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Abstract
Cross-modal image-text matching has attracted considerable interest in both computer
vision and natural language processing communities. The main issue of image-text match-
ing is to learn the compact cross-modal representations and the correlation between image
and text representations. However, the image-text matching task has two major challenges.
First, the current image representation methods focus on the semantic information and
disregard the spatial position relations between image regions. Second, most existing meth-
ods pay little attention to improving textual representation which plays a significant role
in image-text matching. To address these issues, we designed a decipherable cross-modal
multi-relationship aware reasoning network (CMRN) for image-text matching. In particular,
a new method is proposed to extract multi-relationship and to learn the correlations between
image regions, including two kinds of visual relations: the geometric position relation
and semantic interaction. In addition, images are processed as graphs, and a novel spatial
relation encoder is introduced to perform reasoning on the graphs by employing a graph con-
volutional network (GCN) with attention mechanism. Thereafter, a contextual text encoder
based on Bidirectional Encoder Representations from Transformers is adopted to learn dis-
tinctive textual representations. To verify the effectiveness of the proposed model, extensive
experiments were conducted on two public datasets, namely MSCOCO and Flickr30K. The
experimental results show that CMRN achieved superior performance when compared with
state-of-the-art methods. On Flickr30K, the proposed method outperforms state-of-the-art
methods more than 7.4% in text retrieval from image query, and 5.0% relatively in image
retrieval with text query (based on Recall@1). On MSCOCO, the performance reaches
73.9% for text retrieval and 60.4% for image retrieval (based on Recall@1).
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1 Introduction

Recently, the task of cross-modal image-text matching has garnered significant attention.
Furthermore, image-text matching plays a critical part in cross-modal tasks such as
image-text retrieval [5, 9, 33], multi-modal summarization [3], and image caption [53];
consequently, the task has a wide range of significant practical applications. In practice,
image-text matching is an information transformation task between the two modalities that
bridges the gap between computer vision and natural language processing (NLP). The
challenge in image-text matching rests with rich cross-modal features in a common rep-
resentational space, where the visual-semantic similarity between a text and an image is
measured.

Several studies have been conducted to solve the image-text matching issue and have
achieved significant progress. Most studies [7, 13, 20, 33] employed standard two-branch
embedding architectures to process images and texts, and subsequently map them into one
embedding space. Early methods [7, 13, 50, 54] attempted to utilize the convolutional neu-
ral network (CNN) to learn image representation, which captured only the local pixel-level
features of the image. Later, to obtain region-level features, the image encoder commonly
adopted Faster-RCNN [39] as a visual feature extractor [20, 23, 46, 47]. For text represen-
tation, recurrent networks were usually applied to capture features [7, 9, 13]. More recently,
quite a few works solved the image-text matching problem with a relation-based approach
[23, 30, 38], attempting to reason about the substructures of images and texts (i.e., regions
and words, respectively).

The aforementioned studies have been proven to be reliable; however, many challenges
for image-text matching still exist. Most existing image-text matching methods focus only
on the visual features of an image, while ignoring the relative spatial position information
between regions in an image. Both the semantic and spatial position information is crucial
for image-text matching. For example, as shown in Fig. 1, “in”, “on” and “under” in the sen-
tence description need the spatial position information in the corresponding image. So, it is
not only necessary to detect the objects themselves but also to understand the spatial position
information and even the abstract relations that link them together. In terms of text represen-
tations, most existing methods use either word2vec [34] or randomly initialized embedding
to embed words. These methods use a fixed vector for each word. Therefore, due to the
semantic richness and structural diversity of sentences, they are unable to solve the problem
of polysemous words. For instance, given two sentences: “A woman is standing in the bank.”
and “A woman takes pictures by the bank of the river.”, “bank” has different meanings.
Therefore, extracting text features that contain contextual information is essential.

The above motivated the design of a multi-relationship aware reasoning method for
image-text matching, as shown in Fig. 2, to address the challenges in image representa-
tion. The method models the relationships among static objects in an image on semantic
and spatial levels and integrates the connections to produce relation-aware region-level rep-
resentations. These visual relationship features can expose more fine-grained contents in
images, which in return offers a whole scene interpretation that can be used to facilitate
matching with complex textual semantic representations. To effectively reason about spa-
tial relations, the image is processed as a scene graph with each node denoting an object
and each directed edge representing the spatial label between two objects. The GCN with
an attention mechanism is adopted to enrich object representation with its partial relation-
essential neighbors, dynamically. Additionally, Bidirectional Encoder Representations from
Transformers (BERT) [6] has made great achievements in a multitude of NLP tasks since
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Description: White-haired man in a straw hat sitting on a bench under a tree.
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Fig. 1 An image with a description. The sentence description references to both objects (e.g., ‘hat’, ‘man’,
‘bench’ and ‘tree’) and relative position of objects (e.g., ‘in’, ‘on’ and ‘under’)

it was introduced. To address the issue of polysemous words in image-text matching, a text
encoder based on BERT is introduced to learn plentiful textual representations, resulting in
better image-text matching performance.

The contributions of our work can be summarized as follows.

• In this work, an effective approach is proposed to perform multi-relation aware rea-
soning among the detected objects in an image, which captures the spatial information
between regions and semantic information for rich image representation.

• A spatial relation encoder for image-text matching is designed to capture the geometric
position relations among image regions, taking advantage of the performance of GCN
and the attention mechanism.

• A contextualized text encoder based on BERT is introduced, which exploits the
semantic information on both sides of each word.

