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Abstract
This study focuses on the question of the stability analysis of complex interconnected
nonlinear systems using the property of Lyapunov and Finsler. The main idea is to
minimize the effect of interconnections between the subsystems, for that, we use the
Lyapunov function and the H∞ control, then applying Finsler’s lemma to release the
conditions of stability, the independent matrices allow to obtain less conservative results.
The proposed control approach is formulated in a minimization problem and derived in
terms of linear matrix inequalities (LMIs) whose resolution yields the decentralized
control gain matrices. All the developed results are tested on two representative examples
and compared with some recent previous ones.

Keywords Interconnectedsystem.Lyapunov .H∞control .Finsler .Decentralizedstate feedback
. Linear matrix inequality (LMI)

1 Introduction

In the literature the problem of stability analysis of interconnected complex nonlinear systems
are using in automatism systems and power electronics, there are many dynamic systems in
this domain [4, 14, 18], their complex systems are regrouped in the big area, also their
automatic configuration is more complex [8, 12, 16], for the control and the modelization
for this complex system, we composite this system in interconnected subsystems, these
decompositions facilitate the resolution of the issue of stability [2, 11, 15, 17]. The synthesis
of law control and stabilization can be ensuring the global safety of the system and responding
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in a more secure of the system [7, 10], Moreover, in the phase of the modeling, the classical
approach can be very hard and complicated to use to these complex systems in the context of
the reliability and practical conception, this method of decentralized control is alternative to
assert the stabilization of the complex and big systems [6].

In this work, we studied the stabilization of interconnected subsystems using a decentralized
control law by state feedback. These approaches make it possible to stabilize all the interconnected
subsystems by taking into account their interconnections. Then, in order to improve this approach,
we propose, through a H∞ criterion, to study the robustness to the effects of the interconnections
between subsystems. Pursuing this objective, we propose a new decentralized H∞ controller based
on Finsler’s lemma [1, 3] such that all subsystems are asymptotically stable, the new conditions
ensuring all the closed-loop stability, are supplied in terms of LinearMatrix Inequalities (LMIs) and
the feedback gain matrix of each local controller is obtained by solving the LMIs [5].

The global of this work is organize as follows: in the second section, a state of the art of the
system description has been provided. The main results has been introduced in Section 3, after
that in Section 4, we show the experimental results. Finally, we give a conclusion of this work
in the last section.

2 System description

We consider the following interconnected systems, where the ith subsystem is given by [16]:

ẋi tð Þ ¼ Aixi tð Þ þ ∑
N

j¼1; j≠i
Aijx j tð Þ þ Biui tð Þ; i ¼ 1;…;N ð1Þ

with xi tð Þ∈ℜni and x j tð Þ∈ℜn j are the states of the ith and the jth subsystem, ui tð Þ∈ℜmi is the
control input. The system matrices Ai, Aij and Bi, are known real constant of appropriate
dimensions.

∑
N

j¼1; j≠i
Aijx j tð Þ : Represent the influences of N-1 subsystems on the ith subsystem.

The closed-loop subsystem is given by:

ẋi tð Þ ¼ Ai þ Bikið Þxi tð Þ þ ∑
N

j¼1; j≠i
Aijx j tð Þ; i ¼ 1;…;N ð2Þ

where ui(t) = ki xi(t),.
The following figure (Fig.1) represents the diagram of an interconnected system:
The following Fig. 1 shows the diagram of interconnected complex nonlinear systems, the

main idea is to fragment the overall system into several subsystems that are easier to handle.
We then place ourselves in a “decentralized” approach compared to traditional approaches

which consist in studying a system as a whole.
The main objective of the decomposition of systems and the decentralization of calculations

is: To reduce the calculation time.
The proposed control structure considers the system as a set of interconnected subsystems Fig. 2,

each subsystem is controlled by a control unit, i.e. the decentralized controllers partition the
information and develop a local control law at level of each subsystem and allows stabilize it.

