
https://doi.org/10.1007/s11042-020-10492-6

1177: ADVANCES IN DEEP LEARNING FORMULTIMODAL FUSION AND
ALIGNMENT

Deep learning based origin-destination prediction via
contextual information fusion

HaoMiao1 ·Yan Fei2 · SenzhangWang1,3 · FangWang4 ·DanyanWen5

Received: 29 July 2020 / Revised: 20 November 2020 / Accepted: 29 December 2020 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Origin-Destination (OD) prediction which aims to predict the number of passenger’s travel
demands from one region to another, is critically important to many real applications includ-
ing intelligent transportation systems and public safety. The challenges of this problem lie
in both the dynamic patterns of the human mobility data and data sparsity in issue in some
regions. Thus it is difficult to model the complex spatio-temporal correlations of the human
mobility data to predict the OD of their trips. Meanwhile, the crowd flows in different
regions of a city and the context features (e.g. holiday, weather and POIs) are potentially
useful to alleviate the data sparsity issue and improve the OD prediction, but are largely
ignored by existing works. In this paper, we propose a deep spatio-temporal framework
which named Auxiliary-tasks Enhanced Spatio-Temporal Network (AEST) to more effec-
tively address the OD prediction problem. AEST trains a model to conduct OD inference
via learning crowd flow and external data as auxiliary task. The novel Hierarchical Convo-
lutional LSTM (HC-LSTM) Network is proposed which combines CNN, GCN and LSTM
to effectively capture spatiao-temporal correlations. In addition, we design a Contextual
Network (ContextNet) which learns representations of contextual information to assist OD
prediction. We conduct extensive experiments over bike and taxicab trip datasets in New
York. The results show that our method is superior to the state-of-art approaches.

Keywords OD prediction · Spatio-Temporal network · Auxiliary task

1 Introduction

Recently, ride-hailing applications, such as Didi, Uber and UCAR, have experienced a
tremendous expansion as it brings great convenience to ride service and improves the
efficiency of public transportation. Traffic prediction is one of the most popular research
problem of spatio-temporal prediction. Most of existing work only focus on predicting
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inflow and outflow, which is shown in Fig. 1a, in all regions or some specific locations,
while ignoring the influence of Origin-Destination(OD) demands. The illustration of OD
demands is shown in Fig. 1b which shows the number of passenger’s travel demands
from one geographical region to another in a given time slot. Taking region r1 to r4 as
an example, we can see the OD demand from r3 to r1 is 1, and the OD demand from
r1 to r4 is 1. In this paper, we investigate the problem of OD prediction with the help
of crowd flow data and external information. Estimating OD demands is of great impor-
tance to various practical ride-hailing applications, and attracts rising research attention
recently. To provide high-quality services and achieve company profits, ride-hailing plat-
forms need to fully understand the passenger travel demands in real time. On one hand, the
ride-hailing platforms must pre-assign service vehicle in advance so as to satisfy passenger
demands. On the other hand, it is crucial to maximize the profit throughout understanding
the underlying travel regularities from historical passenger demands, thus avoiding driv-
ing without passengers. In addition, the passenger’s pick-up/drop-off demand is especially
helpful for emerging mobility-on-demand(MOD) services in terms of more efficient vehicle
distribution.

Due to the importance of this problem, a lot of efforts have been made to addressing
it. [16] proposed a Contextualized spatial-temporal network(CSTN) for taxi OD demand
prediction which combines CNN and LSTM to model spatio-temporal dependency. Wang
et al. [23] proposed deep learning based model named GEML that employs GCN [11] and
Peridic-Skip LSTM, to forecast OD demands. To consider the relations between a pair of
regions, [31] proposed a multi-task framework MDL to predict node flow and edge flow
simultaneously. Although these works try to combine crowd flow prediction and flow OD
prediction by considering the high correlation of the two tasks, how crowd flow can be used
to facilitate OD prediction is not well studied. Moreover, the complex spatial and temporal
correlations are not well captured by existing works, either.