 Region-level 

Visual Features

Spatial Relation 

Reasoning

Semantic Relation 

Reasoning

inside

Multi-relationship-aware Reasoning

Input Image

Fig. 2 Illustration of multi-relationship aware reasoning. Image representation is obtained by implementing
reasoning on the region-level features. The representation includes key objects, spatial concepts, and semantic
concepts of a scene consistent with the corresponding text
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• Extensive experiments are conducted on two public datasets, and the experimental
results demonstrate that the proposed model can achieve competitive performance than
state-of-the-art methods.

This paper proceeds as follows. Section 2 reviews relevant research related to image-text
matching and graph neural networks (GNN). In Section 3, the proposed model is elaborated
in detail. In Section 4, we present the experimental results and analysis thereof. Section 5
contains conclusions and some ideas for further work.

2 Related work

2.1 Image-text matching

The purpose of image-text matching is to infer a similarity score between an image and
a sentence. The methods of image-text matching can be divided into similarity-based and
classification-based methods. The former method [7, 12, 13, 23, 27, 28, 33, 46, 51] repre-
sents images and texts as feature vectors, and subsequently calculates the similarity in the
same cross-modal embedding space to determine whether there is a match. For instance,
Frome et al. [8] proposed a cross-modal feature extraction model to obtain text and image
representations using Skip-Gram [34] and CNN, respectively. A hinge ranking loss is
employed to ensure that the distance between a mismatched image-text pair is larger than
between a matched image-text pair. Lee et al. [20] developed an attention mechanism for
use on texts and images to learn better representations. Faghri et al. [7] improved image-text
matching by incorporating hard negatives into the loss function. Zheng et al. [57] utilized
instance loss to view each multi-modal data pair as a class to learn the inter-modal cor-
relation between images and texts. Huang et al. [14] exploited bidirectional correlations
between visual regions and textual words.

Classification-based methods [12, 22, 31, 45, 48, 55] classify the input image and text
features by using the neural network fitting function, which outperforms cosine similarity.
The inputs from two modals of the network are usually through a fusion process, which
is common in visual question answering (VQA). Ma et al. [31] proposed a method to fuse
image and text features early and consider text information of different granularity. Instead
of exploring a shared embedded space for each image-text pair, Wang et al. [48] applied
a specific similarity function between an image and a text with rank-based tensor fusion.
Our work belongs to the similarity-based method, which is to capture spatial and semantic
information through graph neural networks instead of just semantic information used in
most algorithms, emphasizing improving the image representations.

2.2 Graph neural networks

The graph is an optimum representation of nonlinear-structured information that models a
set of objects (nodes) and their pair-wise relationships (edges). A GNN is a learning-based
method running on the graph domain. Owing to its compelling performance, GNN has
been incorporated into various research fields. The concept of GNN was first proposed by
Scarselli et al. [40], which arising from existing neural networks to process the data repre-
sented in the graph domain. In this model, neighborhood information is propagated through
the graph. However, the information characteristics of the edges in the graph are ignored,
so they cannot be modeled effectively. In [21], a classic spatial domain message-passing
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model based on a gated recurrent unit (GRU) [4] was updated by receiving information
from neighboring nodes and sending information to neighboring nodes, named the gated
graph sequence network (GGNN). Kipf et al. [17] pioneered an extensible GCN to learn on
the nonlinear-structured data through convolutional operations. Instead of employing fixed
aggregation weights, wherein the above GCN methods used, Velickovic et al. [43] further
proposed a graph attention network (GAT) model based on GCN. In the GAT model, fea-
tures are extracted from graphs by a weighted summation of the features of neighboring
nodes.

2.3 Visual relational reasoning

In recent years, exploiting visual relationships, which is the basis of image understanding,
has received a great deal of attention. Several studies have explored graph-based archi-
tectures for visual relationship reasoning. Visual relation reasoning has been shown to be
effective in image caption [53], VQA [36, 41, 52, 56], and image-text matching [23, 29].
For example, Li et al. [23] enhanced connections between the image regions and performed
reasoning utilizing GCN [40] to generate features with semantic relationship information.
Hou et al. [11] utilized prior knowledge in the form of a knowledge graph to infer relation-
ships by making use of the semantic correlation and constraints between objects without any
pre-trained detectors. Yang et al. [52] constructed a scene graph with the embedded repre-
sentation of visual objects and relationships and proposed a GCN module with a two-stage
reasoning process on the scene graph under the guidance of the question. A recent study
[49] applied a sparse graph defined by inter-/intra-class edges. The associations between
each target image and its neighborhood images were captured by a language-guided graph
attention mechanism. Yao et al. [53] used a semantic relation classifier trained on the Visual
Genome Dataset [19] and drew connections between objects in an image to enrich the
region-level features. However, most of the work focused on semantic relations, which were
less interpretable than spatial relations in image understanding.

3 Approach

In this section, the proposed cross-modal multi-relationship aware reasoning network
(CMRN) model is presented. First, the main architecture is summarized in Section 3.1.
The three key elements of image representation of our proposed model are detailed in
Section 3.2. Afterward, Section 3.3 introduces the text encoder. Finally, the loss function is
elaborated in Section 3.4.

3.1 Overall architecture

The detailed architecture of the proposed CMRN model is shown in Fig. 3. Our aim is to
conclude the similarity between a whole sentence representation and a global image rep-
resentation in a common embedding space. The network comprised three components: an
image encoder (region-level image feature extractor, spatial relation encoder, semantic rela-
tion encoder, and global reasoning), a text encoder, and a loss function. First, a Faster-RCNN
[39] was used to generate a set of region features in an image. A bidirectional spatial graph
with label information was constructed based on the extracted convolution and bounding
box features of each region. Then, GCN with an attention mechanism was employed to
focus on the spatial relationships of the local surrounding regions. To further capture the
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Fig. 3 Overview of the proposed CMRN model for image-text matching. Faster-RCNN was introduced to
detect a set of target regions. These region-level features were fed into spatial relation encoder and semantic
relation encoder to generate relation-aware features. After that, GRU was utilized to do global reasoning on
the features containing spatial and semantic information, generating the representation of the whole image.
Regarding text encoder, the global text representation was learned by BERT-GRU

semantic concept, we established connections between the region-level features with spa-
tial relation perception by reasoning through GCN, generating the features with spatial and
semantic relations. These visual features with relational perception were fed into the global
reasoning module to obtain the final image representation. BERT-GRU was used to extract
rich text features. Finally, based on image and text representations, the joint optimization of
matching and caption generation was adopted to make the paired images and texts closer,
and the unpaired ones more far away.

