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Abstract
In recent years, deep learning has yielded success in many research fields including machine
translation, natural language processing, computer vision, and social network filtering. The
area of deep learning in the recommender system is flourishing. Previous research has relied
on incorporating metadata information in various application domains using deep learning
techniques to achieve better recommendation accuracy. The use of metadata is desirable to
address the cold start problem and better learning the user-item interaction, which is not
captured by the user-item rating matrix. Existing methods rely on fixed user-item latent
representation and ignore the metadata information. It restricts the model performance
to correctly identify actual latent vectors, which results in high rating prediction error.
To tackle these problems, we propose a generalized recommendation model named Meta
Embedding Deep Collaborative Filtering (MEDCF), which inputs user demographics and
item genre as metadata features together with the rating matrix. The proposed framework
primarily comprises of Generalized Matrix Factorization (GMF), Multilayer Perceptron
(MLP), and Neural Matrix Factorization (NeuMF) methods. GMF is applied to the rating
matrix, whereas MLP is applied to metadata. Using NeuMF, the outputs for GMF and MLP
are then concatenated and input to a neural network for rating prediction. To prove the
effectiveness of proposed model, two metrics are used, Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). The MEDCF model is experimented on MovieLens and
Amazon Movies datasets showing a significant improvement over the baseline methods.
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1 Introduction

In the era of information explosion, people enjoy the convenience of huge data. However,
they face the problem of information overload. Recommender systems are a subclass of
information filtering systems that play an important role in alleviating this problem by pre-
dicting items (or ratings for items) that the user may like. Recommender systems have been
adopted by many online services such as social media sites, online news, and e-commerce.
In general, there are two methods for recommender systems: Content-Based (CB) tech-
niques and Collaborative Filtering (CF) based techniques. Amongst both, CF is widely used
as it predicts (filtering) the interests of a user by collecting preferences or taste informa-
tion from many users (collaborating). Matrix Factorization (MF) [23, 32] is a popular CF
method that transforms rating matrix into a low dimensional concept space which is often
referred as user-item latent (hidden) space. The user’s interaction on an item is then mod-
eled as the inner product of their latent vectors. The hybrid model is used to take advantage
of both the techniques and is found to be more successful than individuals in literature.

MF techniques have been popularized by the Netflix Prize competition [3] and are widely
applied to movie recommendation systems. Through time, MF techniques have evolved
from Singular Valued Decomposition (SVD) to latent factor models to generalized Factor-
ization Machines (FM) [45]. However, the MF technique’s main problem is that it identifies
only linear interaction between user and item latent features which may not be adequate
to model the actual interaction between them. Another problem with MF algorithms is the
well known cold start problem for new users and items. Many pioneering studies have been
applied to resolve the above issues using deep learning approaches including Neural Col-
laborative Filtering (NCF) [22], NCF model with an interaction-based neighborhood [2],
neural rating prediction [58], and autoencoder based recommendation [48]. However, when
it comes to the CF effect for rating prediction, these studies still use a fixed element-wise
product between user and item latent features (vectors).

Cold start problem concerns the issue that the system does not draw any inferences for
users or items about which adequate information has not yet been collected. Metadata infor-
mation can help in alleviating this problem. Metadata information is useful because of the
interaction matrix sparsity and it also helps to identify each user’s interest in each item. To
deal with the cold start problem, hybrid methods were used. A hybrid approach uses meta-
data as content information for user-item pairs while collaboratively learning these pairs
using neural networks function. Applying a neural network learning on metadata informa-
tion is more prominent than using the MF technique. However, the metadata information
(features) embedding using neural networks is getting less investigation in recommenda-
tion literature. Some work has been proposed that incorporates metadata information but
ultimately predict ratings using dot product between user and item latent vectors. It is well
known that one can approximate a neural network to any continuous function [26]. It moti-
vates us to implement collaborative learning between users and items metadata features
using neural networks.

Explicit feedback is used in the form of ratings because it is readily available and can
be easily utilized since user satisfaction is easily observed in contrast with implicit feed-
back where user negative preferences are not easily captured. This paper proposes a Meta
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Embedding Deep Collaborative Filtering (MEDCF) model that inputs user-item interaction
(preference) and their metadata features and outputs the predicted rating a user would give
to an item. The Generalized Matrix Factorization (GMF) model identifies the linear interac-
tion between user and item latent features. Multilayer Perceptron (MLP) learning is utilized
on the metadata information to identify the non-linear interaction between the user and item,
especially in cold start and data sparsity scenarios. MEDCF model is a generalized frame-
work that lets anyone apply MLP with MF. Using Neural Matrix Factorization (NeuMF),
the outputs for GMF and MLP are concatenated and input to a neural network for rating
prediction. NeuMF learns user preferences towards an item better. The concatenated output
acts as a bias term for ratings and the metadata information to prevent overfitting. This paper
focuses on the neural networks to exploit the noisy explicit feedback in the form of ratings
and, at the same time, use the metadata information to alleviate the cold start problem.

2 Related work

This section briefly summarizes the deep learning based recommendation system
approaches that are mostly related to this work. Here, those papers are encouraged that
exploit metadata and other auxiliary information which are very helpful in the recom-
mendation task. Most of the current work on the recommender systems that use Neural
Collaborative Filtering (NCF) approaches and exploits the metadata information were
described in [13, 22, 34, 59, 68].

Previously, Collaborative Filtering (CF) approaches have been extensively applied to
explicit feedback given by the users in the form of ratings and reviews. The same approaches
are now being applied to implicit feedback such as the purchasing history of the user, Click-
Through Rate (CTR), and the number of times the web page is visited. However, gathering
and analyzing implicit feedback is not an easy task, although worthier as it is beneficial in
minimizing the cold start problem and better user personalization. CF based methods [2,
22] are more popular than Content-Based (CB) methods [29, 52] as these methods depend
on other collaborative users to predict the rating without requiring knowledge-gathering of
the current user.

To further improve the CF based methods, auxiliary information in the form of meta-
data features are used. Metadata [34] represents user and item preferences as the latent
(hidden) vector of features, which refers to the embedding of user and item in high dimen-
sional latent space. Meta-Prod2vec [59] model represent items uniquely by finding the
item similarity interactions using metadata and its attributes and compute low dimensional
item embeddings. Metadata is used to regularize these embeddings. It leads to better rec-
ommendation tasks on the music dataset. Exploiting MovieLens and Netflix datasets to
encapsulate different metadata information [52] increases the quality of the recommenda-
tions. Thereafter, metadata with deep learning for user personalization for the movie rating
prediction task using the Word2Vec embedding model [69] has been proposed. Recently,
research scholar coauthors and collaborators recommendation tasks based on the knowl-
edge graph embeddings [25] were proposed. Further, scholarly metadata such as citation
networks and research publications were also exploited. Researchers [7] utilized different
metadata views of the item from the user reviews which reveals the item statistics, user opin-
ions, and the item quality. Recent studies [39, 40, 49, 67] have proposed a deep latent factor
model for high-dimensional and sparse (HiDS) rating matrices to estimate patterns in large
scale matrix. However, these studies do not take into account the metadata information of
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user-item interactions. Both the metadata information and rating matrix are analyzed in this
study.