We end this section with the following lemmas, which will be used for further
development.
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Lemma 1 (Schur complement) [9] Given three matrices Q, R = RT et S = ST,the following
statement are equivalent

(i)
R Q
QT S

� �
> 0 ð3Þ

(ii) S > 0 and R−QS−1QT > 0; ð4Þ

Interconnected System

1
st

subsystem 2
th
subsystem i

th
subsystem N

th
subsystem

Decomposition

Interconnection

Interconnection

Fig. 1 Diagram of interconnected complex nonlinear systems

Interconnected System

1
st

subsystem 2
th
subsystem i

th
subsystem N

th
subsystem

Decomposition

Interconnection

Interconnection

Local command

Decentralized controller

1
st

local control 2
th

local control i
th
local control N

th
local control

u1 u2
ui uN

Fig. 2 Diagram of decentralized controller
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Lemma 2 [13] For any n × n matrix Q, any constant ε > 0 and any symmetric positive matrix P,

2xTQy≤εxTQP−1QTxþ ε−1yTPy ð5Þ
For all x, y ∈ℜn.

Lemma 3 (Finsler Lemma) [3]: Consider ξ ∈ℜn, Q =QT ∈ℜn × nand β ∈ℜm × n such that
rank(β) < n, and β⊥ a basis for the null-space of β (i.e.β⊥β = 0). The following propositions
are equivalents:

(i) ξTQξ < 0, for all ξ ≠ 0, βξ = 0;
(ii) βT

⊥Qβ⊥ < 0;
(iii) ∃χ ∈ℜn ×m :Q + χβ + βTχT < 0

This lemma is used to introduce new matrix variables, which are exploited for:

– Increase the degree of freedom of the system.
– separate the Lyapunov matrices from the system parameters.

This allows to release the conditions of stability.

3 Main results

In this section, the main goal is to design a decentralized controller ensuring the stability of
closed loop interconnected systems without and with delay.

3.1 New decentralized H∞ control for interconnected systems using Finsler lemma

In this subsection, a new decentralized H∞ control conditions using Finsler Lemma for the
interconnected closed-loop system (2) is developed. For our work, we are interested in
minimizing the influences of interconnections between subsystems, for this purpose and in
order to improve the robustness of the proposed control law with respect to the interconnec-
tions between the subsystems, we propose a criterion H∞ allowing to minimize the influence
of the N-1 subsystems on the ith subsystem. This criterion is given by the inequality (6):

For i = 1, …, N,

∫
∞

0
xTi tð Þxi tð Þdt < γ2i ∫

∞

0
φT
i tð Þφi tð Þdt ð6Þ

where

φi tð Þ ¼ ∑
N

j¼1; j≠i
Aijx j t−ηij tð Þ

� �
ð7Þ

γi > 0 are the H∞ performances level.
Note that, the vector φi(t) reflects the influence of a jth subsystem on ith and, in this case, the

performance rate H∞ appropriate to minimize.
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The main result is summarized in the following theorem:

Theorem 1 The set S of the N interconnected subsystems Si described by (2) is globally
asymptotically stabilized in closed loop via the network of N decentralized control laws with
respect to the criterion H∞ described by (6), if it exists for all the combinations i, j = 1,…, N,
j ≠ i,positive matrices Pi ¼ PT

i > 0; Y i; Fi and positive scalars γi, ai, bi verifying the LMI
conditions given by:

Minimize γi such as:

The new local gains matrices is ki ¼ yi FT
i

� �−1
; i ¼ 1;…;N

Where

We notice that the lyapunov matrices Pi are totally separated from the parameters of the system
Ai, Bi. This allows to release the stability conditions obtained.

Proof The H∞ synthesis by state feedback consists in looking for a decentralized control law
by state feedback ki such as ui = ki*xi; and ensures both:

– The stability of the interconnected system in closed loop.
– The verification of the H∞ criterion given by inequality (6).

The closed-loop interconnected system (2) is stable according to the H∞ criterion if condition
(9) is verified

∑
N

i¼1
V̇ i tð Þ þ xTi tð Þxi tð Þ−γ2i ϕT

i tð Þϕi tð Þ
h i

< 0 ð9Þ

(8)
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The above inequality can be reformulated as

∑
N

i¼1
∑
N

j¼1; j≠i
A½ þB−C� < 0 ð10Þ

With:

A ¼ 1

N−1
ẋ
T
i tð ÞP−1

i xi tð Þ þ xTi tð ÞP−1
i ẋi tð Þ

�
B ¼ xTi tð Þxi tð Þ

�
C ¼ γ2i 2N−3ð ÞxTj tð ÞAT

ij Aijx j tð Þ

we obtained

∑
N

i¼1
∑
N

j¼1; j≠i
ζTi Qiζi < 0 ð11Þ

where

ζi ¼ xTi tð Þ ẋ
T
i tð ÞxTj tð Þ

h iT
;

