lower rows overlap are also set to
0.3, and as in the previous row, the data are moved to the right and extracted. However, when
creating the training data patches using the sliding window technique, the data extraction
method was very formal, leading to limitations in creating data of various characteristics.
Accordingly, additional training data, 400 x 400 in size, were randomly extracted from
the area data without using the sliding window technique, thus expanding the amount of
data. Moreover, the data containing numerous features were extracted in the form shown in
Fig. 3b. Among the removed data patches, those that did not contain at least 50% of glands
were excluded from the training data. The test data were constructed in a manner similar to
that of the training data and processed using the area data excluded from the training data.

3.2 Method

This study classified the colorectal tissues using the ResNet, DenseNet, and Inception V3
CNN models, which have demonstrated excellent performance in data feature extraction.
The core module of ResNet is the structured residual block shown in Fig. 5a. The flow
between the weight layers of the existing CNN is a structure that passes the weight layers
and extracts and outputs features for a given input value x.

However, the residual block uses a skip connection that directly connects the input x
to the weight layers. Whereas the existing CNN finds output values from the input value,
here, the learning is performed to minimize the value of F(x) using a skip connection. This
results in fast learning speeds and avoids increasing the number of operations, since the skip
connection only adds a simple addition operation. Accordingly, this study used a model
constituting a 50-layer ResNet.

DenseNet continuously connects each layer with the input of the next layer through the
feature map, as shown in Fig. 5b. Though ResNet uses a similar technique, the greatest
difference is that ResNet has a structure that adds feature maps, whereas DenseNet has a
stacked structure. This structure can stack information of the preceding layer and efficiently
transfer it to the subsequent layer, which improves the vanishing gradient and strengthens

(a)

Dense Block

(b) (c)

Fig. 5 CNN core module a Residual block, b Dense connectivity, c Inception module
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feature propagation and feature reuse without relearning the same features, thereby reducing
the number of parameters. This study used a model constituting a 121-layer DenseNet.

Inception V1[17] uses the Inception module to solve the problems of gradient vanish and
overfitting, in which, as the network depth increases, the parameters substantially increase,
and the computational quantity exponentially increases. As shown in Fig. 5c, Inception V2
model was presented that can further reduce the computational cost by combining three
modules: a module replacing the 5× 5 convolution with two 3× 3 convolution operations,
a module replacing the 3× 3 convolution with a 1× 3 convolution and 3× 1 convolution,
and a module widening the Inception module to solve the representational bottleneck prob-
lem. While Inception V3, which is used in this study, has the same structure as Inception
V2, the Inception module in Inception V3 replaces the 7× 7 convolution with three 3× 3
convolutions, changes the optimizer to RMSProp, and uses batch normalization in the last
completely connected layer and label smoothing.

4 Experiments

Tensorflow and Python 3.6 were used to implement each CNN model used in this study,
and they were trained for 15 hours using a Geforce RTX 2080 GPU. The batch size of
ResNet, DenseNet, and Inception V3 was set to 32, and learning was performed for 200
epochs. The loss value quickly decreased at the start of learning and converged as the learn-
ing progressed. The learning rate was initially set to 1e-3, and was subsequently gradually
decreassd to 1e-4, 1e-5, 1e-6, 1e-7 after 80, 120, 160, and 180 epochs, respectively. For
optimization, the Adam method was used as the optimizers for ResNet and DenseNet, while
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Fig. 6 Loss and accuracy graph. a Res-net, b Dense-net, c Inception V3
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RMSProp was used for Inception V3. The number of output layers of the three CNNmodels
was set to 5, and learning was performed. Figure 6 shows that the losses of the three CNN
models converged, indicating that learning was successfully performed. Figure 7 shows the
AUROC(Area Under Receiver Operating Characteristic) curves of the three models used in
the experiment. According to the tests, all three models showed performances of more than
0.9 AUC for each type of colorectal tissue, as shown in Fig. 7. However, as shown in the con-
fusion matrix in Fig. 8, the colorectal tissue glands are continuous and irregular. Therefore,
in each trained CNN model during testing, some parts are slightly indistinguishable from
the adjacent colorectal tissues for each type. The performance metrics were compared with
those of Table 2. Moreover, Table 3 shows the overall performance of the three models. The
ResNet model exhibited the best performance of the three. However, as shown in Table 4,
for well differentiated, moderately differentiated, and adenoma, DenseNet and Inception V3
partially exhibited excellent performance. As precision and recall have a trade-off relation-
ship, the DenseNet precision of the well differentiated parts was relatively poor compared
to that of the other models. However, the ResNet model exhibited excellent precision and
recall performance for poorly differentiated parts.