The use of metadata and demographic information has proved useful in the literature
of recommendations. Content metadata [29] of the movies with the conventional user rat-
ings results in a correct recommendation for a large number of content items. The proposed
method is helpful, especially in sparse ratings and cold start environments. To address the
cold start problem, the authors [10] generates user embeddings using reinforcement learning
by asking the questions to cold start users. Deep Q Network were introduced that generates
interview questions of the form “Do you like λ?”, where lambda is taken from the set of all
movies to be answered by cold start users in the form of ratings from 0 to 5. The network
produces subsequent questions dynamically based on the user’s answer. Upon completion
of the interview, the question-answer pairs are passed into neural networks that provide user
embedding. The user and movie embeddings can be used to predict the movie ratings. To
deal with cold start items, metadata information is incorporated to recommend the movie
based on the Word2Vec algorithm [69]. With metadata information, the proposed method
could effectively suggest a new item that has been rarely used. Thereafter, user/item meta-
data is incorporated into the Poisson Factorization [8] to deal with popularity within an item
and cold start problem. The model learns about the user/item couplings and their metadata.
In Poisson Factorization, the user ratings obey gamma distribution. This model is well suited
for a scalable recommendation. Further, the researchers have found that there are popularity
and demographic biases in recommender systems and when it comes to the evaluation task,
the use of demographic information is vital for enhancing recommendation accuracy [11].
Therefore, different demographic groups had different utility from the recommender sys-
tem. Cold start users only have necessary demographic information without previous movie
rating information [4]. Using demographic clusters of different sizes increase the predic-
tion accuracy of movie ratings for the MovieLens dataset. Sometimes, the users based on
demographic attributes is partitioned and the k-means clustering algorithm is used to clus-
ter the partitioned users based on the user rating matrix [55]. Compared to the traditional
collaborative filtering strategy, it eliminates the expensive computations to classify simi-
lar users to predict movies. A simple neighborhood selection technique [43] is proposed
emphasizing the metadata groups to enhance recommendations and alleviate the cold start
problem. Thereafter, many user-profiling approaches [1] for demographic recommender
systems were also been examined. The demographic user profile is mostly made up of three
attributes, age, gender, and occupation. For cold start problem, an in-depth study [52] is pro-
posed on using various metadata elements including the title, genre, date of production, and
the list of directors and actors so as to improve the quality of the movie recommendations.
Demographic data [60] in some cases lead to the generation of more accurate predictions.
Thereafter, the researchers have found that demographics such as gender and occupation are
very useful in recommendation systems for applications such as personalization services
and marketing [50]. It is also observed that users who share similar demographics would
probably prefer similar genres. This approach can align latent factors across domains that
do not share the same users or the same items, integrating user demographics with latent
factors in a single framework.

Text reviews proved to be useful in literature, especially in the cold start environment,
to achieve better representation learning of user interest and item features. HFT (Hidden
Factors as Topics) [42] model combined rating and review information leading to a higher
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recommendation accuracy for items with few ratings to address the cold start problem.
A new topic model [6] is proposed that gives varying aspect importance using different
attention weights by targeting the review text to learn better user preferences and item char-
acteristics. MMALFM [5] employed item images and review texts together with the ratings
to tackle non-transparency and cold-start problems for individual user-item pairs. Attentive
Aspect-based Recommendation Model (AARM) [17] is proposed to tackle the problems of
sparsity in common aspects and the static user’s preference on aspects concerning differ-
ent items. Dual Attention Mutual Learning (DAML) [37] is a novel dual attention mutual
learning between ratings and reviews for an item recommendation, which enhances the
interpretability of the recommendation model.

The metric learning method and Graph Convolution Network (GCN) based approaches
are rapidly developed in recent two years and have become new state-of-the-art for collab-
orative filtering. The benefit of metric learning is that the issue of dot product similarity
will naturally be resolved, which is adopted by matrix factorization (MF) based recom-
mendation models but did not fulfill the triangle inequality property. The GCN based
recommendation approaches can exploit and refine the user-item interaction graph structure
by propagating embeddings on it. GraphSAGE [19] is an inductive framework that exploits
node attributes/features information to efficiently generate node embeddings for previously
unseen data for better representation learning on large graphs. Collaborative Metric Learn-
ing (CML) [27] learns a combined user-item metric learning to encode users’ interests
along with the user-user and item-item similarity. Multimodal Attentive Metric Learning
(MAML) [36] method employs an attention neural network for each user-item pair to cap-
ture diverse user preferences for several items. The item’s multimodal attributes are used
to capture the attention of users to various aspects of this item and then integrate atten-
tions in a metric-based learning method that predicts user preferences for the item. Neural
Graph Collaborative Filtering (NGCF) [63] is a recommendation framework that uses the
user-item graph structure by propagating embeddings on it. Specifically, the user-item inter-
actions, which is the bipartite graph structure, are integrated into the embedding process.
Light Graph Convolution Network (LightGCN) [21] includes the main component in GCN,
which is neighborhood aggregation for collaborative filtering. The improvement is about
16.0% on an average over the state-of-the-art NGCF based framework.

The differences among most of the literature were in their model architecture to find
user and item embeddings. One of the significant shortcomings is that most of the proposed
models compute the element-wise product on the embeddings to predict the final rating
constraining them to learn non-linear interactions between the user and the item. Our pro-
posed method utilizes neural network learning to determine these interactions with user-item
metadata features showing state-of-the-art results.

3 Problem formulation

In this section, problem formulation as a preliminary task is represented. For clarity, Table 1
describes the notations list that will be used in this work. In this work, user metadata r

denotes user demographic information that contains gender and occupation features. Simi-
larly, item metadata s denotes item (in this work items are the movies) genre feature. Gender
feature has two categories, the occupation feature has 21 categories, and the genre feature
has 18 categories.
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Table 1 Notation list

A Number of users

B Number of items

P ′ Latent factor matrix for users metadata

Q′ Latent factor matrix for items metadata

yui Actual rating of user u on item i

ŷui Predicted rating of user u on item i

yG
ui Actual binarized score of user u on item i for GMF

ŷG
ui Predicted score of user u on item i for GMF

yM
rs Actual binarized score of user metadata r on item metadata s for MLP

ŷM
rs Predicted score of user metadata r on item metadata s for MLP

Y User-item binary interaction matrix

Y ′ User-item metadata binary interaction matrix

pu Latent vector for user u

qi Latent vector for item i

p′
r Latent vector for user metadata r

q ′
s Latent vector for item metadata s

vU
u Binarized one-hot encoded feature vector of user u for GMF

vI
i Binarized one-hot encoded feature vector of item i for GMF

wR
r Binarized one-hot encoded feature vector of user metadata r for MLP

wS
s Binarized one-hot encoded feature vector of item metadata s for MLP

φx Mapping function for the x-th neural network layer

W Weight matrix of neural network layer

h Weights of the output layer

b Bias vector

a Activation function

Subscript u and subscript i denotes a user and an item, respectively. Subscript r and subscript s denotes the
user metadata and the item metadata, respectively. Superscript G and superscript M denotes GMF and MLP,
respectively

3.1 Matrix factorization

Let u and i be the user and the item, respectively. Let the number of users and items be A

and B, respectively. Let us define an interaction matrix Y ∈ R
A×B between the user and the

item from users implicit feedback as:

yui =
⎧
⎨

⎩

1,
if an interaction between user u and item i is
observed;

0, otherwise.
(1)

Here a value of yui = 1 indicates an interaction between the user u and the item i.
Similarly, yui = 0 indicates user u has no interaction with item i. This representation using
implicit feedback has a problem of inferring user u positive feedback (interest) towards
item i; however, negative feedback for the same item cannot be inferred because 0 indicates
missing values or unobserved entries. Therefore that poses an inherent lack of negative
interest.
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Every user and item has its corresponding latent vector of real-valued features. Let pu

and qi denotes the latent vector for user u and item i, respectively. The predicted rating ŷui

can be obtained by the inner dot product of pu and qi as:

ŷui = f (u, i|pu, qi) = pT
u qi =

K∑

k=1

pukqik, (2)

where K symbolizes the number of dimensions of the embedded latent space, assuming that
dimensions of the latent space are independent of each other and have the same weight when
linearly combining the interaction of latent vectors of users and items. Therefore Matrix
Factorization (MF) is regarded as the linear model of latent factors.