3.2 Image representation

3.2.1 Region-level visual features

Faster-RCNN [39] is an advanced object detector that has been applied in several tasks that
require the detection of regions in images. Recently, many image-text matching algorithms
[30, 33] started using Faster-RCNN to extract regional features. Inspired by these algo-
rithms, we extracted region-level image features with a Faster-RCNN model in conjunction
with ResNet-101 [10], which was pre-trained on the Visual Genomes dataset [19] by [1].
To denote feature representation containing plentiful semantic meaning and spatial position
meaning, instance classes as well as spatial coordinates were predicted by the region-level
feature encoder. Non-maximum suppression was applied to each class, with an intersection
over union (IoU) threshold of 0.7. The confidence threshold was 0.3. We selected the top 36
regions of interests (ROIs) with the highest confidence scores. All of these thresholds and
parameters in our experiment were set to be the same as in [1, 20, 23].

Given a region i detected in an image, features fi with 2048 dimensions were selected
after the average pooling layer. Then, fi was converted into an h-dimensional embedding
space by using a fully-connected layer. The transformation was formalized as follows:

vi = Wvfi + bv (1)

where Wv and bv are a weight matrix and a bias, respectively.
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Additionally, the bounding-box feature gi was denoted as [xi, yi, wi, hi], representing a
4-dimensional spatial coordinate, where (xi, yi) is the coordinate of the upper-left spot in
the box and (wi, hi) is the width and height of the bounding box.

Ultimately, each image was represented as a set of objects O = {o1, o2, · · · , on}, where
n represented the number of regions in the image; in our experiments n = 36. Each object
ok is associated with a visual feature vector vi ∈ Rdv and a bounding-box feature vector
gi ∈ Rdg (dv = 2048 and dg = 4 in our experiments). The whole image can be written as
O = [v1 ‖g1, v2‖ g2, · · · , vn‖gn].

3.2.2 Multi-relationship visual features

Based on region-level visual features, the multi-relationship visual features among static
objects in an image on semantic and spatial levels were obtained by GNN.

First, a spatial relation encoder was introduced to generate valuable spatial correlations
between the regions in the image. In particular, spatial information has been proven to
be an essential factor in visual understanding on the VQA [24] task, which reflects the
spatial form of a single object and the relationship between objects by connecting iso-
lated regions. A bidirectional spatial graph was constructed to fully explore the spatial
relationship between every two regions in the image. The spatial relationship is a triplet
εi,j =< objecti , relation, objectj >, which denotes the relative geometric position, given
two object regions. The edges and corresponding labels were determined by the IoU, relative
distance, and angle. There are 11 types of positional relationships [53], some examples are
illustrated in Fig. 4. In addition, when two regions are far apart, or there are few overlapping
regions, the spatial correlation between them tends to be weak, classified as a no-relation
class. The spatial relation graph Gspa = (

v, εspa

)
is directional, in which the edges εi,j and

εj,i are symmetrical.
A GCN with an attention mechanism was applied to perform reasoning on the spa-

tial graph. The original GCN used on an undirected graph to aggregate information from
neighbor nodes can be described as follows:

v′
i = σ

⎛

⎝
∑

vj ∈N(vi )

Wvj + b

⎞

⎠ (2)

where W ∈ Rn × Rn is a weight matrix. b is the bias term and σ(·) denotes an activa-
tion function, such as ReLU(·) = max(0, ·). N (vi) represents the set of neighbors of vi ,
including the object vi itself.

The original GCN could not incorporate the information of directed edges and labels.
Therefore, since the spatial graph is directional and includes label information, different
directions and the labels of edges were transformed by transformation matrices and biases,
respectively. It made the spatial encoder sensitive to both directionality and label. Addi-
tionally, instead of collecting information uniformly from all connected nodes, an attention
mechanism was incorporated into GCN to focus on important edges automatically. There-
fore, each node vi was encoded by a linear weighted combination of neighbor features (after
potentially applying a nonlinearity) as follows:

v′
i = σ

⎛

⎝
∑

vj ∈N(vi )

Wdir(i,j) · (
αij vj

)
⎞

⎠ (3)
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Fig. 4 An example of spatial relations. The yellow arrows and the labels in the yellow boxes indicate the
orientation and class of the spatial relations, respectively

where W{·} is a matrix. αij is the attention coefficient and can be calculated as follows:

αij =
exp

((
Wϕv′

i

)T · Vdir(i,j)vj + blab(i,j)

)

∑
vj ∈N(vi )

exp
((

Wϕv′
i

)T · Vdir(i,j)vj + blab(i,j)

) (4)

where Wϕ denotes the transformation matrix. dir(i, j) selects the transformation matrix,
which is sensitive to the directionality of each edge

(
vi − vi, vi − vj , vj − vi

)
, and

lab(i, j), lab(j, i) represents the label between vi − vj , vj − vi .
To stabilize the training process and enrich the model’s ability, multi-head attention

[42] was also adopted to enhance the above GCN. The output features from each attention
head were concatenated to obtain the region-level image representation with spatial relation
perception as follows:

v′
i = ‖M

m=1σ

⎛

⎝
∑

vj ∈N(vi )

Wm
dir(i,j) ·

(
αm

ij vj

)
⎞

⎠ (5)

where M represents the number of independent attention mechanism.
Consequently, after encoding regions through the attention-based spatial relationship

encoder as in (5), the refined region-level features were endowed with the inherent spatial
relationships between objects.