Figure 9 shows the judgment positions for classifying the colorectal tissues using the
ResNet-trained model through the CAM(Class Activation Map) technique[22]. The five
images in the first row of each colorectal cancer type are data patches of the test set, and

(a) (b)

(c)

Fig. 7 AUROC curve. a Res-net, b Dense-net, c Inception V3
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(a) (b)

(c)

Fig. 8 Confusion Matrix(x-axis: predicted label, y-axis: true label). a Res-net, b Dense-net, c Inception V3

Table 2 Performance Metric Calculation Formulas

Performance Metric Precision Recall Specificity NVP

Formula T P
T P+FP

T P
T P+FN

T N
FP+T N

T N
FN+T N

(TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative)

Table 3 Comparative
performance according
to DNN models

mAP Precision Recall Specificity NVP

Res-net 0.949 0.942 0.944 0.986 0.986

Dense-net 0.936 0.927 0.925 0.981 0.981

Inception V3 0.922 0.914 0.914 0.978 0.978
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Table 4 Performance metrics by class

Class Models Precision Recall Specificity NPV

Normal Res-net 0.941 0.926 0.984 0.980

Dense-net 0.941 0.917 0.984 0.978

Inception V3 0.928 0.851 0.982 0.961

Adenoma Res-net 0.922 0.876 0.980 0.967

Dense-net 0.916 0.901 0.978 0.973

Inception V3 0.900 0.818 0.998 0.952

Adenocarcinoma Well Res-net 0.973 0.982 0.993 0.996

Dense-net 0.867 1 0.963 1

Inception V3 0.957 0.991 0.989 0.998

Moderately Res-net 0.919 0.936 0.981 0.988

Dense-net 0.958 0.835 0.991 0.962

Inception V3 0.824 0.991 0.950 0.998

Poorly Res-net 0.956 1 0.989 1

Dense-net 0.955 0.973 0.989 0.993

Inception V3 0.962 0.174 0.991 0.981

the five data patches in the second row are parts showing the judgment positions through
the trained model. In the data patches with differing brightness in the second row, brighter
portions had a greater impact on the trained model decision.

(a) (b) (c) (d) (e)

Fig. 9 CAM-based heatmap according to colorectal cancer lesions a normal, b adenoma, adenocarcinoma (c
well, d moderately, e poorly differentiated)
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(a) (b) (c) (d) (e)

Fig. 10 Limitations of deep learning-based colorectal cancer classification. a normal, b adenoma, adenocar-
cinoma (c well, d moderately, e poorly differentiated)

The five data patches in the last row of Fig. 9 are combinations of the test data patches
in the first row and images using the CAM technique in the second row. As such, they
show combinations of the colorectal tissue data and CAM technique patches. The model is
trained from five images using the CAM technique for each type and detects the gland shape
and size of the cell membrane and nucleus, which are parts that greatly impact the model’s
decision. Pathologists also diagnose colorectal tissues using the shape of the epithelial cell’s
nucleus and the degree of gland fusion. Therefore, the classification of colorectal tissues
by a trained model using the CAM technique is consistent with the pathologists’ criteria.
This demonstrates that the trained models in this study accurately identify the features of
colorectal tissues.

In some test data patches, however, some parts greatly affected the model’s decision
which differed from the pathologists’ criteria (see Fig. 10). The arrows in Fig. 10 indicate
the parts with the greatest influence on colorectal tissue classification in the trained model,
showing that the model only looks at certain parts. While these parts are within the scope
of the examination criteria, there are limitations in looking at specific parts rather than the
entire area.

5 Conclusion and future planning

This study presented the feasibility of applying deep learning in the classification of col-
orectal tissues. As such, this study approached colorectal tissue classification as an image
classification problem, which is a computer vision process. Moreover, this study applied
deep learning to image analysis. The training was performed using three CNN models to
verify the performance, and they all exhibited excellent performance. According to the
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experimental results, the judgment positions of the model trained using the CAM technique
were identical to the pathologists’ criteria for most of the test data patches.

This was a retrospective study of a single institution using data from colorectal tissue
slides of Gyeongsang National University Changwon Hospital. There are limitations in the
slide photographs acquired from an external institution using processing techniques and
machines with different models. To generalize this study, contivuing research should focus
on processing additional training data using slides acquired through various methods and
processing techniques. Moreover, further studies shall be conducted to make judgments for
data considering the limitations.
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