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Abstract
In hyperspectral image (HSI) analysis, high-dimensional data may contain noisy, irrelevant
and redundant information. To mitigate the negative effect from these information, feature
selection is one of the useful solutions. Unsupervised feature selection is a data preprocess-
ing technique for dimensionality reduction, which selects a subset of informative features
without using any label information. Different from the linear models, the autoencoder is
formulated to nonlinearly select informative features. The adjacency matrix of HSI can be
constructed to extract the underlying relationship between each data point, where the latent
representation of original data can be obtained via matrix factorization. Besides, a new fea-
ture representation can be also learnt from the autoencoder. For a same data matrix, different
feature representations should consistently share the potential information. Motivated by
these, in this paper, we propose a latent representation learning based autoencoder feature
selection (LRLAFS) model, where the latent representation learning is used to steer feature
selection for the autoencoder. To solve the proposed model, we advance an alternative opti-
mization algorithm. Experimental results on three HSI datasets confirm the effectiveness of
the proposed model.
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1 Introduction

Hyperspectral imagery is commonly acquired from hyperspectral sensors and typically
denoted as a data cube, where each pixel consists of plentiful spectral information to reflect
the specific land cover [20, 38]. In general, hyperspectral image (HSI) data are collected
from various spectral channels and represented as high-dimensional features, which may
contain noisy, irrelevant and redundant information [23, 25]. To tackle the remote sensing
problems with such data, the Hughes phenemenon may happen and the performance may
be degraded for the limited number of instances with plentiful redundant features.

To avoid the Hughes phenemenon induced by high-dimensional hyperspectral data,
dimensionality reduction should be taken into consideration [8, 15, 24]. Being a dimension-
ality reduction technique, feature selection is conducted according to a specific criterion,
which can locate the discriminative feature subset. In [29], the multiobjective feature
selection method for hyperspectral data is developed on a novel discrete sine cosine algo-
rithm, where the redundancy is minimized and the relevance is maximized for the selected
hyperspectral features. In [28], the high dimensional model representation approach for
hyperspectral imagery calculates the class labels of auxiliary training instances by a k-
nearest neighbor (KNN), which are used for ranking the importance of features. In [26],
the Gabor hyperspectral feature selection model is related to symmetrical uncertainty and
Markov blanket, where the extracted Gabor features are firstly ranked by the classification
information and then evaluated their redundancy. In [6], the fast forward feature selection
method is based on a Gaussian mixture model, which improves the classification accuracy
via k-fold cross validation to select discriminative spectral features. However, the above
feature selection methods for hyperspectral imagery are linear models and required the
explicit labels. In reality, it is difficult and expensive to acquire abundant label information
for hyperspectral data. Besides, the nonlinear characteristic of hyperspectral data is hard to
extract by a linear model.

To address the aforementioned problems, in this paper, we propose a latent representa-
tion learning based autoencoder feature selection (LRLAFS) model, which can nonlinearly
select the informative hyperspectral features for classification. The autoencoder is an unsu-
pervised neural network model for efficient data codings [13]. By imposing the �2,1-norm
regularization on the network parameters connecting the input and hidden layers, the autoen-
coder can be used to perform feature selection [11]. To steer the feature selection process,
the adjacency matrix of hyperspectral data is decomposed to obtain the latent representa-
tion of original data, which is used for approximating a new feature representation learnt by
the autoencoder. To solve the proposed model, a helpful alternative optimization algorithm
is advanced. Experiments on three HSI datasets confirm the effectiveness of the proposed
model.

The rest of this paper is structured as follows. Related work is briefly introduced in
Section 2. Section 3 advances the proposed latent representation learning based autoencoder
feature selection model, followed by the optimization algorithm in Section 4. Experiments
and comparisons on HSI data are demonstrated in Section 5. We finally conclude the paper
in Section 6.
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2 Related work

2.1 Unsupervised feature selection

Being a data preprocessing technique, feature selection is used for dimensionality reduction,
which requires less memory space and alleviates the computational cost [10, 37]. Accord-
ing to the availability of label information, feature selection methods are grouped into
the supervised, semi-supervised and unsupervised methods. Unsupervised feature selection
approaches are required to preserve the intrinsic geometric data structure and select a subset
of informative features without using any label information [22, 30]. Recently, a large num-
ber of unsupervised feature selection approaches have been proposed, which are broadly
split into the filter, wrapper and embedded approaches according to previous literatures [10,
19].