The function ‘inner dot product’ between the user-item latent vectors can limit the
expressive power of MF resulting in a ranking loss [22]. A common solution is to increase
latent dimensions K . Still, the generalization of the model is not achieved due to the over-
fitting of the data, especially in the sparse environment [45]. So as a consequence of the
above limitation, the non-linear user-item interaction function using MLP is learnt.

3.2 Learning from content-basedmetadata information of users and items

Let r and s be the user metadata and the item metadata, respectively. Let us define an
interaction matrix Y ′ ∈ R

A×B between the user metadata and the item metadata from users
implicit feedback as:

yrs =
⎧
⎨

⎩

1,
if interaction (user metadata r , item
metadata s) is observed;

0, otherwise.
(3)

Here a value of yrs = 1 indicates an interaction between the user metadata r and the
item metadata s. Similarly, yrs = 0 indicates r has no interaction with s. This representa-
tion using implicit feedback has a problem that inferring user metadata r positive feedback
towards item metadata s is trivial, however, negative feedback for the same item metadata
cannot be inferred because 0 indicates missing values or unobserved entries.

Recommendation problem having implicit feedback is defined as estimating the scores
of unobserved entries in Y ′, that are needed to rank the items. Model-based techniques
assume data to be predicted using the model itself. Formally, it can be described as learning
ŷrs = f (r, s|θ), where ŷrs denotes predicted score of yrs and θ indicates the parameters
of the model and f indicates the function which maps the parameters of the model to ŷrs

which is referred to as interaction function.
Estimating model parameters θ requires existing machine learning approaches that opti-

mize a certain cost function. Generally two types of cost functions are used : pointwise
loss [23, 28] and pairwise loss [46, 53]. Pointwise loss is calculated for regression prob-
lems with usually explicit feedbacks [32, 70] by minimizing the Mean Squared Error (MSE)
between ŷrs and yrs . To handle the missing entries in the interaction matrix, these entries
are treated as negative feedbacks [23], or these are sampled as negative examples. Pairwise
learning [46, 66] has the idea that observed interaction items must be ranked higher than
the non-observed missing entries. Therefore, the margin between the observed score ŷrs

and the unobserved neighborhood input ŷrj is maximized by pairwise learning instead of
minimizing the error between ŷrs and yrs .

Multimedia Tools and Applications (2021) 80: –1858118553 18559



The MEDCF framework as shown in Fig. 1 calculates function f on the metadata bina-
rized information using neural networks to predict ŷrs . Therefore it implicitly supports both
pointwise as well as pairwise learning.

4 Proposedmodel

The model is shown in Fig. 2 as a layered neural network architecture. It comprises of three
modules named as Generalized Matrix Factorization model (GMF), Multilayer Perceptron
(MLP), and Neural Matrix Factorization (NeuMF). In the GMF module, the interaction
matrix is considered as the rating matrix and apply the MF technique using the neural net-
work framework. It computes the inner dot product between the user and item latent vectors
to obtain the predicted score ŷG

ui (G stands for GMF). In the MLP module, neural network
architecture is applied on metadata information of users and items to obtain the predicted
score ŷM

rs (M stands for MLP). Metadata information is useful because of the sparsity of the
interaction matrix and it also helps to identify each user’s interest towards each item. Finally,
in the NeuMF module, ŷG

ui and ŷM
rs is concatenated in the NeuMF layer. The concatenated

output is fed in a small neural network to learn further non-linear interactions between user
and item to obtain the final predicted rating ŷui .

5 Methodology

In this section, the Meta Embedding Deep Collaborative Filtering (MEDCF) framework
is described first. Next, the Generalized Matrix Factorization (GMF) method under the
MEDCF framework is described. Next, an instance of the MEDCF framework is presented
to explore neural networks for Collaborative Filtering (CF) using a Multilayer Perceptron
(MLP) that learns the user-item metadata interaction function. At last, the Neural Matrix
Factorization (NeuMF) method is described that integrates MLP and GMF under a single
framework. NeuMF takes advantage of the linearity of GMF and non-linearity of MLP for
modeling user-item non-linear interactions.

5.1 Initial user representation learning usingMEDCF framework

To model a user-item metadata interaction yrs and to take advantage of fully connected neu-
ral network based CF, the MEDCF framework is used as neural network architecture, as

Fig. 1 Meta embedding deep collaborative filtering framework
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Fig. 2 Neural matrix factorization model under MEDCF framework (a layered neural network view)

shown in Fig. 1 where one layer output feeds as input to the next layer of the neural net-
work. The bottom input layer comprises of feature vector wR

r and feature vector wS
s that

represents binarized one-hot encoded feature vector of user metadata r and item metadata
s, respectively. This input layer can be customized in a variety of ways and applications
for modeling users and items metadata features such as content-based, context-aware, and
neighborhood-based data. NCF [22] focuses on the collaborative framework where the bina-
rized one-hot encoded version is used as the input features of user and item. It is a generic
and most straightforward representation possible that can be customized to any input feature
vector. The one-hot encoding vector representation is customized to include content-based
metadata information of user and item to address the cold start problem. The user’s demo-
graphic information and item’s genre information is taken as the content features. The
input user-item feature vector corresponds to binarized values of the user-item metadata
information.

An embedding layer is at the top of the input layer. It is a fully connected layer that trans-
forms the one-hot encoded sparse vector representation into a dense vector representation.
These embedded vector representations of users and items metadata signify the latent fea-
tures. These features are then introduced into the neural network architecture as MEDCF
layers. It transforms these features into further low dimensional latent features to learn the
complex non-linear interaction between the user and the item metadata. Each layer can be
customized to represent a more complex hidden interaction. The last hidden X-th layer
dimension determines the model’s capability. The final output layer computes the predicted
score ŷM

rs . Training is executed by minimizing the pointwise error between predicted value
ŷM
rs and the desired value yM

rs . Another way of training can be pairwise loss learning, such
as Bayesian Personalized Ranking (BPR) [46] loss. However, at this moment, pairwise
learning is ignored as main motive is on neural network modeling approach.