In this paper, we study the novel problem of OD prediction via contextual infor-
mation fusion. Our insight is that contextual information like inflow/outflow and exter-
nal features(i.e., weather) are complementary to OD prediction. First, previous works

(a) (b)

Fig. 1 Illustration of In/Out flow and OD
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demonstrated that crowd flow is helpful for spatial-temporal prediction [22, 28, 31] includ-
ing OD prediction. Second, as shown in Fig. 1, the left part shows crowd flows including in-
and out- flows reflecting the human mobility dynamics in different areas of a city, while the
right part shows where the flows are from indicating the origin-destination of the flows. The
inflows of a region can be obtained by merging all the OD flows whose destination is in this
region, while the outflows of a region can be obtained by merging all the OD flows whose
origin is in this region.It is clear that crowd flows are highly correlated to OD of the flows.

However, this problem is non-trivial to address due to the following challenges. First, it
is difficult to mine the correlations between OD demands and contextual information effec-
tively to facilitate OD prediction. Although some multi-task model are proposed [31], how
to use contextual information to assist OD prediction is not well studied. Second, the spa-
tial and temporal correlations of the OD demands are complex, and thus cannot be easily
captured. Recently, some deep learning based OD prediction models try to employ CNN
to capture spatial correlations. However, CNN can only capture geographical similarity, but
ignore the influence of semantic correlation [25] that two locations could be spatially distant
but are similar in their demand patterns. Although [23] propose GEML to capture semantic
correlation by graph convolutional network [11]. It is still a non-trivial to effectively com-
bine the geographical relevance and semantic correlation. As the human mobility changes
over time, it is even more difficult to capture the regularity of human mobility patterns.
Third, data sparsity issue is common in OD demand data (e.g., ride-hailing records). There
might be thousands of demands in the downtown, while very few demands in the suburbs.

To address the aforementioned challenges, we propose a novel Auxiliary-tasks Enhanced
Spatio-Temporal Network (AEST). AEST is a Seq2Seq based hierarchical spatio-temporal
network which first fuses GCN and CNN to capture spatial dependencies in terms of geo-
graphical and semantic correlations, and then input the representations into LSTM to learn
temporal representations. In the data preprocessing stage, we convert original trajectories
data to image like data(e.g., Crowd flow image and OD image). The data representation of
crowd flow image and OD image are not effective to explicitly reflect the semantic spatial
correlations, due to the image like data may not follow the spatial smoothness property. To
capture the global features, we construct semantic graph. Then, To well model spatial and
temporal dependencies, we propose a hierarchical Convolutional LSTM (HC-LSTM) Net-
work to extract the OD representation. In our network, two auxiliary networks are proposed
to extract crowd flow and external features separately. Then we fuse the two types of features
to get a unified auxiliary-task representation. We incorporate this auxiliary-task representa-
tion into seq2seq model which deeply captures the relationships between crowd flow and
OD data to assist OD prediction. In this way, the OD data sparsity issue can be alleviated
by adding knowledge of crowd flow data and external information. We evaluate the pro-
posed method on large-scale real-world public datasets including taxi data of NewYork city
(NYC) and bike-sharing data of NYC. Experiment results show the competitive superiority
of the proposed model AEST by comparing with the state-of-the-art methods.

Our major contributions are summarized as follows.

– We propose a Auxiliary-tasks Enhanced Spatio-Temporal Network (AEST) which can
effectively integrate the crowd flow features and external context features to improve
OD prediction.

– We propose a Seq2Seq based hierarchical spatio-temporal network to model the
complex spatial similarity and dynamic temporal dependency in a unified way.

– We conduct experiments on several real world traffic datasets. The results show that
our model is consistently better than other state-of-the-art methods.
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The rest of the paper is organized as follows. Related works are reviewed in Section 2.
Section 3 outlines the preliminary concepts and formulates the problem. Section 4 details
the structure of the proposed model. Section 5 describes the experimental results. Finally,
Section 6 concludes the paper and discuss the future application.