The filter approaches design an evaluation measure to independently score the impor-
tance of features. This is a simple kind of strategy for feature selection. The variance score is
the simplest measure to select useful features with the assumption that better representation
ability is along with larger variance. The laplacian score (LS) is a measure to select discrim-
inative features for locality preservation of data with the assumption of manifold structure
[12]. Filters usually require less computational complexity than wrappers, but are indepen-
dent of predictive model. The wrapper approaches score the significance of each feature
accompanied by a predictive model. Clustering and classification are commonly employed
as predictive models in wrappers. The multi-cluster feature selection (MCFS) method uti-
lizes a regression algorithm to promote unsupervised feature selection [4]. In addition, the
embedded approaches are trained by all features and conduct feature selection during the
model learning process, where the computational complexity is between filters and wrap-
pers. Existing embedded approaches exploit the potential information and correlation to
distinguish informative features by imposing different penalty terms for different purposes,
such as sparsity restriction [39], nonnegative restriction [32] and redundancy control [17].

2.2 Autoencoder

The autoencoder [9, 14] is a special unsupervised neural network framework for learning
auxiliary feature representations, where the same neurons are in the output layer as inputs to
reconstruct the original input data instead of determining their predicted the target values.
During the learning process, the autoencoder firstly converts the input data to an auxiliary
encoded representation and then decodes it to reconstruct a representation that approximates
to the original input data as possible [36]. The above descriptions are respectively the encod-
ing and decoding procedures, which can be also regarded as a nonlinear self-representation
model. With the special learning process, the autoencoder can extract the discriminative
encoded representation via the hidden layer, which contains the underlying information
inherent in the original data. In diverse applications, different kinds of autoencoders are
utilized to extract informative feature representations for further learning [3, 34].

In addition to feature extraction, the autoencoder can be also used to perform feature
selection [1, 5]. When integrating a feature selection regularized term into the autoencoder,
the network weights will be sparse in row to fulfill feature selection, which is shown as in
Fig. 1. Since the relationships of features may be linear or nonlinear, the conventional linear
feature selection methods may ignore the nonlinear characteristic and can not correctly cap-
ture the real relationships among features. In contrast, autoencoder based models can select
informative features by excavating both linear and nonlinear information among features. In
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Fig. 1 Autoencoder network for feature selection. The blue dotted lines mean that the features are less
important in the learning task, which can fulfill feature selection

[31], the feature selection guided autoencoder (FSAE) method is proposed, which integrates
an autoencoder and a general feature selection regularizer to distinguish relevant and irrel-
evant features. In [11], the autoencoder feature selection (AEFS) approach is advanced by
imposing the �2,1-norm regularization on the connecting parameters between the input and
hidden layers, which can retain the most discriminative information among features. Fol-
lowing the previous work [11], the graph regularized autoencoder feature selection (GAFS)
model [7] is proposed by adding the local data geometric structure regularization, which
achieves promising performance. The above autoencoder based methods are superior to
some linear approaches on feature selection, which mainly attribute to the special encoding
and decoding procedures.

3 Proposedmethod

The autoencoder is an extraordinary unsupervised neural network learning model, where
the output layer is to reconstruct the original inputs instead of predicting their target val-
ues [33]. Here, we employ a typical autoencoder network with only one hidden layer as an
example. Given a hyperspectral data matrix X ∈ R

N×d , the learning process of autoencoder
is separated into two components: an encoder to transform the original data into a different
representation f (X) = σ1(W(1)X + B(1)) and a decoder to convert the new representation
into the reconstructed input data X̂ = g(f (X)) = σ2(W(2)f (X)+B(2)). In the above learn-
ing process, σ1 and σ2 are respectively set to be nonlinear and linear activation functions
for the hidden and output layers, H = {W(1),W(2),B(1),B(2)} are the network weights to
connect two adjacent layers of the autoencoder and the biases for the hidden and output
layers.
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During the learning process, the autoencoder aims at minimizing the difference between
the original inputs and the reconstructed data, which is represented as the following
equation:

min
H

||X − g(f (X))||2F (1)

where || · ||F is the Frobenius norm. From (1), we can learn that the autoencoder encodes
the data matrix X to generate a representation matrix f (X) and then decodes it to get the
reconstructed data matrix X̂ = g(f (X)). According to nonlinear activation function used
in the hidden layer, the autoencoder is normally treated as a nonlinear self-representation
learning model.