Mathematically, MEDCF framework can be formulated as:

ŷM
rs = f

(
P ′T wR

r ,Q′T wS
s |P ′, Q′, θf

)
, (4)
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where P ′ ∈ R
A×K1 and Q′ ∈ R

B×K2 symbolizes latent vector matrix for users and items
metadata, respectively. K1 and K2 denotes number of latent dimensions for user and item
metadata, respectively. θf denotes the interaction function f which is the model parameter.
Here, f is defined to be a multi-layer neural network and mathematically, it is defined as:

f
(
P ′T wR

r ,Q′T wS
s

)
= φout

(
φX

(
. . . φ2

(
φ1

(
P ′T wR

r ,Q′T wS
s

))
. . .

))
, (5)

where φout and φx denotes the mapping function for the output layer and the x-th MEDCF
layer, respectively, and in total, there are X MEDCF layers.

5.2 LearningMEDCF

Learning the model parameters involves existing pointwise approaches [23, 62] that
extensively perform regression problems with a mean squared loss given as:

Lsqr =
∑

(r,s)∈Y ′∪Y ′−

(
yM
rs − ŷM

rs

)2
, (6)

where Y ′ and Y ′− symbolizes a set of observed and unobserved (negative feedback) inter-
actions in the user-item binary metadata matrix, respectively. The quadratic error can be
validated by assuming the examples coming from normal distribution [44]; however, it
does not match with implicit feedback because the binarized target value of 1 or 0 indi-
cates whether the user-item metadata interaction occurs or not. So, a probabilistic model is
applied for learning MEDCF that deals with the binarized output value.

The implicit input feedback data is in the form of 0 or 1 and the output label yM
rs is 1 if

user metadata r has interaction with item metadata s otherwise 0. Considering this, MEDCF
is build as a probabilistic model that constrains the model output ŷM

rs into the range of [0,1]
denoting how likely user metadata r is relevant to item metadata s, and this can be achieved
by using a sigmoid activation function for the output layer φout . With this setting, let us
represent likelihood function as:

p
(
Y ′, Y ′−|P ′, Q′, θf

) =
∏

(r,s)∈Y ′
ŷM
rs

∏

(r,j)∈Y ′−

(
1 − ŷM

rj

)
, (7)

The negative logarithm of the above-mentioned likelihood function is:

L = −
∑

(r,s)∈Y ′
logŷM

rs −
∑

(r,j)∈Y ′−
log

(
1 − ŷM

rj

)

= −
∑

(r,s)∈Y ′∪Y ′−
yM
rs logŷM

rs +
(

1 − yM
rs

)
log

(
1 − ŷM

rs

)
. (8)

It is the loss function to be minimized and to optimize it, the Stochastic Gradient Descent
(SGD) algorithm can be used. Equation (8) is equivalent to the log loss or binary cross-
entropy loss. Now using a likelihood model for MEDCF, recommendations is treated as
a binary classification task with implicit feedback. Classification based log loss is seldom
applied in recommendation theory, although here it is examined which demonstrate its
efficiency.
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5.3 Generalizedmatrix factorization (GMF)

A generalization of the Matrix Factorization (MF) technique is shown and how MF can be
used as a special case of MEDCF framework. MF is regarded as the popular recommenda-
tion technique and many factorization models [45] can be treated as a special case of the
MEDCF framework. MEDCF framework is modified and name this modified version as
Generalized Matrix Factorization (GMF) model.

The bottom input layer of the MEDCF framework comprises of vU
u and vI

i which repre-
sents binarized one-hot encoded feature vector of user u and item i, respectively. Applying
embedding layer on vU

u gives latent vector for user u, which symbolizes as pu. Similarly,
applying the embedding layer on vI

i gives latent vector for item i, which symbolizes as qi .
To deal with uncertainty in the ratings to determine more accurate latent representations, we
calculate mean and variance of user and item embedded vector, i.e., μ(pu), σ(pu), μ(qi),
and σ(qi) and then sample a pu (or qi) to be fed to the next layer. It makes the whole
process non-deterministic and thus, the function learned by a neural network is not a con-
tinuous function of the inputs. We use a neat trick here known as the reparameterization
trick to get around this problem, wherein we shift the sampling process to an input layer.
For one dimensional case, given μ and σ we can sample from N (μ, σ ) by first sampling
ε ∼ N (0, 1), and then computing revised pu = μ + σ ∗ ε (similar computation for qi) as
a final latent vector of the user (item). The function randomness is now associated with ε

and not the inputs or the model’s parameters. Next, the mapping function of the first neural
MEDCF layer is introduced as:

φ1(pu, qi) = pu � qi, (9)

where � symbolizes the element-wise inner product between pu and qi vectors. Next, the
vector is transformed to the output layer as:

ŷG
ui = aout

(
hT (pu � qi)

)
, (10)

where h and aout denotes the weights and activation function of the output layer, respec-
tively.

Now, to generalize and extend MF under this MEDCF framework, h is used to learn
from the data itself. It allows a version of MF which has a different meaning of hidden
dimensions. Using the non-linear function for aout allows another version of MF which has
a non-linear interaction between user and item and is more expressive than the linear MF
model.

This work incorporate generalized version of MF (i.e., GMF) under MEDCF framework.
It utilizes sigmoid non-linear activation function σ(x) = 1/

(
1 + e−x

)
as aout and learning

weights h from the data itself with the log loss objective function.

5.4 Multilayer perceptron (MLP)

MEDCF framework utilizes user and item metadata latent vectors to represent their features
and concatenates them. This design is extensively used and adopted in multi-modal deep
learning literature [56, 71]. However, simply concatenating user and item metadata features
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is not sufficient to have a CF effect. To solve this, several hidden layers is proposed on top of
the concatenated layer to learn the user-item metadata latent features collaboratively. Apply-
ing embedding layer on wR

r to give latent vector for user metadata r which symbolizes as p′
r .

Similarly, applying embedding layer on wS
s to give latent vector for item metadata s which

symbolizes as q ′
s . This provides flexibility in learning the non-linear complex interactions

between p′
r and q ′

s vectors in contrast with the GMF that uses simply the element-wise dot
product on pu and qi vectors. More accurately, the MLP model under MEDCF framework
can be summarized mathematically as:

z1 = φ1
(
p′

r , q
′
s

) =
[
p′

r

q ′
s

]

,

z2 = φ2(z1) = a2

(
WT

2 z1 + b2

)
,

. . . (11)

zL = φL(zL−1) = aL

(
WT

L zL−1 + bL

)
,

ŷM
rs = σ

(
hT zL

)
.

where bx , ax , Wx denotes the bias vector, activation function, weight matrix for the x-th
layer of MLP, respectively. There are various choices for the activation function selection
such as sigmoid, Rectified Linear Unit (ReLU ), hyperbolic tangent (tanh), and many oth-
ers. These functions are analyzed as follows: 1) The sigmoid function σ is a probabilistic
function that restricts its value into the range [0,1] which limits the model performance.
It has a problem of saturation meaning that the neuron stops learning when the function
value is close to 0 or 1. 2) tanh seems to be a good option [12, 66] however it only slightly
alleviates the problem of saturation for sigmoid function because tanh is a rescaled vari-
ant of sigmoid (tanh(x/2) = 2σ(x) − 1). 3) ReLU is well known to be the non-saturated
function [15]. It is also treated as a sparse activation function because it can be used when
the data is sparse and it also prevents overfitting of the data. The empirical results show
that ReLU somewhat preferable than tanh, which in turn considerably preferable than
sigmoid.