After obtaining the region-level features with spatial relation perception, a GCN-based
reasoning model [23] was used to derive the semantic relationship between the regions
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with spatial relation perception to enrich the image representation. A fully connected graph
Gsem = (v, εsem) was constructed by treating each region as a node, where the edge set εsem

is n × (n − 1) region pairs grouped by the detected n image regions. εsem was described as
the affinity of each region pair as follows:

εsem

(
v′
i , v

′
j

)
= (

Uv′
i

)T ·
(
V v′

j

)
(6)

where U , V are embedding matrices.
A GCN with residual connection was applied in the fully connected graph. The response

of each node was updated as follows:

v∗
i = Wr

(
εsemv′

iWg

) + v′
i (7)

where Wr represents the weight of the residual connection. Wg is the weight matrix of the
GCN layer.

Afterwards, the final output V ∗ = {
v∗
1 , v

∗
2 , · · · , v∗

k

}
, v∗

i ∈ Rh was the relation-aware
visual representation.

3.2.3 Image-level visual features

Rest on the region-level features with spatial and semantic relation perceptions, we fed V ∗
into GRU [4] in sequence for global reasoning, which selectively filtered out features to
obtain the final image representation I following [23]. The update gate can be formulated
as follows:

zt = sigmoid
(
Wzv∗

t + Uzmt−1 + bz

)
(8)

where Wz, Uz and bz are weights and bias. v∗
t is the current input region feature and mt−1

is the whole image feature at last step. Sigmoid is an activation function that maps any real
value to the range (0, 1).

The image representation was updated as follows:

m̃t = tanh
(
Wmv∗

t + Um (rt ◦ mt−1) + bm

)
(9)

where Wm, Um and bm are weights and bias. ◦ represents an element-wise multiplication.
rt denotes the reset gate that computes similarly to the update gate. T anh is an activation
function that maps any real value to the range (−1, 1).

Then mt was defined as the whole image representation I , where t is the length of V ∗.
mt = (1 − zt ) ◦ mt−1 + zt ◦ m̃t (10)

where ◦ is an element-wise multiplication.

3.3 Text representation

Two versions of text encoder were used, depending on the embedding methods of each
word. In the first method, words were embedded into a d-dimensional vector (d = 300) by
an embedding matrix with random initialization as follows:

Ci = Wt × wi, i ∈ [1, n] (11)

where wi is a one-hot vector in a sentence with n words [w1, w2, ..., wn].
The other text encoder exploited pre-trained BERT [6] to initialize word embeddings.

After the input text was pretreated, by adding two special tokens: [CLS] and [SEP], it was
fed into BERT for embedding. The BERT model has 12 bidirectional transformer blocks
[42] with a hidden state size of 768. The structure of the transformer combined with the
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attention mechanism can fully reflect the context information of texts. Therefore, the BERT-
based text encoder can achieve more accurate alignment when facing the complex image-
text matching problem.

S = {[CLS], w1, w2, · · · , wn, [SEP]} (12)

Ci = BERT (Si) , i ∈ [1, n] (13)

Subsequently, the GRU [4] was adopted to generate text representation, which was
mapped into the h-dimensional embedding space.

Ti = GRU (Ci) , i ∈ [1, n] (14)

The hidden state of the last moment was the textual semantic representation of the
whole sentence. Therefore, the extracted text representation expressed highly concentrated
semantic information to achieve a proper alignment with the visual features of an image.

3.4 Loss function

The loss function is the summation of the cross-modal matching loss and the generation loss
to learn the alignment between T and I , which is expressed as follows:

L = Lmatch + Lgen (15)

For the generation loss portion [23], the goal was to optimize the learning of visual fea-
tures. The image caption model [44] was used to encourage the learned visual representation
to generate captions that were as close as possible to the ground-truth texts. The generation
loss is defined as:

Lgen = −
m∑

k=1

logp (ek | ek−1, V ; θ) (16)

where m denotes the length of the generated description sequence E = (e1, e2 · · · , em),
and θ is the parameter from the image caption model.

For image-text matching loss portion, a triplet ranking loss based on hinge [7, 15, 20]
with emphasis on hard negatives [7] was utilized to constrain the similarity score of the
matched image-text pairs, which were larger than the similarity score of the unmatched
ones. The matching loss is as follows:

Lmatch = [α − S(I, T ) + S(I, T̂ )]+ + [α − S(I, T ) + S(Î , T )]+ (17)

where α is a margin parameter and [x]+ ≡ max(x, 0). S(·) represents the similarity function
denoting the matching score, by calculating the inner product from the distance of the visual
features I and textual features T in the public embedding space. For a mismatched image-
text pair (I, T ), Î = argmaxm �=I S(m, T ) and T̂ = argmaxd �=T S(I, d) are the hardest
negatives. To improve computing efficiency, we only calculated in small batches, rather than
acquire the hardest negatives throughout the entire training set.

4 Experiments and discussion

4.1 Datasets and evaluationmetrics

To verify the effectiveness of the proposed method, extensive experiments were conducted
on two publicly available datasets, Flickr30K [54] and MSCOCO [26].
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Flickr30K: This dataset contains 31,783 images, collected from the Flickr website. Each
image has five manually annotated descriptions. The data were split up as in [15] with a
28,000-image training set, 1,000-image validation set, and 1,000-image test set.