2 Related work

Traffic prediction Traffic prediction becomes more and more popular due to the increas-
ingly available urban data (e.g., taxi trajectories) and rich applications (e.g., Uber).
Traditionally, statistic-based methods such as ARIMA and SVR, are used as traffic flow
prediction model. Cetin and Comert [3] put forward a regression model which included two
kinds of traffic incident detection algorithms for traffic flow prediction. ARIMA [13, 24]
is used to predict the short-term traffic flow. Some work improve the original ARIMA [4]
to study the change rules of the traffic flow, and the tuning proportion matrix is introduced
to improve the prediction accuracy of the short-term traffic flows. However, statistic-based
model does not have the ability to model the complex spatial and temporal correlations due
to their limited learning ability.

Crowd flow prediction Crowd flow prediction is a typical spatio-temporal data predic-
tion task which focuses on predicting the traffic over cell regions. In recent years, with the
advances of deep learning techniques, deep neural network based models [7, 26, 32] are
widely used in crowd flow prediction. A common practice in most existing work is treat-
ing entire city as images, and dividing the city into small regions which is similar to pixel
in image according to latitude and longitude, so that CNN [12] can be applied. In addition,
RNN like LSTM [9] is used to capture temporal correlation. Some studies treat the traffic
flow data of the entire city as images , and then applied CNN to model the spatial corre-
lations. Zhang et al. [29] proposed a CNN based model STResNet to forecast inflow and
outflow in each cell region of a city. Other studies combined CNN and RNN to model spatial
and temporal dependency simultaneously. Shi et al. [19] proposed a Convolutional LSTM
(ConvLSTM) Network to predict precipitation. Wang et al. [20] proposed a Seq2Seq frame-
work which named SeqST-GAN, which applied GAN and attention mechanism, to predict
multi-step crowd flows.

A convolutional neural network (CNN) is able to exploit the shift-invariance, local
connectivity, and compositionally of image data. However, traditional deep learning, like
CNNs, can just capture hidden state of Euclidean data. In real world, Non-Euclidean are
ubiquitous, especially in the form of graphs. So there is an increasing interest in extending
deep learning approaches for graph data which is called graph neural networks (GNNs).
Li et al. [14] proposed Diffusion Convolutional Recurrent Neural Network (DCRNN) to
predict traffic flow in a graph manner. Yu et al. [27] propose a novel deep learning frame-
work, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series
prediction problem in traffic domain. Diao et al. [6] proposed a dynamic spatio-temporal
GCNN for accurate traffic forecasting. In addition, [21] provided a comprehensive sur-
vey on deep learning based spatio-temporal data mining methods and applications. Lin
et al. [15] proposed a deep learning based convolutional model to predict crowd flows in
the metropolis. However, these works only focus on crowd flow prediction, but ignore the
Origin-Destination prediction.

OD Prediction Origin-Destination(OD) prediction which aims to predict the number of
passenger demands from one region to another, is beneficial to many real applications such
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as traffic management and ride-hailing services.Traditional methods [1, 2] mostly used
regression based approaches or other statistics-based approaches to predict or estimate the
dynamic vehicle OD matrix in a transportation network. Recently, [17] modeled the tem-
poral OD trip matrix as a four-order tensor consisting of four attributes: origin, destination,
vehicle type and time, and then proposed to use tensor decomposition technique to fore-
cast future traffic demand. Wang et al. [23] proposed a Grid-Embedding based Multi-task
learning(GEML) which applied GCN and LSTM modeling spatio-temporal dependency
simultaneously, to predict OD matrix and crowd flow. Liu et al. [16] proposed a Contextual-
ized Spatio-Temporal Network (CSTN) to predict the taxi demand between all region pairs
in future time interval. Chu et al. [5] developed a deep learning model called multi-scale
convolutional long short-term memory network (Multi-ConvLSTM) to predict the future
travel demand and the OD flows. Zhang et al. [31] proposed a multi-task deep learning
framework to predict the flow and OD simultaneously throughout a spatio-temporal net-
work MDL. Zhang et al. [30] proposed an indicator called OD attraction degree (ODAD)
for OD prediction.

However, most existing works consider OD prediction and crowd flow prediction as two
separate tasks while ignoring the high correlations between them. Although [31] proposed a
multi-task learning framework MDL to predict flow and OD at the same time. It just simply
concatenates the features of crowd flow and OD. How to effectively use the knowledge of
flow to assist OD prediction still remains an open problem.