MLP model uses a hierarchy structure of hidden layers meaning that every successive
hidden layer has the fewer number (say half) of hidden neuron units than the previously
hidden layer neuron units. It is because as going deeper into the neural network, the
more complex interaction between the user and item metadata can be determined [24] and
therefore more user metadata r likeness or dis-likeness towards item metadata s.

5.5 Fusion of GMF andMLP

Till now, two examples under the MEDCF framework is discussed. One is the GMF that
allows the linear function to model the latent features interaction between user and item.
Another one is MLP that allows a non-linear function to learn the latent features interaction
between user and item metadata. Now, the question is how to fuse GMF and MLP under
the MEDCF framework so that both can mutually complement each other on the user-item
interaction for the enhanced model?
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One solution is to presume the embedding layer of GMF and MLP and then combine
(concatenate) the outputs of their interaction functions. It is similar to the well-known
approach followed in Neural Tensor Network (NTN) [53]. Mathematically, coupling GMF
layer with a one-layer MLP can be defined mathematically as:

ŷui = ReLU

(

hT a

(

pu � qi + W

[
p′

r

q ′
s

]

+ b

))

, (12)

Sharing the embedding of GMF and MLP might obstruct the performance of the
combined model in the way that both are restricted from using the same length of
embedding.

So, to give more flexibility to MEDCF model, separate embedding are used for the two
models so that both learn their respective features more conveniently. Further, the outputs
of the last hidden layer for GMF and MLP models are concatenated and mathematically it
is defined as:

φG = pu � qi,

φM = aL

(

WT
L

(

aL−1

(

. . . a2

(

WT
2

[
p′

r

q ′
s

]

+ b2

)

. . .

))

+ bL

)

,

ŷui = ReLU

(

hT

[
φG

φM

])

. (13)
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where pu and p′
r denotes latent vector for user u and user metadata r , respectively. Similarly,

qi and q ′
s denotes latent vector for item i and item metadata s, respectively. ReLU as the

activation function is used for MLP layers. The fused model is named as Neural Matrix Fac-
torization (NeuMF) under the MEDCF framework which jointly binds the linearity of the
GMF model and non-linearity of MLP model to learn the user-item latent interaction using
rating and metadata information. The MEDCF learning model is outlined in Algorithm 1.

6 Experimental setup

In this section, datasets, a brief introduction of baseline methods to compare with and the
evaluation metrics for comparing model performance with the baselines are discussed.

6.1 Datasets

Experiments are carried out on the two publicly available real-world datasets in order to
evaluate the model’s performance on the rating prediction task:

(1) MovieLens. MovieLens 100K1 (ML100K) and MovieLens 1M2 (ML1M) datasets
were created by the grouplens research project at the University of Minnesota. These
datasets comprise of user’s explicit ratings on items ranging from 1 to 5. Three files
for the datasets are used. The rating file consists of a tab-delimited list of user id, item
id, rating, and timestamp. The user file comprises user demographic information con-
sisting of a tab-delimited list of user id, age, gender, occupation, and zip code. There is
a total of 21 occupation categories having values 1 or 0 depending on whether the user
corresponds to that occupation or not. The item file consists of movie metadata infor-
mation consisting of the tab-delimited list of movie id, movie title, release date, video
release date, IMDb URL, and genres. There is a total of 18 genre categories having
values 1 or 0 depending on whether the movie is of that genre or not. The occupation
distribution of the users and genre distribution of the movies for the MovieLens 1M
dataset are shown in Figs. 3 and 4, respectively.

(2) Amazon Movies.3 The Amazon Movies (AMovies) dataset was larger and sparse
compared to the MovieLens dataset. For the Amazon dataset, minor pre-processing
is done to filter the users’ having a minimum of 20 interactions and items’ having
minimum 5 interactions. This step makes it similar to the MovieLens datasets.

The statistics of the MovieLens and Amazon movies datasets (after pre-processing) are
mentioned in Table 2. The above datasets have explicit information. This information is con-
verted into implicit information that contains 1 or 0 implying user interaction with the item
or not. This implicit information is used for the GMF model. For the MLP model, metadata
information of the user and the item is used. From the user file, features or attributes are
extracted that are useful in learning the user’s interest in the item. So gender and occupation
features are extracted as user metadata (demographic) information. Similarly, from the item

1https://grouplens.org/datasets/movielens/100K/.
2https://grouplens.org/datasets/movielens/1M/.
3http://jmcauley.ucsd.edu/data/amazon/.
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Fig. 3 Occupation distribution for the MovieLens 1M dataset

file, the genre feature is extracted as item metadata. These user-item metadata features are
converted into a one-hot vector of 1’s and 0’s, indicating whether the user or item possesses
that feature or not. Next, an interaction matrix Y ′ is used with each entry 1 or 0 depending
on whether there is an interaction between user metadata r and item metadata s or not. Both
MovieLens and AMovies datasets are split randomly into a training set (70%), validation
set (10%), and the test set (20%).

Fig. 4 Genre distribution for the MovieLens 1M dataset
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Table 2 Data statistics of two real-world datasets

Dataset Users Items Ratings Density(%)

ML100K 943 1,682 100,000 6.3047

ML1M 6,040 3,952 1,000,209 4.4685

AMovies 15,067 69,629 877,736 0.0837

6.1.1 Cleaning the MovieLens datasets

For a real-time system scenario, cleaning the dataset is a crucial step that involves extract-
ing the relevant features from the dataset and encode these features in integer values for
further processing in neural network architectures. The MovieLens datasets are cleaned by
removing irrelevant features such as timestamp, age, zip code, movie title, release date,
video release date, and IMDb URL. The gender and occupation features as the user’s meta-
data and genre feature as the item’s metadata are adopted since both are helpful in better
rating prediction. All the relevant features are binary encoded using categorical encoding
provided by Pandas. The Keras embedding layer is applied to the binary encoded features
which learn embeddings of the user-item metadata information.

6.2 Baselinemethods

The proposed MEDCF model are evaluated and compared with the following baseline
methods:

– Item-Item similarity uses item-item Collaborative Filtering (CF) approach. The sim-
ilarity score such as cosine similarity is calculated between the two items. A similar
argument with the user-user CF approach, however, it is less popular than item-item CF.

– Matrix Factorization (MF) [33] finds low dimensional latent features (hidden dimen-
sions) of liking/disliking user’s interest towards an item that depends on the pattern of
ratings given by the user.

– Blind Compressed Sensing [14, 16] computes the user and item latent factor matrices.
The user hidden factor matrix can be dense in contrast with the item hidden factor
matrix because a user generally interacts with few items. The item latent factor matrix
sparsity may enhance the recommendation accuracy.

– Matrix Completion [20] computes the missing entries in a sparse rating matrix. It finds
the lowest rank matrix possible and whenever the rank of the filled matrix is pre-known,
it finds the matrix of rank r that matches with the filled matrix values.

– Probabilistic Matrix Factorization (PMF) [44] is a rating prediction task that only
utilizes ratings for CF. It can be considered as a probabilistic version of the SVD model.