MSCOCO: We utilized the splits reported in [7], as most image-text matching algo-
rithms do. This large-scale benchmark comprised 123,287, 1,000, and 5,000 images were
employed for training, validation, and testing, respectively. Each image is associated with
five descriptive sentences.

Evaluation Metrics: In this paper, R@K (K = 1, 5, 10), short for Recall@K , was
adopted as performance evaluation indicators of the image-text matching. It was interpreted
as the percentage of correct matched pairs in the top-k retrieved results. HigherR@K means
better performance.

R@K = queries retrieved the ground truth at top−k

all queries
(18)

4.2 Implementation details

For CMRN, the Adam optimizer [16] was used to optimize the parameters of the model
with a learning rate of 0.0002, which decays 0.1 every 10 epochs on Flickr30K, and decays
0.1 every 15 epochs on MSCOCO. The mini-batch size was 128 for the experiments. We
adopted 300-dimensional word embeddings and one-layer GRU for text representations in
2048 dimensions. For BERT-based CMRN, BERT-base-cased1 was used with a learning
rate of 1e-5. The change process of the learning rate was the same as that of CMRN. The
training lasted 30 epochs with a batch size of 32 on MSCOCO and Flickr30K. BERT and a
layer of GRU were utilized for 2048-dimensional text representations. Furthermore, cross-
modal features were aligned in the joint embedded 2048 dimension space. The α parameter
of the hinge-based triplet ranking loss was empirically set to 0.2. During the training, we
validated the model at each epoch on the validation set, and selected parameters with the
highest total recall to solve the overfitting problem. The model was implemented based on
PyTorch [37] with a GeForce GTX 1080 Ti GPU.

4.3 Comparisons with state-of-the-art methods

4.3.1 Baselines

The proposed model is compared with several SOTA models to verify its effectiveness. The
following compared methods can be divided into two groups: similarity-based methods and
classification-based methods.

• Similarity-based methods contain DVSA [15], Fisher Vector [18], m-CNN [31], VQA
[25], VSE++ [7], DAN [35], SCO [13], GXN [9], SCAN [20], BSSAN [14],
PFAN [46], MDM [32], VSRN [23], TBNN [47], CycleMatch [27], CASC [51] and
TERN [33]. These baselines projected the global or local features of two modals into a
common embedding space and measured their similarity.

• Classification-based methods include DSPE [45] and sm-LSTM [12]. These methods
regarded image-text alignment as a classification problem, in which the answer directly
represented whether the image and the text match each other.

1Available at https://storage.googleapis.com/bert models/2018 10 18/cased L-12 H-768 A-12.zip

12015Multimedia Tools and Applications (2022) 81:12005–12027

https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip


4.3.2 Results on Flickr30K

Table 1 represents the experimental results on Flickr30K for cross-modal retrieval com-
pared with state-of-the-art (SOTA) methods. The backbones used for image and text feature
extractions are listed, such as VGG, Resnet, Faster-RCNN for image, GRU, CNN for text.
For VSRN [23], the ensemble results of two independently trained models were given in
the original paper. However, ensemble learning can only improve the accuracy to a certain
extent and require a large amount of training time. For this reason, the accuracy of a sin-
gle model was considered. We used the original code and the pre-trained model provided

Table 1 Evaluation results of image-text matching on Flickr30K test set in terms of R@K

Method Image backbone Text Image-to-text retrieval Text-to-image retrieval

backbone R@1 ↑ R@5 ↑ R@10 ↑ R@1 ↑ R@5 ↑ R@10 ↑

DVSA [15] (2015) RCNN BRNN 22.2 48.2 61.4 15.2 37.7 50.5

Fisher Vector [18] VGG-19 GMM+ 35.0 62.0 73.8 25.0 52.7 66.0

(2015) HGLMM

m-CNN [31] (2015) VGG-19 CNN 33.6 64.1 74.9 26.2 56.3 69.6

VQA [25] (2016) VGG-19 GRU 33.9 62.5 74.5 24.9 52.6 64.8

DSPE [45] (2016) VGG-19 HGLMM 40.3 68.9 79.9 29.7 60.1 72.1

sm-LSTM [12] (2017) VGG-19 Bi- LSTM 42.5 71.9 81.5 30.2 60.4 72.3

DAN [35] (2017) ResNet-152 LSTM 55.0 81.8 89.0 39.4 69. 79.1

VSE++ [7] (2018) ResNet-152 GRU 52.9 79.1 87.2 39.6 69.6 79.5

SCO [13] (2018) ResNet-152 LSTM 55.5 82.0 89.3 41.1 70.5 80.1

GXN [9] (2018) ResNet-152 GRU 56.8 – 89.6 41.5 – 80.1

SCAN(T2I) [20] Faster-RCNN Bi-GRU 61.8 87.5 93.7 45.8 74.4 83.0

(2018)

SCAN(I2T) [20] Faster-RCNN Bi-GRU 67.9 89.0 94.4 43.9 74.2 82.8

(2018)

PFAN t-i [46] (2019) Faster-RCNN Bi-GRU 66.0 89.6 94.3 49.6 77.0 84.2

PFAN i-t [46] (2019) Faster-RCNN Bi-GRU 67.6 90.0 93.8 45.7 74.7 83.6

TBNN [47] (2019) VGG-19 HGLMM 43.2 71.6 79.8 31.7 61.3 72.4

MDM [32] (2019) VGG CNN 44.9 75.4 84.4 34.4 67.0 77.7

BSSAN [14] (2019) VGG/Faster- LSTMs 44.6 74.9 84.3 33.2 62.6 72.9

RCNN

CycleMatch [27] ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2

(2019)

VSRN* [23] (2019) Faster-RCNN GRU 66.8 90.5 95.2 51.5 78.7 86.1

CASC-SCAN(T2I) Faster-RCNN Bi-GRU 62.2 87.8 93.9 46.2 75.1 82.7

[51] (2020)

CASC-SCAN(I2T) Faster-RCNN Bi-GRU 68.4 89.6 94.9 44.0 74.6 83.4

[51] (2020)

[4pt] CMRN(ours) Faster-RCNN GRU 71.8 90.8 95.1 54.1 80.1 87.0

CMRN-BERT(ours) Faster-RCNN BERT-GRU 70.8 91.5 95.4 55.2 81.8 88.1

The best results appear in bold
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by the author to evaluate VSRN [23]. From Table 1, we can notice that the proposed model
outperforms the SOTA methods on Flickr30K.