3 Notations and problem definition

In this section, we will first give some notations to help us state the studied problem. Next,
a formal problem definition will be given.

Definition 1 Cell Region The city under study is divided into a C = m×n grid map based
on the latitude and longitude. Each grid represents an equal-sized cell region. We denote
all the cell regions as R = {

r1,1, . . . , ri,j , . . . , rm,n

}
, where ri,j represents the i-th row and

j-th column cell region of the grid map.

Definition 2 Flow Image Let P be a collection of crowd flow trajectories. Given a cell
region ri,j , the corresponding inflow and outflow of the crowds in time slot t can be defined
as

xt
in,i,j =

∑

Tr∈P
|{l > 1|gl−1 /∈ ri,j ∧ gl ∈ ri,j }|

xt
out,i,j =

∑

Tr∈P
|{l > 1|gl ∈ ri,j ∧ gl+1 /∈ ri,j }| (1)

where Tr : g1 → g2 → ... → gTr is a trajectory at time slot t in P , and gl is the geospatial
coordinate; gl ∈ ri,j means gl is within region ri,j ; | · | denotes the cardinality of a set.
The illustration of inflow and outflow is shown as Fig. 1[a]. Following [29], we denote the
inflow and outflow of all the cell regions in t as a crowd flow tensor X t ∈ Rm×n×2, where
X t

i,j,0 = xt
in,i,j ,X t

i,j,1 = xt
out,i,j .

Definition 3 OD Image We define OD demands at time slot t as a matrix Dt ∈ RN×N ,
where N = m × n is the number of regions and each elements dt

i,j denotes the sizes of
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flows starting form i-th cell region and ending at j-th cell region of R as illustrated in the
Fig. 1b. Based on the OD matrix Dt , we denote the OD demands of all the cell regions
named OD Image in time-slot t as a OD tensor where Mt ∈ Rm×n×N with N channels,
Mt

i,j,n denotes the number of OD demands from the n-th region to region ri,j .

Definition 4 Semantic GraphWe define the semantic spatial-temporal graph at time slot t
as Gt = {

V,Et
}
, whose nodes V are the cell regions. There is an edge et

i,j if there are flow
trajectories whose origin is vi and destination is vj . Note that the weight wt

i,j is set to 1.

Problem 1 Given the OD images
{
Mt ,Gt |t = 1, . . . , T

}
in the cell regions R over T

time-slots, the flow images
{
X t |t = 1, . . . , T

}
and the external information data E (e.g.,

weather, holiday, etc.), our goal is to predict the OD imageMt+1 in the future.

4 Methodology

4.1 Model framework

The overall architecture of our model AEST is illustrated in Fig. 2. The model input consists
of two parts, the OD imageM and semantic graph G. OD Encoder first extracts the spatio-
temporal features of OD data using HC-LSTM. The residual connection [8] is used in OD
Encoder to avoid overfitting. Then crowd flow images and external features are fed into
Contextual Network to learn the latent features respectively. Next, the crowd flow features
and external features are fused with a concatenation operation, which can be represented as
contextual features. Finally, we combine OD features and contextual features, and feed it
into OD Decoder to predict future OD demands.

4.2 Data preprocessing

Based on Definition 2-4, given the crowd flow trajectories P , we first need to convert them
to three types of data forms, flow images, OD images, and Semantic graphs. Following the

…

…

-

…

-

+

-

+ ×

-

…

-

…

Fig. 2 The framework of our model
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Fig. 3 Illustration of graph construction

previous work [29], we first model the crowd flow images with the size of m × n × 2 as
time-varying spatial maps which can be represented as time-ordered sequence of tensors, so
that convolution operation can be applied for feature learning. similarly, we construct OD
image based on origin and destination of the raw trajectories with the size of m × n × C,
where C = m × n. The illustration of semantic graph construction is shown in Fig. 3.
To capture the global features, we construct Semantic Graph G = {V, A} based on the
Definition 4, where the node V of G are the cell regions, and A is the adjacent matrix
of G.