– Singular Value Decomposition (SVD) [47] calculates the matrix for the given rank
and minimizing the sum of squared error for the target matrix.

– SVD++ [32] achieves better accuracy prediction by incorporating implicit feedback
information.

– Collaborative Topic Regression (CTR) [61] is a recommendation model that com-
bines CF such as PMF and subject modeling such as Latent Dirichlet Allocation (LDA)
to learn both ratings and text documents.

– Collaborative Deep Learning (CDL) [65] is a recommendation model that improves
rating prediction accuracy by considering documents using Autoencoders.
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– Convolutional MF (ConvMF) [30] is a model that merges PMF model into Convolu-
tional Neural Network (CNN).

– additional Stacked Denoising Autoencoder (aSDAE) [9] is a joint model that learns
the user and item latent factors using side information and CF through the rating matrix.
It is a hybrid CF that utilizes MF through implicit feedback and user and item side
information through stack denoising autoencoder.

– Multilayer Perceptron (MLP) [22] is the artificial neural network having non-linear
activation functions.

– Neural Collaborative Filtering (NCF) [22] integrates MLP model with the MF model
on the user-item interaction matrix.

– Hierarchical Structures (HSR) [64] is a state-of-the-art algorithm able to capture
information from both the rating and structured side information. In this strategy,
however, flat information is ignored.

– Heterogeneous side Information for Recommendation (HIRE) [38] is a unified
recommendation framework that simultaneously captures both flat and hierarchical
information mathematically.

Since proposed model targets to find an interaction between users and items, it is com-
pared with already known baseline methods and use the best hyper-parameters settings on
the validation set.

6.3 Evaluationmetrics

For comparing the model with other baseline methods, Root Mean Squared Error (RMSE) is
used as the evaluation metric. It is a standard quantitative measure for supervised regression
problems (for example, rating prediction task). It measures the difference in the predicted
rating and the actual rating [18]. Mathematically, the RMSE loss is computed as:

RMSE =
√

Σ
(
r̂ui − rui

)2

# of ratings
(14)

Mean Absolute Error (MAE) is used as another metric that is vastly used in past literature
[41, 51, 54]. It computes the absolute difference between the actual and predicted score.
Conceptually, it gives an idea of how big the error can be think for the predicted score on
an average. Mathematically, it is computed as:

MAE = Σ |rui − r̂ui |
# of ratings

(15)

Both RMSE and MAE are losses and should be minimized for better recommendation
accuracy.

7 Experimental results

In this section, the quantitative results with error analysis, analysis of the cold start problem,
execution time analysis and scalability issues, model parameter learning and need for pre-
training, hyper-parameters setting and statistical significance, and the importance of deep
learning for this work are discussed.
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7.1 Quantitative results with error analysis

The RMSE and MAE values of MEDCF model and the baseline approaches on the
MovieLens 100K dataset are shown in Table 3. Note that Improve signifies the relative
improvement of MEDCF over the best competitor. As it can be seen that the proposed
approach consistently and remarkably outcompetes baseline approaches by an apparent
margin on the dataset. As an example, MEDCF improves on RMSE 11.303% and on MAE
14.245% over the best competitor HIRE with lagging behind other baseline methods.

For MovieLens 1M dataset also, the model obtains good results over baselines methods.
Table 4 shows the rating prediction error of MEDCF and other baselines. The noticeable
improvement of MEDCF over the best competitor HIRE is 12.27% on RMSE and 15.128%
on MAE which indicates that using user-item metadata as auxiliary information can benefit
in a deeper understanding of the latent factors and more accurately predict ratings. MEDCF
model shows high expressiveness by combining linear GMF and non-linear MLP models
using NeuMF. Also, notice that MLP slightly outperforms MF which limits MF as a spe-
cial case of MLP. MLP model can further be improved by adding more hidden layers and
here only three layers are shown. An overall indication is that the model utilizes a better
understanding of the combined metadata and rating information to help improve the rating
prediction task. For AMovies dataset, similar results as that of MovieLens datasets were
obtained, as shown in Table 5.

The plots between MEDCF model training error versus epoch for the MovieLens 100K
and MovieLens 1M datasets are shown in Fig. 5a and b, respectively.

As MEDCF model’s last hidden layer decides the potential of the model, it is referred as
explanatory predictors and the predictors of [8, 16, 32, 64] is evaluated. It is worth noting
that large predictors may cause the model to be overfitted and degrades the performance.

Table 3 Experimental results on MovieLens 100K dataset

Model RMSE MAE

Item-Item similarity 1.061 0.744

Matrix Factorization 1.128 0.828

Blind Compressed Sensing 0.9409 0.735

Matrix Completion 1.102 0.832

PMF 0.9639 0.756

SVD 0.9521 0.743

SVD++ 0.9434 0.738

CTR 0.9836 0.757

CDL 0.9628 0.748

ConvMF 0.9469 0.735

aSDAE 0.9382 0.728

MLP 0.9743 0.729

NCF 0.9319 0.718

HSR 0.9312 0.713

HIRE 0.9289 0.709

Ours 0.8239 0.608

Improve 11.303% 14.245%

The RMSE and MAE values of our proposed method are indicated in bold
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Table 4 Experimental results on MovieLens 1M dataset

Model RMSE MAE

Item-Item similarity 0.9196 0.671

Matrix Factorization 0.8790 0.686

Blind Compressed Sensing 0.8789 0.691

Matrix Completion 0.9102 0.719

PMF 0.8971 0.706

SVD 0.8730 0.686

SVD++ 0.8620 0.673

CTR 0.8969 0.706

CDL 0.8879 0.691

ConvMF 0.8549 0.676

aSDAE 0.8469 0.672

MLP 0.8773 0.681

NCF 0.8480 0.668

HSR 0.8466 0.664

HIRE 0.8459 0.661

Ours 0.7421 0.561

Improve 12.270% 15.128%

The RMSE and MAE values of our proposed method are indicated in bold

Without special mention, three hidden layers are used for MLP. For example, if the explana-
tory predictors size is 8 then the MEDCF layers architecture is 32 → 16 → 8 and the

Table 5 Experimental results on AMovies dataset

Model RMSE MAE

Item-Item similarity 0.8786 0.632

Matrix Factorization 0.8391 0.648

Blind Compressed Sensing 0.838 0.652

Matrix Completion 0.8704 0.676

PMF 0.8568 0.667

SVD 0.832 0.643

SVD++ 0.823 0.634

CTR 0.857 0.666

CDL 0.848 0.653

ConvMF 0.815 0.637

aSDAE 0.8071 0.634

MLP 0.8371 0.642

NCF 0.808 0.629

HSR 0.8067 0.624

HIRE 0.8059 0.621

Ours 0.7021 0.521

Improve 12.880% 16.103%

The RMSE and MAE values of our proposed method are indicated in bold
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a b

Fig. 5 Plot between MEDCF model training loss versus epoch for the MovieLens datasets. a Plot between
training error versus epoch for the MovieLens 100K dataset b Plot between training error versus epoch for
the MovieLens 1M dataset

embedding size is 16. α was set to 0.5 for the NeuMF with pre-training, enabling the pre-
trained GMF and MLP to contribute to the initialization of NeuMF equally. It can be seen
that MEDCF achieves the best performance over all datasets, substantially outperforming
the state-of-the-art NCF and HIRE methods on RMSE by a large margin (on average, the
relative improvement over NCF and HIRE is 12.39% and 12.15%, respectively).