Qi ¼
1

N−1
1

N−1
P−1
i 0

* 0 0
* * −γ2i 2N−3ð ÞAT

ij Aij

2
64

3
75;

Expression (2) can be written as:

∑
N

j¼1; j≠i

1

N−1
Aci

−1
N−1

I Aij

� � xi tð Þ
ẋi tð Þ
x j tð Þ

2
664

3
775 ¼ 0 ð12Þ

Where Aci = Ai + Biki
Considering

χi ¼
Fi

ai Fi

bi Fi

2
4

3
5; ð13Þ

βi ¼ 1

N−1
Aci

−1
N−1

I Aij

� �
; ð14Þ

with

βi⊥ ¼
I 0
Aci N−1ð ÞAij

0 I

2
4

3
5 ð15Þ

and using condition (ii) of lemma 3, we obtained the equality between βT
i⊥Qiβi⊥and the LMIs

in (12) [16].
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Now, Applying Finsler’s Lemma 3 in condition (6), with (11), (13) and (14) writes

1

N−1
1

N−1
P−1
i 0

* 0 0
* * −γ2i 2N−3ð ÞAT

ijAij

2
64

3
75þ

Fi

ai Fi

bi Fi

2
4

3
5 1

N−1
Aci

−1
N−1

I Aij

� �
þ *ð Þ < 0 ð16Þ

Thus, (16) is equivalent to (8). This completes the proof of the theorem 1.

3.2 Decentralized state feedback H∞ control for interconnected systems
with time-delay

We consider the state representation of the interconnected closed loop system with time-delay
can be expressed as [7]:

ẋi tð Þ ¼ Ai þ BiKið Þxi tð Þ þ Adixi t−τ i tð Þð Þ þ ∑
N

j¼1; j≠i
Aijx j t−ηij tð Þ

� �
; i ¼ 1;…;N ð17Þ

The τi, ηij are unknown time-delay factors satisfying the following conditions:

0≤τ i tð Þ≤ρi; ˙τ i
:

tð Þ≤μi

0≤ηij tð Þ≤ρij; ˙ηij tð Þ≤μij

: ð18Þ

where the bounds ρi, ρij, μi and μji are known constants in order to guarantee smooth growth
of the state trajectories.

In this section, we are interested in designing a decentralized state feedback H∞ by ensuring
the stabilization of interconnected systems with time delay (18).

Our goal is to minimize the effects of interconnections between subsystems by guaranteeing
the stabilization of the subsystems (17).

We introduce a criterion H∞ allowing to minimize the influence of the j subsystems (j = 1,
…,N, and j ≠ i) on the ith subsystem. This criterion is given by:

For i ¼ 1;…;N ; ∫∞0 x
T
i tð Þxi tð Þdt < γ2i ∫

∞
0 ∑

N

j¼1; j≠i
Aijx j t−ηij tð Þ

� � !T

∑
N

j¼1; j≠i
Aijx j t−ηij tð Þ

� �
dt ð19Þ

where

∑
N

j¼1; j≠i
Aijx j t−ηij tð Þ

� �
Represent the influences of N-1 subsystems on the ith subsystem.

γi > 0 are the H∞ performances level which should be minimized.
The interconnected variable-delay system (17) is stable according to the H∞ criterion if the

inequality (20) is verified:

∑
N

i¼1
∫
∞

0
V̇ i tð Þ þ xTi tð Þxi tð Þ−γ2i ∑

N

j¼1; j≠i
Aijx j t−ηij tð Þ

� � !T

∑
N

j¼1; j≠i
Aijx j t−ηij tð Þ

� � !
dt

" #
< 0 ð20Þ

The approach ensuring simultaneously stabilizing the system (17), via the decentralized
controller μi(t) = kixi(t) and reduce the effect of interconnections between subsystems is
summarized in the following theorem.
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Theorem 2 Given ρi > 0, μi > 0 and μij > 0, the decentralized H∞ control problem for the
system (17) is solvable if there exist symmetric positive definite matrices Pi, Qi, Zij,Wi, i, j = 1,
…, N, i ≠ j and the positive scalars γi for any time delays τi(t), ηij(t) satisfying (18), satisfying
the following conditions LMI:

Minimizing γi such as

where

ϑ11 ¼ Rji þ 1

N−1
AiX i þ X iAT

i þ Biyi þ yTi B
T
i þ Ri

� �
Θ33 ¼ −γ2i 2N−3ð ÞAT

ij Aij− 1−μij

� �
Zij

Moreover, the decentralized state feedback gain matrix is given by:

ki ¼ yiX
−1
i ; i ¼ 1;…;N ð22Þ

Proof The closed loop system (17) is stable under the criterion H∞ if:

∑
N

i¼1
V̇ i tð Þ þ xTi tð Þxi tð Þ−γ2i ∑

N

j¼1; j≠i
Aijx j t−ηij tð Þ

� � !T

∑
N

j¼1; j≠i
Aijx j t−ηij tð Þ

� �" #
< 0 ð23Þ

The inequality (23) may be increased by (see Appendix):

∑
N

i¼1
V̇ i tð Þ þ xTi tð Þxi tð Þ
h

−γ2i 2N−3ð Þ ∑
N

j¼1; j≠i
xTj t−ηij tð Þ
� �

AT
ij Aijx j t−ηij tð Þ

� �� �#
< 0 ð24Þ

with

∑
N

i¼1
V̇ i tð Þ≤ ∑

N

i¼1

1

τ i tð Þ ∫
t
t−τ i tð Þ 2xTi tð ÞPi Acixi tð Þ þ Adixi t−τ i tð Þð Þ þ ∑

N

j¼1; j≠i
Aijx j t−ηij tð Þ

� �! "(

þ xTi tð ÞQixi tð Þ− 1−μið ÞxTi t−τ i tð Þð ÞQixi t−τ i tð Þð Þ þ ρi ẋ
T
i tð ÞWiẋi tð Þ−τ i tð ÞẋTi sð ÞWiẋi sð Þ

þ ∑
N

i¼1; j≠i
xTi tð ÞZijxi tð Þ− ∑

N

i¼1; j≠i
1−μij

� �
xTj t−ηij tð Þ
� �#

dsg

ð25Þ

(21)

19978 Multimedia Tools and Applications (2021) 80:19971–19988



Let

ζTi tð Þ ¼ xTi tð ÞxTi t−τ i tð Þð Þ xTj t−ηij tð Þ
� �

˙x
: T
i sð Þ�

T
�

ð26Þ

we obtain

∑
N

i¼1
V̇ i tð Þ þ xTi tð Þxi tð Þ−γ2i 2N−3ð Þ ∑

N

j¼1; j≠i
xTj t−ηij tð Þ
� �

AT
ijAijx j t−ηij tð Þ

� �� �" #
≤ ∑

N

i¼1
∑
N

j¼1; j≠i
ζTi tð ÞΞiζi tð Þ ð27Þ

with

Ξi ¼

Λ11
1

N−1
ρiA

T
ciWiAdi þ PiAdi

� �
PiAij þ ρiA

T
ciWiAij 0

*
1

N−1
ρiA

T
diWiAdi− 1−μið ÞQi

� �
ρiA

T
diWiAij 0

* * Λ33 0

* * * −
ρiWi

N−1

2
6666664

3
7777775

ð28aÞ

Λ11 ¼ Zji þ 1

N−1
piAci þ AT

ciPi þ ρiA
T
ciWiAci þ Qi þ I

� � ð28bÞ

Λ33 ¼ −γ2i 2N−3ð ÞAT
ij Aij− 1−μij

� �
Zij þ N−1ð ÞAT

ijρiWiAij ð28cÞ

That is to say, for all i, j = 1, …, N and j≠1

Λ11
1

N−1
ρiA

T
ciWiAdi þ PiAdi

� �
PiAij þ ρiA

T
ciWiAij 0

*
ρiA

T
diWiAdi

N−1
− 1−μið ÞQi ρiA

T
diWiAij 0

* * Λ33 0

* * * −
ρiWi

N−1

2
6666664

3
7777775
< 0 ð29Þ

Inequality (29) can be rewritten as:

Πi þ
ρiA

T
ciWi

ρiA
T
diWi

N−1ð ÞρiAT
ijWi

0

2
664

3
775 N−1ð ÞρiWið Þ−1 � ρiWiAci ρiWiAdi N−1ð ÞρiWiAij 0½ � < 0 ð30Þ

where

Πi ¼
Θ11

1

N−1
Pi Adi PiAij 0

* − 1−μIð ÞQi 0 0
* * Θ33 0

* * * −
ρiWi

N−1

2
666664

3
777775 ð31aÞ

Θ11 ¼ Zji þ 1

N−1
PiAci þ AT

ciPi þ Qi þ I
� � ð31bÞ
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Θ33 ¼ −γ2i 2N−3ð ÞAT
ij Aij− 1−μij