4.3 Contextual network

As mentioned above, the OD matrix is very sparse as many entries are zeros. To overcome
the problem of data sparsity, we propose a contextual network to effectively leverage the
crowd flow features and external features which are proven to be helpful to OD predic-
tion [23]. In the phase of flow feature extraction, we stack ConvLSTM layers to encode
the spatio-temporal dependencies with the help of batch normalization [10] and Relu.
Meanwhile, in the phase of external feature extraction, first we transform each external
attribute into a low-dimensional vector by feeding them into different embedding lay-
ers, and then Stacked Fully Connected(FC) layers are used to model external feature.
Finally, the crowd flow features and external features are integrated and form the contextual
features.

ConvLSTM ConvLSTM combines CNN and LSTM, and is widely used in various spatio-
temporal prediction tasks, such as traffic accident prediction, crowd flow prediction, and
precipitation prediction. The input and hidden state of ConvLSTM in a time-stamp are all
3D tensors, and the convolution operation is conducted for both input-to-state and state-to-
state connection. More specifically, ConvLSTM does the convolution operation on the data
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in each time-stamp(i.e.,X t ) first, and then passes them along the time span [t−k+1, . . . , t]
through LSTM module, which can be formulated as:

it = σ
(
WX i ∗ X t + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi

)
,

ft = σ
(
WXf ∗ X t + Whf ∗ Ht−1 + Wcf ◦ Ct−1 + bf

)
,

Ct = ft ◦ Ct−1 + it ◦ tanh
(
WX c ∗ X t + Whc ∗ Ht−1 + bc

)
,

ot = σ
(
WXo ∗ X t + Who ∗ Ht−1 + Wco ◦ Ct + bo

)
,

Ht = ot ◦ tanh (Ct ) , (2)

where ‘∗’ denotes the convolution operator , ‘◦’ denotes the Hadamard product, σ is the
logistic sigmoid function, it , ft , Ct ot , and Ht are input gate, forget gate, memory cell,
output gate and hidden state, and Wαβ(α ∈ {X , h, c} , β ∈ {i, f, o, c}) are the parameters
of convolutional layers in ConvLSTM.

Fully Connected Layer Fully Connected (FC) Layer is adopted to encode external informa-
tion (e.g., Weather, Holiday and etc.) representation. The formula of FC can be represented
as:

et = FC(Et ) = Wet × Et + bEt (3)

where Wet , bet are parameter of FC layer and bias separately. Finally, the concatenation of
Ht and et gives the final embedding for auxiliary tasks, i.e., Hcon = [Ht, et ]. We denote the
Contextual Network as ContextNet (·).

4.4 OD inference network

It is non-trivial to model spatial and temporal dependencies of OD data because of their
variability. We propose a Seq2Seq based OD Inference Network(ODIN) is shown at the
bottom of Fig. 2. First, we feed OD Image M and Semantic Graph G into OD Encoder
to get high-dimensional OD representation HOD . Second, HOD and Hcon are connected in
an effective way which is denoted by Hall in order to tackle the problem of data sparsity.
Finally, Hall is input into OD Decoder to predict next time-slot OD demands. In addition,
the novel Hierachical Convolutional Long and Short Term Memory(HC-LSTM) network is
proposed to encode spatio-temporal embedding effectively.

4.4.1 OD encoder

The OD images, and semantic graphs are input into the OD Encoder for OD feature learning.
As the structures of images and graphs are totally different, they are not able to be processed
by a unified neural network structure. We propose a hierarchical convolutional LSTM(HC-
LSTM) network to address this problem. HC-LSTM first learns the data representations of
images and graphs separately, and then fuses them together.