The performance of the proposed models is compared with VSRN [23], which also
utilized the image-level global reasoning and the same feature extraction backbone. It is
noteworthy that CMRN obtains 54.1% in R@1, 80.1% in R@5, and 87.0% in R@10
for text-to-image retrieval task, which outperforms VSRN [23] more than 5.0%, 1.7%,
and 1.0%, respectively. Moreover, CMRN achieves 71.8% in R@1, 90.8% in R@5, and
95.1% in R@10 for the image-to-text retrieval task. VSRN [23] tried to enrich region-
level image representation by focusing on the semantic associations between image regions.
Our approach captures both semantic and spatial relationships among different regions
and employs an attention mechanism to deal with the weight of the graph edge, which
is the spatial label between regions. These results demonstrate that the visual represen-
tation of CMRN can be better matched with the corresponding text representation. This
improvement indicates that multi-relationship aware reasoning can significantly improve the
image-text matching performance. We also adopt the pre-trained BERT in the text encoder,
and the results are recorded in the last line of Table 1. With the help of the pre-trained
model, CMRN-BERT enjoys a further performance gain with R@K (K = 1, 5, 10) in
text-to-image retrieval, which is 55.2%, 81.8%, and 88.1%, respectively.

4.3.3 Results on MSCOCO

The evaluation results on the MSCOCO 1,000-image test set are listed in Table 2, which
are obtained by averaging over 5 folds of 1,000 test images. The proposed model CMRN
achieves 73.9% and 60.4% in R@1 for text retrieval and image retrieval tasks with a sin-
gle trained model, which outperforms the previous best model, i.e. SCAN(T2I) [20], with
more than 3.0% and 4.0%, respectively. We can find that the spatial information between
regions and the semantic information is effective in improving the performance of image-
text matching. Based on the results, presented in Table 2, a difference in the performance of
R@1 between CMRN and CMRN-BERT is apparent. This reflects that there is an imbal-
ance between the complexity of image representation and that of text representation. By
doing an analysis, a potential reason is the characteristics of the dataset. First, the average
number of objects in per image is larger on MSCOCO. Second, most objects in the image
of MSCOCO are not centrally distributed, and small objects account for a large proportion.

4.4 Qualitative results

To give an instinctive sense of the experimental results of the proposed framework, the anal-
ysis of qualitative results is revealed by visualizing cases. The results compared to VSRN
[23], which achieves the first-best performance among the baselines, are demonstrated in
Figs. 5 and 6. In particular, two texts and two images are randomly selected for text-to-
image and image-to-text retrieval, respectively, to observe the results. Figure 5 shows the
qualitative results of text-to-image retrieval on Flickr30K. Given a text, the top-3 retrieved
images are shown, as derived by VSRN [23], CMRN, and CMRN-BERT according to the
similarity scores. The mismatched images are outlined in red boxes, and the matched images
are outlined in green boxes. Figure 6 illustrates the qualitative results of the image-to-text
retrieval. The top-3 ranked texts produced by VSRN [23], CMRN, and CMRN-BERT are
listed from left to right, respectively. The correct results are marked in black.

The following conclusions can be drawn from the results displayed in Figs. 5 and 6.
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Table 2 Evaluation results of image-text matching on MSCOCO 1000-image test set in terms of R@K

Method Image Text Image-to-text retrieval Text-to-image retrieval

backbone backbone R@1 ↑ R@5 ↑ R@10 ↑ R@1 ↑ R@5 ↑ R@10 ↑
DVSA [15] (2015) RCNN BRNN 38.4 69.9 80.5 27.4 60.2 74.8

Fisher Vector [18] VGG-19 GMM+ 39.4 67.9 80.9 25.1 59.8 76.6

(2015) HGLMM

m-CNN [31] (2016) VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8

DSPE [45] (2016) VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9

sm-LSTM [12] (2017) VGG-19 Bi-LSTM 53.2 83.1 91.5 40.7 75.8 87.4

VSE++ [7] (2018) ResNet-152 GRU 64.7 – 95.9 52.0 – 92.0

GXN [9] (2018) ResNet-152 GRU 68.5 – 97.9 56.6 – 94.5

SCO [13](2018) ResNet-152 LSTM 69.9 92.9 97.5 56.7 87.5 94.8

SCAN(T2I) [20] Faster- Bi-GRU 70.9 94.5 97.8 56.4 87.0 93.9

(2018) RCNN

SCAN(I2T) [20] Faster- Bi-GRU 69.2 93.2 97.5 54.4 86.0 93.6

(2018) RCNN

MDM [32] (2019) VGG CNN 54.7 84.1 91.9 44.6 79.6 90.5

CycleMatch [27] ResNet-152 RNN 61.1 86.8 94.2 47.9 80.9 90.9

(2019)

VSRN* [23] (2019) Faster-RCNN GRU 73.6 94.0 97.6 60.7 88.4 94.0

TERN [33] (2020) Faster-RCNN BERT – – – 51.9 85.6 93.6

CMRN(ours) Faster-RCNN GRU 73.9 93.9 97.9 60.4 88.5 94.0

CMRN-BERT(ours) Faster-RCNN BERT-GRU 68.5 92.5 97.0 57.3 88.4 94.8

The best results appear in bold

• From the number and ranking order of correct retrieval shown in Figs. 5 and 6, it can
be concluded that the proposed modal is superior to the SOTA methods in cross-modal
bidirectional retrieval, which verifies the competitiveness of our method.