When using the autoencoder model of (1), all features are adopted to solve hyperspectral
image applications. However, the original hyperspectral data may contain noisy, irrelevant
and redundant information. To eliminate the negative effect from these information, the
associated network parameters (i.e., W(1)) of the autoencoder should be set as zeros or
small values. This is typically regarded as feature selection [11]. To this end, the �2,1-norm
constraint imposed on W(1) is as follows:

||W(1)||2,1 =
d∑

i

||w(1)
i ||2 =

d∑

i

√√√√
l∑

j

(w
(1)
ij )2. (2)

where w
(1)
i is the ith row vector and w

(1)
ij is the ith row and j th column element in matrix

W(1). Equation (2) can produce a row-sparse matrix W(1), where the ith row vector w
(1)
i

is to measure the importance of the ith feature. Therefore, the autoencoder based feature
selection model is formulated as follows:

min
H

||X − g(f (X))||2F + α||W(1)|2,1 (3)

where α is a parameter to balance the reconstruction loss and the �2,1-norm regularizer.
In general, the overfitting problem and the slow convergence issue commonly occur

on neural network learning models. To avoid overfitting and promote convergence for
an autoencoder, a weight decay regularization is imperative. By adding the weight decay
regularization, the above learning model is denoted as follows:

min
H

||X − g(f (X))||2F + α||W(1)||2,1 + β

2∑

i=1

||W(i)||2F (4)

where β is a parameter for the weight decay regularization. Equation (4) describes a basic
autoencoder feature selection model, which can effectively select discriminative features.

In an autoencoder, f (X) is the representation encoding from X, which denotes the latent
compact or sparse information. In reality, the latent representations of X are various accord-
ing to different learning scenarios. Uncovering latent representations from the original data
benefits diverse learning tasks and has gained increasingly attention [27]. For networked
data, the link information reflects that instances often connect to each other for their under-
lying relationships. Usually, latent representations can be learnt from the link information
via a symmetric nonnegative matrix factorization model [18]. For hyperspectral image data,
the similarity matrix A can be constructed by a KNN graph, which describes the cor-
relation between instances. Motivated by this, we employ latent representation learning
to steer autoencoder based feature selection. By decomposing A with symmetric matrix
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factorization, we can get the following equation:

min
V

||A − VVT||2F ; (5)

where V is the latent representation of X. Equation (5) captures the underlying data infor-
mation and represents the original data in a different representation. For a same data matrix,
different latent representations should consistently share the same information [27]. There-
fore, the latent representations f (X) and V should be consistent. To minimize the difference
between f (X) and V, we can obtain the following equation:

min
H,V

||f (X) − V||2F . (6)

Equation (6) builds a connection between two different latent representations. Equa-
tions (4)–(6) represent the important components of the proposed model. It is clear that
these separated equations cannot guarantee an optimal result. We integrate (5) and (6) into
the basic model of (4). Therefore, the formulation of our proposed model is represented as
the following equation:

J (H,V) = min
H,V

||X−X̂||2F +α||W(1)||2,1+β

2∑

i=1

||W(i)||2F + γ ||f (X)−V||2F +λ||A−VVT||2F
(7)

During the learning process, we can select informative features from the advanced tech-
niques of autoencoder and latent representation learning. Once W(1) is learned, we can
sort all features to select the top ranked features by means of the descending order of
||w(1)

i ||2 (i = 1, ..., d).

λ
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4 Optimization algorithm

Since the proposed model is based on an autoencoder network to perform feature selection,
it is hard to solve (7) for the complex nonlinearity. Therefore, the gradient descent method
[2] is employed as an alternating optimization algorithm to iteratively update the network
parameters H = {W(1),W(2),B(1),B(2)} and the latent representation V. To calculate the
derivatives of (7) w.r.t variables W(1), W(2), B(1), B(2) and V, the calculation of the error
terms for the output and hidden layers is required for the chain rule. Specifically, the error
terms of the output and hidden layers are determined as follows:

δ(o) = 2(X − g(f (X))) � g′(f (X)); (8)

δ(h) = (δ(o)W(2)T
) � f ′(X); (9)

where � denotes the element-wise product. Given the above error terms in (8) and (9), the
derivatives of (7) w.r.t different variables can be consecutively determined.