HC-LSTM As illustrated in the upper right of Fig. 2, HC-LSTM adopts stacked CNN layers
and stacked GCN layers combined with LSTM model to learn the latent representations of
OD images and Semantic graph. Here we use 2-dimensional convolutions on the tensors
of OD images to capture the geographical spatial correlations. To more broadly capture the
spatial correlations(i.e., Semantic spatial correlations), we construct semantic graph based
on the OD demands among the regions, and perform graph convolutional operation. Then,
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the two types of data representations are integrated which is input into a LSTM layer to
learn temporal dependency. The formula of i-th HC-LSTM is shown as follows:

Hi
conv = CNNi (Mt , WM),

H i
gcn = GCNi (Gt ,WG),

H i
ST = LSTMi (H

i
conv ⊕ Hi

gcn) (4)

where Hi
conv and Hi

gcn are data representations of OD image and semantic graph respec-
tively learned by i-th layer CNNi and GCNi . The GCNi operator is as follows:

GCNi (Gt ,WG) = EtXt
GWG (5)

where Et is the adjacency matrix of graph Gt , Xt
G is the graph feature. ⊕ denotes the

concatenation operation over Hi
conv and Hi

gcn. We create the inverse operation of the node

creation over Hi
gcn, so that it can be concatenated with Hi

conv . After concatenating two types

of data representations, the final representations learned through LSTM are denote as Hi
ST .

The OD Encoder is denoted as ODEncoder(·).

4.4.2 OD decoder

The learned contextual features and OD features are then input into OD Decoder to decode
the data representation for prediction. As shown in the bottom right of the Fig. 2, the
OD Decoder first integrates the OD features and contextual features, and then inputs the
features into stacked HC-LSTM module, followed by Batch-normalization(BN) layer and
Relu. First, we integrate the OD features and contextual features as follows:

Hdec = (T anh(Hcon))
T × (Mt + HST ) (6)

where ‘+’ represents sum operation across channels which is also named residual operation,
HST is OD feature andHcon is contextual feature. Then the featureHdec is input into stacked
HC-LSTM layer coupled with BN and Relu to learn high-dimensional representations for
prediction. We denote the OD Decoder as ODDecoder(·).

4.5 Overall objective function

In the final prediction step, the objective function of this task is as follows:

Loss = 1

N

N∑

i=1

||Ŷi − Yi ||2 (7)

whereN is the training sample size, Ŷi is the prediction and Yi is the ground truth. We aim to
minimize this prediction error via back-propagation and gradient descent. The pseudo-code
of the algorithm is shown in Algorithm 1.
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5 Experiment

5.1 Dataset and experiment setup

5.1.1 Datasets

We select two large datasets which are widely used in spatio-temporal prediction for
evaluation: BikeNYC and TaxiNYC. The details of the two datasets are introduced as follows.

BikeNYC This dataset contains more than 9 million bike trips in New York from January
2015 to December 2015. In total, NYCBike has established over 600 bike stations and
10,000 bikes in New York. Each bike trip contains the trip duration, start/end station IDs,
start/end timestamps, station Latitude/Longitude and bike ID. For this dataset, we use the
first 11 months data for training, and the last month data for testing.

TaxiNYC This dataset contains over 160 million taxicab trip records in New York from
January 2015 to December 2015. On average, there are about 13 million trip records each
month. Each taxi trip record includes fields capturing pick-up and drop-off dates/times,
pick-up and drop-off locations, trip distances, and etc. For this dataset, we also use the
first 11 months data for training and validating, and the last month data for testing.

We also use some external features including weather conditions, holidays and POI. Pre-
cipitation, snow, temperature and etc, are included in weather conditions. Whether the day
is weekday, weekend or holiday is also considered as the people mobility patterns on holi-
days and regular days are quite different. The data description on the two datasets are shown
in Table 1.

5.1.2 Baselines

We compare the proposed AEST with the following 6 baseline methods including ARIMA,
ConvLSTM [19], STResNet [29], GCRN [18], GEML [23] and MDL [31].
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Table 1 Dataset description

Dataset BikeNYC TaxiNYC

Data Type Bike Trip Taxi Trip

Latitude 40.67∼40.77 40.67∼40.77

Longitude -74.02∼73.95 -74.02∼73.95

Time span 1/1/2015∼31/12/2015 1/1/2015∼31/12/2015

Time interval 1 hour 1 hour

Grid map size (16, 16) (16, 16)

Trajectory data

# of trips 9 million 160 million

# of time intervals 8,754 8,754

External features

Weather conditions 6 types (precipitation, snow, temperature, etc.)

Days weekday, weekend, holiday etc.

– ARIMA Auto-Regressive Integrated Moving Average(ARIMA) is a classic statistic-
based method for time series prediction.