� �
Zij ð31cÞ

Applying the Schur complement in lemma 1, we obtain

Θ11
1

N−1
PiAdi PiAij 0 ρiA

T
ciWi

* −
1−μi

N−1
Qi 0 0 ρiA

T
diWi

* * Θ33 0 N−1ð ÞρiAT
ijWi

* * * −
ρiWi

N−1
0

* * * * − N−1ð ÞρiWi

2
6666666664

3
7777777775
< 0 ð32Þ

(32) is satisfied if:

ψ ¼

ψ11
1

N−1
PiAdi PiAij 0 ρiA

T
ciWi I

* −
1−μi

N−1
Qi 0 0 ρiA

T
diWi 0

* * Θ33 0 N−1ð ÞρiAT
ijWi 0

* * * −
ρiWi

N−1
0 0

* * * * − N−1ð ÞρiWi 0
* * * * * − N−1ð ÞI

2
666666666664

3
777777777775
< 0 ð33Þ

Where ψ11 ¼ Zji þ 1
N−1 PiAci þ AT

ciPi þ Q
� �

Multiplying ψ left and right respectively by.

diag P−T
i ;P−T

i ; I ; I ;W−T
i ; I

� 	
and diag P−1

i ;P−1
i ; I ; I ;W−1

i ; I
� 	

,

and let X i ¼ P−1
i ; yi ¼ kiX i; Si ¼ W−1

i ;Rji ¼ X iZjiX i;Ri ¼ X iQiX i;,
Finally, we obtain the LMI conditions (21) of theorem 2. This completes the proof.

4 Experimental result

In this section, two numerical examples are supplied to show the advantage of the proposed
approaches.

Example 1 We give the decentralized H∞ control issue of interconnected system (2) with

A1 ¼ −7 0
−6 0:1

� �
;A12 ¼ 0:1 0

0 0:1

� �
;A13 ¼ 0:01 0

0 0:1

� �

A2 ¼ 5 0
1 −1

� �
;A21 ¼ 0:1 0

0 0:1

� �
;A23 ¼ 0:01 0

0 0:1

� �

A3 ¼ −1 0
0:1 −1

� �
;A31 ¼ 0:01 0

0:1 0:1

� �
;A32 ¼ 0:01 0:1

0 0:1

� �

B1 ¼ 0:47
1:2

� �
;B2 ¼ 0:47

0:8

� �
; B3 ¼ 0:6

0:4

� �
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Applying theorem 1 to the system (2) and minimizingγi , it is found that the feasible solution is
attaint at:

In order to show the efficiency of our approach, we will solve the LMI stability conditions
proposed in theorem 1 and by minimizingγi .

The results obtained of our approach as well as those in the literature are summarized in
Tables 1 and 2.

Table 1 shows the comparison of the minimal of H∞ performance for the three subsystems.
According to the results obtained, we notice that γmin obtained by application of theorem 1

are smaller than [16].
We note that our approach is more efficient than that of [16].
Table 2 represent the gain matrices obtained for the three subsystems.
We notice that the controller parameters obtained by applying theorem 1 are smaller than

those in [16].
The three local controllers are capable of stabilizing the three subsystems.
In this numerical result, the initial conditions are given as:

x1 0ð Þ ¼ 1
−0:5

� �
; x2 0ð Þ ¼ 1

0

� �
; and x3 0ð Þ ¼ 1

1

� �
;

The evolution of the control system and these dynamics in a closed-loop for every each
subsystem are shown in Figs. 3, 4 and 5.

We performed a simulation test for the 3 subsystems:
The Fig. 3a represent the comparison of the dynamics of the 1st subsystem by our method

and that of [16]; we notice that the latter requires more time before stability is restored. On the
other hand, the proposed control ensures a better convergence with a very reduced response
time with fewer oscillations.

Similarly for the 2th subsystem, we notice that the proposed control ensures a better
convergence with a very reduced response time.