1) Derivative w.r.tW(2): With a fixed W(1), B(1), B(2) and V, the optimization problem of
(7) w.r.t W(2) can be rewritten as J (W(2)) = ||X− X̂||2F + β||W(2)||2F . The derivative
w.r.t W(2) is given as:

∂J
∂W(2)

= Z(o)T
δ(o) + βW(2). (10)

2) Derivative w.r.t B(2): With a fixed W(1), W(2), B(1) and V, the optimization problem
of (7) w.r.t B(2) can be rewritten as J (B(2)) = ||X − X̂||2F . The derivative w.r.t B(2) is
given as:

∂J
∂B(2)

= δ(o) (11)

3) Derivative w.r.tW(1): With a fixed W(2), B(1), W(2) and V, the optimization problem of
(7) w.r.t W(1) can be rewritten as J (W(1)) = ||X− X̂||2F +α||W(1)||2,1 +β||W(1)||2F +
γ ||f (X) − V||2F . The derivative w.r.t W(1) is given as:

∂J
∂W(1)

= XTδ(h) + αDW(1) + βW(1) + 2γXT ((f (X) − V) � f ′(X). (12)

In (12), D is a diagonal matrix updated in each iteration, where each diagonal element
is calculated as dii = 1

2||w(1)
i ||2

.

4) Derivative w.r.t B(1): With a fixed W(1), W(2), B(1) and V, the optimization problem
of (7) w.r.t B(1) can be rewritten as J (B(1)) = ||X − X̂||2F + γ ||f (X) − V||2F . The
derivative w.r.t W(1) is given as:

∂J
∂B(1)

= δ(h) + 2γ (f (X) − V) � f ′(X). (13)

5) Derivative w.r.t V: With a fixed W(1), W(2), B(1) and B(2), the optimization problem
of (7) w.r.t V can be rewritten as J (V) = γ ||f (X) − V||2F + λ||A − VVT||2F . The
derivative w.r.t W(1) is given as:

∂J
∂V

= 2γ (f (X) − V) + 4λ(A − VVT)V. (14)
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Given the above derivatives, a novel alternative optimization algorithm is devised to alter-
natively update variables W(1), W(2), B(1), B(2) and V. The update rule of the alternating
solution for the proposed model is provided as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(1) := W(1) − η
∂J

∂W(1)

B(1) := B(1) − η
∂J

∂B(1)

W(2) := W(2) − η
∂J

∂W(2)

B(2) := B(2) − η
∂J

∂B(2)

V := V − η
∂J
∂V

(15)

where η is the learning rate for the update rule. The pseudocode of the proposed method is
exhibited in Algorithm 1.

5 Experiments and results

5.1 Hyperspectral data

To validate the performance of different feature selection approaches, three public HSI
datasets1 are utilized for experimental studies, including Indian Pine, University of Pavia
and Salinas Scene.

The Indian Pine dataset was acquired by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor over Northwest Indiana. This scene consists of 145 × 145 pixels
with 200 valid spectral bands and records 16 land covers of different plants. The false color
composition and ground truth for the Indian Pines dataset are respectively shown in Figs. 2a
and d.

The University of Pavia dataset was captured by the Reflective Optics System Imaging
Spectrometer (ROSIS-3) sensor to record a scene from the University of Pavia, Italy. This
scene contains 610×340 pixels with 103 informative spectral bands and includes 9 different
land covers. The false color composition and ground truth for the University of Pavia dataset
are respectively shown in Figs. 2b and e.

The Salinas Scene dataset was collected by the AVIRIS sensor to record a scene from
Salinas Valley, California, USA. There are 512 × 217 pixels with 204 useful spectral bands
in this scene, which is associated with 16 diverse land covers. The false color composition
and ground truth for the Salinas Scene dataset are respectively shown in Figs. 2c and f.

5.2 Comparisonmethod and experimental setting

In the experiments, the proposed LRLAFS method is compared with the following methods.
SpaBS is based on sparse representation to perform feature selection, where the histogram of
the coefficient matrix decomposed from hyperspectral image data is calculated to select the
most discriminative features [16]. AEFS selects informative features by combining autoen-
coder regression and group lasso tasks, which can take full advantage of linear and nonlinear

1http://alweb.ehu.es/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes
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(a) (b) (c)

(d) (e) (f)

Fig. 2 The false color composition (in the upper row) and ground truth (in the bottom row) of three
hyperspectral image datasets. a and d Indian Pines. b and e University of Pavia. c and f Salinas Scene

information among features [11]. GAFS integrates manifold learning into the basic autoen-
coder feature selection model, where spectral graph analysis is considered into the learning
process for local data geometry preservation [7]. AllFeas is the baseline method with all
original features for hyperspectral image classification.