• Images retrieved by CMRN and CMRN-BERT contain more distinctive informa-
tion than those retrieved by VSRN [23], as shown in Fig. 5. The above qualitative
results demonstrate the necessity and rationality of performing multi-relation reasoning
between image regions.

• As can be seen from Fig. 6, enhancing BERT-based text representation contain-
ing contextual information is beneficial for cross-modal retrieval, especially image
retrieval.

• Through error analysis, it can be found that some incorrect retrievals from CMRN and
CMRN-BERT involve relevant search information. For example, given the text query
B in Fig. 5, water, sunlight, man, etc., are visible in all of images retrieved by CMRN-
BERT, which is not true of the images retrieved by VSRN [23]. This indicates the
effectiveness of our proposed method.

4.5 Ablation analysis

In this subsection, we discuss the extensive ablation analysis that was conducted on the
Flickr30K test set to verify the effectiveness of each pivotal component by starting with a
baseline model.
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Text A: A woman in a gray sweater and black baseball 

cap is standing in line at a shop.

Text B: Two men wearing hats and holding canes are 

standing silhouetted against a large body of water with 

sunlight reflecting off the water and a tree to the side.

VSRN[12]

CMRN

CMRN

-BERT

Fig. 5 Qualitative text-to-image retrieval examples on Flickr30K. For each text query, the top-3 retrieved
images are shown. The correctly matched images are in green boxes, and the mistakenly matched ones are in
red boxes

In Table 3, we report different ablated versions of the models, described as follows.

• The baseline model considered only the semantic relation reasoning to obtain image
representation. The text encoder utilized random initialization embedding.

Top 3 texts obtained  by VSRN[12]
1. The four people sit on a pile of rocks.

2. Three rock climbers are posing on big rocks.

3. Person in white shirt and blue shorts in the water next to a big rock.

Top 3 texts obtained by CMRN
1. Three people sit in a cave.

2. The four people sit on a pile of rocks.

3. Three rock climbers are posing on big rocks .

Top 3 texts obtained  by CMRN-BERT
1. Spelunkers pose inside a rock cavern while bathed in sunlight from the surface.

2. Three people sit in a cave.

3. People stand inside a rock dome.

Top 3 texts obtained by VSRN[12]
1. A woman is playing with two children on a seesaw in a playground.

2. Woman on four way seesaw with two kids.

3. A woman working on a painting of a young woman on a wall with tan skin.

Top 3 texts obtained  by CMRN-BERT
1. A Indian lady sitting making a clothing piece with a young child and older lady looking upon 

her, young child in the background playing.

2. A woman works extremely hard while working on some type of weaving while what looks to 

be her children hang around behind her.

3. The boy and woman are working.

Image A

Image B

Top 3 texts obtained by CMRN
1. A woman is playing with two children on a seesaw in a playground.

2. A Indian lady sitting making a clothing piece with a young child and older lady looking upon 

her, young child in the background playing.

3. A woman is helping a child build using toys.

Fig. 6 Visual examples of image-to-text retrieval on Flickr30K. For the image query, the top-3 retrieved
descriptions are shown. Properly matched descriptions are in black, and the mismatched ones are marked as
red
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Table 3 Performance on Flickr30K test set for ablation analysis

Method Image-to-text retrieval Text-to-image retrieval

R@1 ↑ R@5 ↑ R@10 ↑ R@1 ↑ R@5 ↑ R@10 ↑
baseline 66.8 90.5 95.2 51.5 78.7 86.1

CMRN 71.8 90.8 95.1 54.1 80.1 87.0

CMRN-BERT* 69.4 90.7 95.4 54.6 81.3 88.6
CMRN-BERT 70.8 91.5 95.4 55.2 81.8 88.1

The best results appear in bold

• An attention-based spatial relation encoder and semantic relation encoder were com-
bined to obtain the CMRN model. CMRN outperformed the baseline model in R@1 by
more than 7.5% and 5.0% for image-to-text and text-to-image retrieval, respectively.
The above results denoted that the utilization of multi-relation aware reasoning can
really learn a better image representation.

• CMRN-BERT*: Random initialization embedding was replaced with BERT as the
word embedding in the text encoder while the rest of CMRN remained unchanged. The
comparison showed that the pre-trained BERTmodel was conducive to achieving better
performance, especially for text-to-image retrieval.

• CMRN-BERT: There were two image semantic extraction layers in CMRN-BERT. It
outperformed CMRN and CMRN-BERT* by a relative margin for most recall metrics.
The performance of image retrieval was improved from 54.6%/81.3% to 55.2%/81.8%
at R@1 and R@5 when compared with CMRN-BERT*. This is attributed to the fact
that the image features extracted from multiple layers are rich enough to be aligned
with the text features based on BERT.

4.6 The convergence of model

In this subsection, the convergence of the proposed model is discussed. To save space, we
only elaborated on the convergence and hyperparameter selection results of both image-to-
text and text-to-image retrieval on the Flickr30K dataset.

The convergence of the loss function is shown in Fig. 7. It is apparent that the training
loss decreases with the increasing number of train iterations and gradually converges to a
stabilized value, which proves the convergence of the model.

We also recorded the values of R@1, R@5, and R@10 along with each iteration using
the optimal hyperparameter settings. Figure 8 illustrates the experimental results of image-
to-text and text-to-image retrieval with an increasing number of train iterations. It can be
observed that the convergence process was divided into two stages.