Figure 6 shows the performance of MAE for the number of explanatory predictors. Here,
the difference in performance between personalized methods is highlighted. For all the
datasets, MEDCF significantly outperforms ConvMF and NCF methods with a large pre-
dictor of 64. MEDCF shows consistent improvements over all the baselines methods for
predictors greater than or equal to 16, showing the effectiveness of the classification-aware
log loss for the recommendation task. Also, both linear MF and non-linear MLP models are
fused to reveal the high expressiveness of the MEDCF model. For MF methods, the num-
ber of explanatory predictors is equal to the latent factors since every feature obtained by
the neural network layer corresponds to the latent dimension. The NCF and MLP methods
also show fairly good results showing their effectiveness in learning user-item non-linear
interactions using neural networks. NCF nearly outperforms MLP over all datasets. MLP
and MEDCF methods suffer from overfitting for large predictors as it tends to make the
model very complex by having too many parameters. Item-Item and PMF methods have
the worst performance for small and large predictors, respectively, for all datasets as both
of them consider the linear interactions between the users and items only. CTR and SVD
methods also show poor results for large predictors on all datasets. The aSDAE, HSR and

a b c

Fig. 6 Performance of MAE w.r.t. the number of explanatory predictors over all the datasets. Predictors
denotes the architecture of the neural MEDCF layers. a MovieLens 100K b MovieLens 1M c AMovies
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HIRE methods show promising results confirming their effectiveness in learning both the
metadata information and the rating matrix in a unified framework.

MEDCF’s other two methods, GMF and MLP, also demonstrate excellent performance.
Between them, MLP is marginally underperforming GMF. Note that adding more hidden
layers (more than five hidden layers slightly overfits the data) MLP can be further improved.
Still, the generalization of the overall MEDCF model cannot be guaranteed. Here, the per-
formance of the MEDCF model is shown up to three hidden layers. GMF outperforms
ConvMF on all datasets for small explanatory predictors. Although GMF suffers from large
predictors being overfitted, its best performance obtained is better than (or equivalent to)
ConvMF.

The recommendation is used as a binary classification method to deal with the one-class
solution of implicit feedback. By viewing MEDCF as a probabilistic model, the log loss
of (8) is optimized. Figure 7 shows the training loss of MEDCF methods of each epoch
on MovieLens 1M dataset with predictors of 8. As it can be seen that the training loss of
the MEDCF methods slowly decreases with more iterations. In the first 10 iterations the
most effective updates occur, and even more iterations may overfit a model. Also, NeuMF
achieves the lowest training loss among the three MEDCF methods, followed by MLP, and
then GMF. The above findings provide empirical evidence of the validity and efficacy of
log loss optimization in order to learn from implicit data.

7.2 Cold start problem analysis

The MEDCF framework examines this work expertly in dealing with the cold start prob-
lem on the MovieLens datasets. For the new users and new items (new users are the users
who have rated very few movies or have not rated any movie yet, and new items are the
items which have been rated by only few users or have not been rated by any user yet),
users’ demographics and items genre information are exploited as their metadata features.
This information serves as an input to the MEDCF framework. In general, the model gains
excellent performance over the baseline methods which does not take into account the aux-
iliary information (e.g., NCF and PMF) of cold start users or items. It implies the model
effectiveness which incorporates metadata information to alleviate the cold start problem.

Fig. 7 Training loss (averaged over all instances) of MEDCF methods w.r.t. the number of epochs on Movie-
Lens 1M dataset for predictors=8 which means the the MEDCF layers architecture is 32 → 16 → 8 and the
embedding size is 16

Multimedia Tools and Applications (2021) 80: –1858118553 18573



In Fig. 8, the reductions in MAE resulted from MEDCF is shown on the MovieLens 1M
dataset. By MAE reduction, it means the difference between MEDCF’s MAE and MF’s
MAE. Users and items are classified according to the number of explanatory predictors and
reductions are plotted for both the groups. It can be seen that the reductions are positive
and with a few number of predictors, MEDCF can achieve MAE reduction on all users and
items groups. A benefit of MEDCF is that higher reductions are obtained for groups with
fewer predictors. This shows that MEDCF can reduce the sparsity issue and help with the
cold start problem.

Also, a relationship exists between the effectiveness of MEDCF and the number of users
or items predictors. MEDCF reduction in MAE is higher for users or items with a smaller
number of predictors. It shows metadata can be valuable information particularly in case of
limited users or items information.

7.3 Execution time analysis and scalability

The computational time of proposed MEDCF model and the baseline methods is analyzed.
All of these methods run on a single NVIDIA GeForce GTX 1080 GPU machine having a
computed capability of 6.1. At the training phase, NCF and MEDCF take about 2-3 seconds
per epoch on the MovieLens 100K dataset whereas both takes about 2-4 seconds per epoch
on the MovieLens 1M dataset. In less than 25 epochs, all the models typically converge
using the early stop criterion. The recommendation prediction results are reasonably fast in
the testing phase and are within 1-2 seconds. The MF based techniques (e.g., PMF or SVD)
take less running time than the neural networks based techniques. In the training phase, the
proposed model takes comparable time with NCF, however, more time than SVD or PMF.
The model takes comparable time to other methods during the testing phase. Therefore, the
proposed MEDCF model is practical for a movie recommendation in the real scenario.

As the number of users and items increases, the computation increases linearly which
is the problem with the recommendation algorithms. The recommendation model which is
trained and gives better results on the limited dataset degrades its performance when the
dataset is scaled. Therefore, there is a necessity to apply recommendation algorithms suc-
cessfully as the dataset scales. To handle the scalability issues, the dimensionality reduction
technique is used using neural networks. The total neuron units in the successive hidden

Fig. 8 MEDCF gains different MAE reductions on the MovieLens 1M dataset for users and items with
different number of explanatory predictors. Predictors denotes the architecture of the neural MEDCF layers
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layer are decreased by half of its previous hidden layer. It ensures that each successive hid-
den layer learns new latent representations for user-item interactions and removes the noise
(i.e., irrelevant information) from the previous hidden layer to extract relevant features.
Using experiments, it is found that using the same number of neuron units in each hidden
layer will roughly triple the cost per computation (backpropagation) and requires more data,
approximately triple the training data and training time.

Collaborative Filtering (CF) is one of the most commonly used algorithms to make rating
predictions within a recommender system. More resources are required for CF-based rec-
ommendation systems to process information and form recommendations as the number of
users and items increases. Most of these resources are consumed to determine similar prefer-
ences for users and similar descriptions for items. CF algorithms therefore face a scalability
problem that can become an important factor for recommendation task and it is difficult to
produce recommendations in real time. In a practical movie recommendation system, it is
imperative to solve the scalability issue in order to make recommendations in real time. In
response, a neural network learning using metadata features such as user’s demographic and
item’s genre information is proposed. Compared with the raw user-item rating matrix that
is used by most of the baseline methods as discussed, the latent dimensions of the user-item
metadata interaction matrix are greatly reduced especially in the cold start scenario. All of
the above features significantly speed up the training of the classification model and ensure
that recommendations can be provided in real time.