Table 1 Minimum performance bound H∞

Methods γmin

First subsystem Second subsystem Third subsystem

Decentralized H∞ control [16] γ1=1.5134 γ2=4.4897 γ3=1.3708
H∞+Finsler [Theorem 1] γ1=0.2574 γ2=0.4783 γ3=1.0725

Table 2 Decentralized control laws

Methods ki

First subsystem Second subsystem Third subsystem

Decentralized
H∞ control [16]

k1=[10.674 −10.552] k2=[−85.729 36.663] k3=[−6.4300 −4.628]

H∞+Finsler
[Theorem 1]

k1=[10.0746 ‐1.8061] k2=[‐32.5773 6.7252] k3=[‐0.2800 ‐0.3621]
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Also for the 3th subsystem, we can always notice that the proposed control ensures a better
convergence with a very reduced response time of about 1 s.

We note that all the decentralized controllers stabilize the global interconnected system after
a time of the order of 1 s. While each subsystem has its own convergence time, each of the
subsystems has its own convergence time.

Fig. 3 a Dynamics of the 1st closed-loop subsystem according to [16] and [Theorem 1]. b Evolution of the
control law of the 1st subsystem by the proposed method
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Fig. 4 a Dynamics of the 2th closed-loop subsystem according to [16] and [Theorem 1]. b Evolution of the
control law of the 2th subsystem by the proposed method
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Fig. 5 a Dynamics of the 3th closed-loop subsystem according to [16] and [Theorem 1]. b Evolution of the
control law of the 3th subsystem by the proposed method
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Example 2 Consider the interconnected closed loop system with time-delay [7] given by:

A1 ¼ −2 0
−2 −1

� �
;Ad1 ¼ −1 0

−1 0

� �
;A12 ¼ 1 0

1 0

� �
;A13 ¼ 0 −1

0 −1

� �
; B1 ¼ 1

2

� �

A2 ¼ −1 0
−2 −2

� �
;Ad2 ¼ 1 0

−2 −1

� �
;A21 ¼ −1 −2

3 6

� �
;A23 ¼ −1 1

3 −2

� �
; B2 ¼ 1 1

−1 2

� �

A3 ¼ −1 0
−1 −2

� �
;Ad3 ¼ 0 0

−1 −2

� �
;A31 ¼ 1 2

1 2

� �
;A32 ¼ 0 0

0 −1

� �
; B3 ¼ 2

1

� �

The interconnections of the subsystems influence the stabilization of the system as an overall.
Applying theorem 2, for:

ρ1 ¼ 2 ;μ1 ¼ 0:6 ; ρ2 ¼ 2; μ2 ¼ 0:3 ; ρ3 ¼ 3; μ3 ¼ 0:2;

μ12 ¼ 0:5;μ13 ¼ 0:7; μ23 ¼ 0:2; μ21 ¼ 0:9 ; μ31 ¼ 0:6;μ32 ¼ 0:3;

We obtain P1 ¼ 1:4664 ‐0:1928
‐0:1928 0:1505

� �
;Q1 ¼ 28:4358 ‐4:0533

‐4:0533 0:7780

� �
;.

W1 ¼ 0:1334 −0:0020
−0:0020 0:1343

� �
;

P2 ¼ 2:6855 1:0542
1:0542 0:5788

� �
;Q2 ¼ 116:5229 48:1746

48:1746 20:2471

� �
;W2 ¼ 0:1313 0:0116

0:0116 0:10118

� �
;

P3 ¼ 0:7291 1:6097
1:6097 4:9738

� �
;Q3 ¼ 46:8429 137:7018

137:7018 409:9437

� �
;W3 ¼ 0:1942 −0:0143

−0:0143 0:1883

� �
;

Since Pi, Qi, Wi > 0, i = 1, 2, 3
Then, the conditions provided by Theorem 2 are satisfied.
The results obtained of our approach as well as those in the literature are summarized in

Tables 1 and 2.
Table 3 shows the comparison of the minimum performance bound H∞ obtained for the

three subsystems.
According to the results obtained, we notice that γminobtained by application of theorem 2

are smaller than those of [7]. Thus, our approach is more efficient than that of [7].
The Table 4 shows the gain matrices obtained for the three subsystems. The three local

controllers are capable to stabilize the three subsystems.