For a fair comparison, k-nearest neighbors (KNN) [21] is employed as the classifier to
validate all compared methods. The parameter k in KNN is empirically set to be 5. Over-
all accuracy (OA), average accuracy (AA) and Kappa coefficient are popularly used as
evaluation measures in HSI classification. The experiments are conducted on a computer
with Intel(R) Core(TM) 2.90 GHZ CPU and 8 GB RAM. In the proposed LRLAFS model,
parameters α, β, γ and λ are tuned from {10−3, 10−2, ..., 103} by means of a grid-search
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Table 1 Experimental comparison of different feature selection approaches on the Indian Pines dataset

Class AllFeas SpaBS AEFS GAFS LRLAFS

1 69.57 68.43 71.74 67.39 86.96

2 66.04 67.25 62.75 67.37 71.43

3 64.58 65.88 61.81 65.18 71.93

4 47.68 60.02 51.48 52.32 54.85

5 91.10 89.14 88.61 92.55 92.13

6 95.34 94.62 92.74 93.97 95.62

7 89.29 88.29 75.00 89.29 89.29

8 98.54 98.94 98.33 98.54 98.12

9 75.00 76.72 65.00 50.00 70.00

10 76.75 74.83 73.77 76.34 83.02

11 77.52 75.02 76.17 77.39 82.48

12 59.87 53.17 54.30 52.61 67.96

13 95.61 94.81 93.17 97.56 98.05

14 92.09 92.33 91.86 93.20 92.96

15 53.89 52.05 48.96 47.41 53.11

16 92.47 92.43 92.47 92.47 92.47

OA(%) 77.37 76.91 75.23 77.07 81.38

AA(%) 77.83 76.34 74.88 75.85 81.27

Kappa 0.7418 0.7363 0.7172 0.7383 0.7875

strategy. Besides, the numbers of hidden neurons are tuned from {5, 15, 25, ..., 95}, while
the numbers of selected features are varying from {3%, 6%, 9%, ..., 66%} of the number
of features. The best results presented in the following sections are achieved by setting the
optimal parameters [35].

5.3 Experimental results

The experimental results of all competing feature selection approaches on the three HSI
datasets are discussed in this section.

(1) Comparison for the Indian Pines data: The experimental results on the Indian Pines
data are summarized in Table 1. From Table 1, the proposed LRLAFS method is supe-
rior to AllFeas and other competing methods are inferior to AllFeas. It demonstrates
that the proposed LRLAFS method can select informative features and remove unin-
formative features from the original Indian Pines data, which benefits the classification
performance. While SpaBS, AEFS and GAFS may select uninformative features from
the original feature space, which degrades the further classification performance. For
autoencoder based models, AEFS, GAFS and LRLAFS show the increasing perfor-
mance on feature selection, which mainly attributes to the manifold learning in GAFS
and the latent representation learning in LRLAFS. Accordingly, the classification
maps of all competing approaches are presented in Fig. 3, which are consistent with
our previous observation.

(2) Comparison for the University of Pavia data: We report the experimental results on
the University of Pavia data in Table 2. According to Table 2, AEFS and GAFS
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(a) (b) (c) (d) (e)

Fig. 3 Classification maps of all competing approaches on the Indian Pines dataset. a AllFeas. b SpaBS. c
AEFS. d GAFS. e LRLAFS

demonstrate the worst and the second worst performance compared to other feature
selection methods, while LRLAFS shows the best performance. Compared to AEFS,
the improvement of GAFS and LRLAFS is at 1.4% and 6.6% for overall accuracy,
1.2% and 7.8% for average accuracy, and 1.9% and 9.5% for Kappa coefficient.
Compared to AllFeas, LRLAFS can choose discriminative features from the origi-
nal University of Pavia features, which alleviates computational burden and improves
the further classification performance. For SpaBS, the overall accuracy is 85.42%, the
average accuracy is 83.28%, and the Kappa coefficient is 0.8051, which shows infe-
rior performance compared to AllFeas and achieves superior performance compared
to AEFS and GAFS. More detailed comparisons can be discovered in Table 2 and the
classification maps for all compared methods are shown in Fig. 4.