To investigate the scalability issues of some of the competitive methods, training and
inference time are considered as shown in Table 6. Training time means the time needed to
train the model to its best performance. Three variants of dataset size: 25%, 75% and 100%
(complete dataset) are considered. With the increase in dataset size, training and prediction
time increases significantly for all the methods over all the datasets. HSR has the least
training and prediction time for all the datasets. For the training process, the total training
time taken by proposed method is less compared to the HIRE method. It can be explained
by the fact that the proposed model takes fewer iterations to converge due to the hybrid

Table 6 Training and prediction time with varying dataset size ratios for different models over all the datasets

AMovies ML100K ML1M

Model Dataset Training Prediction Training Prediction Training Prediction

ratio time(s) time(s) time(s) time(s) time(s) time(s)

25 601 5 15 0.2 310 2

HSR 75 810 13 25 0.7 405 4

100 930 20 36 0.8 447 5

25 18300 10 120 0.2 3502 4

HIRE 75 28810 15 141 0.6 4573 6

100 3,5370 21 147 0.9 5362 8

25 14345 10 32 0.2 1814 4

Ours 75 21362 15 68 0.8 2637 7

100 25962 20 81 1.1 3006 8

All values are rounded off with the nearest integer
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approach used for feature modeling. For inference time, the HIRE and proposed method
take more time compared to HSR.

7.4 Model parameter learning and need for pre-training

The objective function of non-convexity leads us to the local optimal solution. Parameter
initialization has an essential role in the convergence as well as overall performance for
the MLP model. Since NeuMF is the combination of both GMF and MLP models, the pre-
trained parameters of both the models is used. For this, GMF and MLP models are learnt
from scratch until convergence and then use these learned parameters as an initialization
for the NeuMF model. Adaptive Moment Estimation (ADAM) [31] is used as an opti-
mizer for pre-training and vanilla SGD for the NeuMF model. The reason to use ADAM
is that it uses slow updates for frequent parameters and fast updates for infrequent param-
eters. Also, ADAM has a fast convergence rate than vanilla SGD. SGD is used in NeuMF
because ADAM must save the moment information to update the parameters correctly. As
the NeuMF is initialized with the pre-trained parameters, the momentum information is
restricted to proceed further. So, it is useless to use NeuMF with the momentum-based
optimizers.

7.5 Hyper-parameters setting and statistical significance

Indicators that are widely used to assess the reliability of experimental outcomes such as
hyperparameter search or statistical significance is discussed.

The experiments with proposed model are based on Keras4 neural networks API. All
methods of the MEDCF model are learned by optimizing the log-likelihood loss function as
given in (8). The ADAM optimizer is used with mini-batch gradient descent. Learning rate
of [0.0001, 0.0005, 0.001] and batch size of [128, 256, 512] have been tested. Three hidden
layers are used for MLP.

MEDCF shows noticeable improvements over other baselines, and further one-sample
paired t-tests is performed to verify that p < 0.02 is statistically significant for all improve-
ments. It can be argued that merely relying on significance tests does not guarantee reliable
results. Proper setups are the ultimate choice for the best results. MovieLens 1M dataset has
most of the results reported in [35, 57]. The reported standard deviation is generally less
and the difference isstatistically significant in the reported results. Significance test results
should not be taken as a suitable choice of whether method A is better than method B.
Significance test does not find how well the setup of the method is, rather it measures the
standard deviation within the setup. Therefore, variance and significance tests must only
be considered after having proof that the method applied is well used. The large source of
errors occurs while setting up the method used. In some sense, the statistical significance
tests are of little use and it often gives a false belief in the experimental results.

7.6 Is deep learning helpful?

There is little work dedicated to user-item interactions with metadata embedding using
neural networks. It is interesting to see whether applying neural networks enhance the rec-
ommendation accuracy. For this, it is analyzed with increasing the MLP hidden layers. The

4https://keras.io/.
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Fig. 9 Performance comparison on RMSE with varying embedding size K on the test set

notation MLP-3 indicates three hidden layers (apart from the embedding layer). As it can be
seen that stacking more hidden layers is beneficial to the recommendation task. The results
found using MLP-3 is highly encouraging, indicating the effectiveness of using neural net-
works for the collaborative recommendation model. This improvement is attributed to the
non-linearities brought by stacking more hidden layers. Increasing the hidden layers to six
or more slightly degrades the performance due to the overfitting of the user-item interac-
tions. To verify further, linear activation functions are used for the hidden layers. It is noticed
that the performance degrades due to the inability to capture non-linear interactions between
users and items. This observation was the same as if applying the factorization techniques
for the rating prediction task.

For MLP-0, which has no hidden layers (only embedding layer is there), the perfor-
mance degrades which ensures that merely element-wise dot product between the user and
item latent vectors is insufficient for modeling their interactions. Thus there is a need for
transforming it with hidden layers.

Further, RMSE values are tested with varying factors K. The RMSE of the proposed
model outperforms some of the baseline methods as shown in Fig. 9. The results are tested
on AMovies and ML1M datasets. As the ML100K dataset also follows similar results as that
of the ML1M dataset, it is not shown here. The improvements in the rating prediction task
signify proposed model superiority and it is because deep neural networks are employed
explicitly to capture the latent and interaction features between users and items. It can be
seen that when K equals 256, all the models attain their minimum rating prediction error.

Fig. 10 RMSE validation error w.r .t different activation functions and dropout ratios on the first hidden layer
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Figure 10 demonstrates the RMSE validation error w.r.t. the dropout ratios. To prevent
overfitting, dropouts as regularizer is used and consider its value through 0.1 to 0.9. The val-
idation error fluctuates as the dropout ratio is increased. It may be because higher dropouts
may underfit the model. The proposed model is considered with four different activation
functions and concluded that ReLU gives minimal error on smaller dropouts for AMovies
dataset and sigmoid gives minimal error on smaller dropouts for the ML1M dataset. The
proposed model having dropouts above 0.7 cannot predict the ratings efficiently for both
the datasets and therefore, model underfits. Identity function shows approximately linear
performance with increasing dropouts but leads to high validation error.

8 Conclusion

The general framework of the MEDCF model is discussed which includes three methods
named as GMF, MLP, and NeuMF. Using this model, the historical ratings given by the
user to the items is exploited along with the user-item metadata interactions. The MEDCF
model learns comprehensive user-item interaction function for rating prediction task that
alleviates the cold start problem. This work can serve as the basic guideline on how to
incorporate auxiliary information such as metadata and apply it to neural networks for gen-
eralized recommender systems. This work integrates the shallower neural network models
for collaborative learning to have CF effect. It emphasizes research possibility for deep
learning based recommender systems. The work shows the integration of auxiliary as well
as rating information using a combined neural network and MF technique. Several experi-
ments is conducted to verify the effectiveness of the model on widely acceptable real-world
MovieLens datasets achieving state-of-the-art results.

The future effort aims at augmenting the MEDCF model to accommodate other crucial
auxiliary information such as knowledge bases, user reviews, temporal signals, and multi-
modal data such as still images and visual semantics. This information gains more insight
into user preferences for better personalization. Also, the previous personalization models
focus on individuals. This work can be extended for a group recommender system used for
decision making in social groups.
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