– ConvLSTM ConvLSTM is a variant of LSTM which contains a convolution operation
inside the LSTM cell. ConvLSTM considers both geographical spatial and tempo-
ral dependency of spatio-temporal data, and is widely used in many spatio-temporal
prediction tasks.

– STResNet STResNet stacks convolutional layers and residual unites to capture the spa-
tial dependency and short/long-term temporal dependency. External features are also
incoporated into STResNet.

– GEML Grid-Embedding based Multi-Task Learning is a multi-task learning frame-
work that predicts the crowd flow and flow OD simultaneously similar to our work. It
uses grid embbeding and multi-task LSTM to capture the spatio-temporal representa-
tions.

– MDL MDL is a recent state-of-the-art multi-task learning framework for predicting
both the node flows and edge flows on a spatial-temporal network.

To further evaluate the effectiveness of basic component of our model, we also compare the
full version AEST with the following variants:

– No-ContextNet This model removes the contextual network. By comparing with it, we
test whether the proposed ContextNet is useful to solve the problem of data sparsity
and improve the prediction performance.

– No-GCN This model does not consider the features of the semantic graph. Through
comparing with this model, we test whether integrating the semantic graph is helpful to
capture complex spatial features.

5.1.3 Implement details

We implement our model with Pytorch framework on NVIDIA Tesla M40 GPU. The model
parameters are set as follows. The data size of OD images is 5× 16× 16× 256, where 5 is
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the previous time slot length used for prediction, 16 × 16 is the size of the cell regions, and
256 is the number of channels which represents OD demands between each region pairs.

The input flow data size is 5 × 16 × 16 × 2, where 2 is the numbers of channels that
represents inflow and outflow. The learning rate and batch size are set to 0.0001 and 32,
respectively. The structure of model output is 1 × 16 × 16 × 256. The baseline methods
are implemented based on the original papers or we use the publicly code. Also, the set of
parameters are followed by original paper.

5.1.4 Evaluation metrics

Mean Absolute Error(MAE), and Root Mean Square Error(RMSE) are adopted as the
evaluation metrics defined as follows:

MAE = 1

n

n∑

t=1

||Ŷ t − Y t ||, RMSE =
√√√√1

n

n∑

t=1

||Ŷ t − Y t ||2 (8)

where Ŷ t is the prediction, and Y t is the ground truth.

5.1.5 Loss curve

Figure 4 shows the training loss curves of the algorithm on the two datasets. one can see that
the the AEST converges after about 50 epochs on both datasets which means it converges
quickly. The loss curve of NYCTaxi drops smoothly, while the loss curve of NYCBike does
not drop smoothly. This is mainly because the bike data is more sparse than taxi data. In the
following experiment, we train AEST on both datasets with 50 epochs.

5.2 Comparison with baselines

Table 2 explicitly shows the performance comparison among different baselines on the two
datasets. It shows that the proposed AEST achieves the best performance among all the
method on both tasks which is highlighted with bold font. It shows that traditional statistics-
based method ARIMA achieves the worse performance among all the methods in both cases.
It is not surprising because ARIMA only uses the time series data of each region, but ignore
the spatial dependency. On NYCBike dataset, compared with the best results achieved by
baselines, AEST reduces RMSE of OD prediction from 0.115 (ConvLSTM) to 0.104, and

Fig. 4 Loss curve of AEST on NYCTaxi and NYCBike
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Table 2 RMSE and MAE
comparison among different
methods

Model RMSE MAE

NYCBike NYCTaxi NYCBike NYCTaxi

ARIMA 0.964 1.884 0.148 2.545

ConvLSTM 0.112 0.459 0.035 0.132

STResNet 0.138 0.834 0.027 0.418

GEML 0.147 0.670 0.024 0.136

MDL 0.154 1.103 0.041 0.950

AEST 0.104 0.454 0.021 0.126

MAE from 0.024(GEML) to 0.021, respectively. On NYCTaxi dataset, AEST improves the
RMSE from 0.459 (ConvLSTM) to 0.456, andMAE from 0.132 (ConvLSTM) to 0.126. The
RMSE and MAE of NYCBike are much smaller than NYCTaxi, because that the bike trips
are much sparser than taxi trips. In addition, the OD of taxi trips can be anywhere in the city,
while the OD of bike trips is fixed(e.g., bike stations). The results in Table 2 show that the
proposed AEST is superior to existing state-of-the-art spatio-temporal learning approaches.