Table 3 Minimum H∞ performance γminof interconnected system with time-varying delays

Methods γmin

First subsystem Second subsystem Third subsystem

By [7] γ1=1.8011 γ2=13.4931 γ3=1.4746
By Theorem 2 γ1=1.6725 γ2=0.5162 γ3=0.9170
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5 Conclusion

In this study, we proposed a new decentralized H∞ control for interconnected complex
nonlinear systems such that the closed-loop feedback subsystems are asymptotically stable.
We used a Lyapunov function and H∞ criterion to reduce and minimize the effect of
interconnections between the subsystems, in order to release the conditions of stability, we
applied Finsler’s lemma. The sufficient conditions ensuring stability in closed loop were
formulated in the terms of LMI. Finally, the obtained result are given to prove the efficiency
of the proposed method, and the graphics result shows that the system is well stabilized.

Appendix

Decentralized State Feedback H∞ Control

In this Appendix, we verify the inequality (19) used in section 3, with:

φi ¼ ∑
N

j¼1; j≠i
Aijx j t−ηij tð Þ

� �
ðA:1Þ

φT
i φi ¼ ∑

N

j¼1; j≠i
Aijx j t−ηij tð Þ

� � !T

∑
N

j¼1; j≠i
Aijx j t−ηij tð Þ

� �

¼ ∑
N

j¼1; j≠i
∑
N

l ¼ 1
l≠i; l≠ j

xTj t−ηij tð Þ
� �

AT
ij Ailxl t−ηij tð Þ

� �
þ xTl t−ηij tð Þ

� �
AT
il Aijx j t−ηij tð Þ

� �� �

þ ∑
N

j¼1; j≠i
xTj t−ηij tð Þ
� �

AT
ij Aijx j t−ηij tð Þ

� �
¼ ∑

N

j¼1; j≠i

h
xTj t−ηij tð Þ
� �

AT
ij Aijx j t−ηij tð Þ

� �
þ ∑

N

l ¼ 1
l≠i; l≠ j

xTj t−ηij tð Þ
� �

AT
ij Ailxl t−ηij tð Þ

� �
þ xTl t−ηij tð Þ

� �
AT
il Aijx j t−ηij tð Þ

� �� �

ðA:2Þ

Table 4 Decentralized control lawski

Methods ki

First subsystem Second subsystem Third subsystem

By [7] k1=[1.1187 0.8962] k2 ¼ ‐8:8441 1:3237½ ‐3:9501 ‐3:3300� k3=[‐0.6289 ‐0.2550]
By Theorem 2 k1=[1.1374 0.4022] k2 ¼ 0:3479 ‐1:1906½ 0:5539 1:2342� k3=[‐0.0237 ‐0.6346]
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Apply the lemma of the square matrix, we have:

∑
N

l ¼ 1
l≠i; l≠ j

xTj t−ηij tð Þ
� �

AT
ij Ailxl t−ηij tð Þ

� �
þ xTl t−ηij tð Þ

� �
AT
il Aijx j t−ηij tð Þ

� �� �

≤ ∑
N

l ¼ 1
l≠i; l≠ j

Aijx j t−ηij tð Þ
� �h iT

Aijx j t−ηij tð Þ
� �h i

þ Ailxl t−ηij tð Þ
� �h iT

Ailxl t−ηij tð Þ
� �h i

¼ N−2ð Þ Aijx j t−ηij tð Þ
� �h iT

Aijx j t−ηij tð Þ
� �

þ ∑
N

l ¼ 1
l≠i; l≠ j

Ailxl t−ηij tð Þ
� �h iT

Ailxl t−ηij tð Þ
� �h i

ðA:3Þ

Then

φT
i φi≤ ∑

N

j¼1; j≠i
N−1ð ÞxTj t−ηij tð Þ

� �
AT
ij Aijx j t−nij tð Þ

� �þ ∑
N

l ¼ 1
l≠i; l≠ j

xTl t−ηij tð Þ
� �

AT
ij Ailxl t−ηij tð Þ

� �
0
BBBB@

1
CCCCA ðA:4Þ

Since

∑
N

j¼1; j≠i
ψij þ ∑

N

l ¼ 1
l≠i; l≠ j

ψil

0
BBBB@

1
CCCCA ¼ N−1ð Þ ∑

N

j¼1; j≠i
ψij ðA:5Þ

Inequality (A.4) can be rewritten as follows:

φT
i φi≤ 2N−3ð Þ ∑

N

j¼1; j≠i
xTj t−ηij tð Þ
� �

AT
ij Aijx j t−ηij tð Þ

� �
ðA:6Þ

Finally, the inequality (24) is verified.
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