• With more iterations, the values of R@1, R@5, and R@10 increased and the image-
text matching performance improved. The model converged quickly in the first 3.0k
iterations, and reached its optimal status around the 8.0k iteration. This showed the
rationality of our hyperparameter settings.

• After the 8.0k iteration, the performances of R@1, R@5, and R@10 were relatively
stable, even for the 10.0k and 16.0k iterations. According to [2], these phenomena also
indicate the convergence of the proposed model.
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Fig. 7 The convergence of loss function on Flickr30K train data. The abscissa is the number of train iteration,
and the ordinate is the train loss

4.7 Impact of neighbor number

To verify the impact of the neighbor number, extensive experiments were conducted on
Flickr30K. In this study, when constructing the spatial relation encoder, the number of
neighbor nodes in the spatial graph (N ) was a sensitive parameter, as it determined the
degree of information aggregation. With a small number of N , the network filtered out a
wide range of nodes, leaving only a few highly relevant nodes. Inversely, a large number
introduced some space-independent nodes. Hence, an appropriate parameter was important
in the proposed network. Here, the image-text matching performance was investigated by
setting N ∈ [12, 32], with a step of 4. Since N mainly determined the image representation,
it had the same effect on CMRN and CMRN-BERT. CMRN was taken as the representa-
tive to conduct the experiments. The results are reported in Fig. 9. Besides, to show the

Fig. 8 The valid accuracies on Flickr30K valid data. From left to right, the R@1, R@5, and R@10 curves
for image-to-text and text-to-image retrieval are presented. The abscissa is the number of train iteration, and
the ordinate is the matching accuracy
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Fig. 9 Results of parameter exploration. R@K (K = 1, 5, 10) is reported for a variety of number of neigh-
borhood nodes (N ). The left-hand plot shows quantitative results of text retrieval; the right-hand plot shows
quantitative results of image retrieval

overall matching performance, the sum of Recall (rsum) was also computed for image and
text retrieval, shown in Fig. 10.

rsum = R@ 1 + R@ 5 + R@ 10︸ ︷︷ ︸
image retrieval

+ R@ 1 + R@ 5 + R@ 10︸ ︷︷ ︸
text retrieval

(19)

As observed, the performance gradually increased from N = 12 to the highest point
N = 28. When N exceeded 28, the performance of the proposed model decreased dra-
matically because of the redundant information. The results suggested that N = 28 was
the optimal parameter for text retrieval with 71.8% in R@1, 90.8% in R@5, and 95.1% in
R@10 and image retrieval with 54.1% in R@1, 80.1% in R@5, and 87.0% in R@10. It is

Fig. 10 Performance comparison on rsum with the number of neighbor nodes (N )
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Table 4 Performance comparison on Flickr30K test set for ensemble

Method Image-to-text retrieval Text-to-image retrieval

R@1 ↑ R@5 ↑ R@10 ↑ R@1 ↑ R@5 ↑ R@10 ↑
VSRN [23] 71.3 90.6 96.0 54.7 81.8 88.2

CMRN-ensemble(M = 2) 73.5 92.1 96.6 55.4 81.3 88.3

CMRN-ensemble(M = 4) 73.0 91.5 96.1 56.0 82.3 89.2

The best results appear in bold

worth mentioning that rsum was up to 478.9. Therefore, N = 28 was set as our default
value in all experiments.

4.8 Ensemble

To further improve cross-modal retrieval performance, the common practice of ensembling
was applied to the image-text matching task [20, 23]. It is a typical post-processing opera-
tion that fuses the outputs of multiple baseline models in a certain way to reduce variance
and improve results. In this work, the predicted similarity scores of two trained models
were averaged and compared with VSRN [23] (two models were also used). The results are
manifested in Table 4.

Meanwhile, the number of integrated models was validated on the Flickr30K test set.
The most basic form of ensembling was utilized, that is, using multiple entities of the same
trained model (same network architecture, same parameters, and same dataset). M sets of
models were selected for the ensemble by averaging the relevance score from each model.
As can be seen from Figs. 11 and 12, with the gaining number of models, the accuracy is
also gradually increasing. When the number of models was greater than 4, the matching
performance showed no obvious upward trend with the increase of M . When M = 4, the
performance of the models was at its highest, and stable at 73.0%, 91.5%, and 96.1%, for
R@1, R@5, and R@10, respectively, for text retrieval, and 56.0%, 82.3%, and 89.2% for
R@1, R@5, and R@10, for image retrieval, respectively. The rsum reached 488.1.

Fig. 11 Performance of the number of integrated models (M) on R@K (K = 1, 5, 10). The left-hand plot
shows the experimental results of text retrieval; the right-hand plot shows the results of image retrieval
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Fig. 12 Performance comparison on rsum with the number of integrated models (M)

5 Conclusion and future work

In this study, a new framework named CMRN was proposed to address the cross-modal
image-text matching task by extracting more abundant image and text representations. A
multi-relationship aware reasoning method was designed to perform reasoning among static
objects in an image on semantic and spatial levels. The relation-aware image representa-
tion in turn result in better image-text matching performance. Furthermore, a BERT-based
text encoder was adopted to learn distinctive textual representations containing contextual
information. Extensive experiments were conducted on two public datasets in cross-modal
retrieval. The experimental results demonstrated that the proposed model was superior in
handling image-text matching problems.

In the future, we plan to extend our work in the following two directions. First, we will
develop some reconstruction constraints for better text feature extraction, such as generating
image regions close to the ground-truth from the learned text representation. Second, we
will consider designing a region counting module for image feature extraction to align the
numbers in the corresponding text.
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