5.3 Comparison with variationmodels

To study the effect of different components in AEST on the model performance, we conduct
experiments by comparing AEST with its variants No-ContextNet, and No-GCN. The result
is shown in Table 3. One can see that the ContextNet and GCN are useful to the model in
that losing any one of them will increase the prediction error. On both datasets, ContextNet
seem more important which supports our point of view that incorporating flow information
will be helpful to solve the problem of data sparsity and improve model performance. In
addition, the semantic graph is also useful for both datasets. Combining these components
together achieves the lowest RMSE and MAE, demonstrating that all of them are useful to
the studied problem.

5.4 Case study on prediction vs ground truth

To further intuitively illustrate how accurately our model can predict OD demands, we visu-
alize the predicted OD demands and ground truth in two figures as depicted in Figs. 5 and 6.
Due to the data sparsity of NYCBike data, we show the case study on NYCTaxi. The Fig. 5
shows the OD demands from r8,14 to r6,12. One can see that the prediction curve can accu-
rately trace the ground truth curve which demonstrates the effectiveness of the proposed

Table 3 RMSE and MAE
comparison with variant methods Dataset Methods RMSE MAE

NYCBike No-ContextNet 0.108 0.032

No-GCN 0.107 0.023

AEST 0.104 0.021

NYCTaxi No-ContextNet 0.465 0.130

No-GCN 0.456 0.127

AEST 0.454 0.126
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Fig. 5 OD demands prediction vs ground truth: r8,14 → r6,12

model. The temporal trend of OD demands is also well understood by our model . Our
model can perfectly capture the periodicity of the data, which is largely due to the usage
of auxiliary tasks. However, it is obvious from the picture 5 that our model is not good at
capture the sudden changes of OD demands. To further demonstrate the superiority of the
proposed model, we show the case study on OD Matrix prediction vs ground truth at differ-
ent time-slots on December 30, 2015. The OD matrix with the size C × C (e.g., 256× 256)
is converted by OD image, where C = m × n is the number of all regions. We choose four
time-slots which are 8:00 am, 10:00 am, 14:00 pm, and 18:00 pm respectively. From the
picture 6, the prediction of OD matrix very matches the ground truth. The results shows the
proposed AEST model can effectively predict OD demands across the city.

6 Conclusion and future work

In this paper, we proposed a novel Auxiliary-tasks Enhanced Spatio-Temporal Net-
work(AEST) to predict OD demands via learning crowd flow and external information as
auxiliary tasks. The novelty of the model lies in the usage of contextual network to facilitate
OD prediction. An end-to-end solution is proposed to effectively learning sufficient auxil-
iary features for OD prediction to address the data sparsity issue. To effectively capture the
complex spatial temporal dependency, a Hierarchical Convolutional LSTM(HC-LSTM) is

Fig. 6 OD Matrix prediction vs ground truth at different time-slots on December 30, 2015(left to right: 8:00
am, 10:00 am, 14:00 pm, 18:00 pm)
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designed. We evaluate the proposed model on two real large datasets collected from New
York. The results demonstrate the superior performance of the model on OD prediction.

In the future, we will explore how to design a more accurate model to capture sudden
changes of OD demands. It also would be interesting to further apply the proposed model
to more spatio-temporal tasks in different application scenarios such as traffic prediction,
crime prediction and traffic accident detection. There are three reasons for the model gener-
alization. First, the two data formats of OD and the other spatial temporal data(e.g., traffic
data) are similar. We can convert the OD data into spatial maps or graphs. Second, the con-
textual information is helpful to spatial temporal prediction, such as traffic prediction, which
is demonstrated in previous works [28]. Third, the proposed model containing HC-LSTM
and ConvLSTM is general for all spatial-temporal tasks to learn the spatial and temporal
representations.
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