(3) Comparison for the Salinas Scene data: Table 3 presents the experimental results
on the Salinas Scene data. According to Table 3, LRLAFS exhibits superior perfor-
mance (90.76% for overall accuracy, 95.47% for average accuracy, and 0.8972 for
Kappa coefficient) than AllFeas and other feature selection methods, which mainly
attributes to the latent representation learning embedding in the feature selection pro-
cess. AllFeas and SpaBS present comparative performance and slightly outperform
AEFS and GAFS, which means that SpaBS is good at choosing informative fea-
tures on the Salinas Scene data. In details, the overall accuracy of SpaBS, AEFS and
GAFS is 90.51%, 90.20% and 90.43%, respectively. From Table 3, more detailed

Table 2 Experimental comparison of different feature selection approaches on the University of Pavia dataset

Class AllFeas SpaBS AEFS GAFS LRLAFS

1 87.71 86.37 84.31 85.52 88.56

2 94.64 93.88 91.85 93.11 94.67

3 67.14 66.43 57.62 56.90 63.52

4 85.97 84.87 83.36 84.83 85.32

5 98.88 98.88 98.88 98.88 98.88

6 69.78 68.02 62.82 64.21 70.91

7 78.20 74.51 67.67 70.68 75.19

8 82.34 80.37 77.58 78.40 82.03

9 99.47 99.47 99.47 99.47 100.00

OA(%) 87.34 85.42 83.39 84.52 88.89

AA(%) 84.90 83.28 80.40 81.33 86.79

Kappa 0.8308 0.8051 0.7781 0.7930 0.8517
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(a) (b) (c) (d) (e)

Fig. 4 Classification maps of all competing approaches on the University of Pavia dataset. a AllFeas. b
SpaBS. c AEFS. d GAFS. e LRLAFS

comparisons can be observed. Besides, Fig. 5 shows the classification maps for all
compared methods.

5.4 Parameter sensitivity study

In LRLAFS, parameters α, β, γ and λ are utilized in the objective function, which are
needed to be set in advance. Here, we study the sensitivity of these four parameters
and observe how they influence the final results. These four parameters are tuned from

Table 3 Experimental comparison of different feature selection approaches on the Salinas Scene dataset

Class AllFeas SpaBS AEFS GAFS LRLAFS

1 98.76 98.34 97.51 99.00 98.76

2 99.60 99.52 99.46 99.33 99.60

3 99.24 99.20 99.24 98.99 99.24

4 100.00 100.00 100.00 100.00 100.00

5 97.76 97.48 97.39 97.39 97.95

6 99.75 99.77 99.87 99.75 99.75

7 99.16 99.23 99.44 99.16 99.30

8 78.93 79.03 79.15 78.66 79.55

9 99.44 99.42 99.36 99.36 99.36

10 94.66 94.17 93.75 93.75 94.51

11 96.73 96.02 95.79 95.79 97.20

12 99.48 99.37 99.22 99.48 100.00

13 98.36 98.28 97.27 98.36 98.36

14 95.79 95.80 96.26 95.79 95.33

15 69.53 68.89 67.19 69.46 69.46

16 99.17 99.08 98.89 98.89 99.17

OA(%) 90.63 90.51 90.20 90.43 90.76

AA(%) 95.40 95.25 94.99 95.20 95.47

Kappa 0.8957 0.8944 0.8909 0.8940 0.8972
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(a) (b) (c) (d) (e)

Fig. 5 Classification maps of all competing approaches on the Salinas Scene dataset. a AllFeas. b SpaBS. c
AEFS. d GAFS. e LRLAFS

{10−3, 10−2, 10−1, 1, 101, 102, 103}. The experimental results of parameter sensitivity
study on three HSI datasets are depicted in Fig. 6. For the Indian Pines data, the proposed
LRLAFS shows superior performance with α = 10 (presented in Fig. 6a). For the Univer-
sity of Pavia data, the inferior result is achieved with ω = 1, which is shown in Fig. 6k. For
the Salinas Scene data, the superior results is obtained with β = 0.001, which is displayed
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Fig. 6 Performance variation of LRLAFS for α (in the first column), β (in the second column), γ (in the
third column) and λ (in the fourth column) on hyperspectral image datasets. a, b, c and d Indian Pines. e, f,
g and h University of Pavia. i, j, k and l Salinas Scene
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in Fig. 6f. Therefore, it is important to determine appropriate values for the four parameters
to conduct feature selection.

6 Conclusions

In this paper, we propose a novel latent representation learning based autoencoder fea-
ture selection (LRLAFS) model for hyperspectral image (HSI) data. To select informative
features from HSI data, we incorporate the latent representation learning into the basic
autoencoder feature selection model, where the latent representations learnt by the hid-
den layer of the autoencoder and decomposed by matrix factorization from the adjacency
matrix are used to steer the nonlinear feature selection. An alternative optimization algo-
rithm is introduced to solve the optimization for LRLAFS. Experimental comparisons on
three HSI datasets prove the potential of LRLAFS and LRLAFS consistently outperforms
other compared methods.
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