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Abstract
Due to the expension of High Dynamic Range (HDR) imaging applications into various
aspects of daily life, an efficient retrieval system, tailored to this type of data, has become
a pressing challenge. In this paper, the reliability of Convolutional Neural Networks (CNN)
descriptor and its investigation for HDR image retrieval are studied. The main idea consists
in exploring the use of CNN to determine HDR image descriptor. Specifically, a Perceptu-
ally Uniform (PU) encoding is initially applied to the HDR content to map the luminance
values in a perceptually uniform scale. Afterward, the CNN features, using Fully Connected
(FC) layer activation, are extracted and classified by applying the Support Vector Machines
(SVM) algorithm. Experimental evaluation demonstrates that the CNN descriptor, using
the VGG19 network, achieves satisfactory results for describing HDR images on public
available datasets such as PascalVoc2007, Cifar-10 and Wang. The experimental results
also show that the features, after a PU processing, are more descriptive than those directly
extracted from HDR contents. Finally, we show the superior performance of the proposed
method against a recent state-of-the-art technique.

Keywords Image retrieval · Convolutional neural networks · High dynamic range ·
Feature extraction · VGGNet · Perceptually uniform encoding

1 Introduction

HDR imaging has received a lot of attention in modern computer graphic applications. Its
success is mainly due to its ability to capture an extremely wide range of the illumination
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in real-world scenes and to produce images that are more realistic. Numerically, the HDR
image is encoded by three floating-point numbers related to the physical luminance in the
scene; typically with 96 bit per pixel (bpp) instead of 24 bpp in its Low Dynamic Range
(LDR) version.

Over the past decades, HDR imaging [8] has received significant recognition in several
computer vision tasks [6, 29]. As a result, the subject of HDR image acquisition [7, 31]
has attracted the attention of researchers and raised the challenge of storing the generated
HDR images in specific formats. In this context, various compression methods have been
proposed to represent the floating-point numbers in an efficient and compact way. Several
formats support these types of data like RGBE [48], LogLuv [27], and OpenEXR [55]
formats. However, the use of these formats is hampered by difficulties in rendering the HDR
content on standard display devices that are designed for conventional images. This problem
has been tackled by using tone mapping operators [23], which aim at reducing the high
dynamic range while preserving the image content such as contrast, brightness, and colors.
On the other hand, some researchers [4, 9, 10, 24, 25, 30, 52] are interested in developing
reverse tone mapping (rTM) methods to expand LDR content to HDR. The principle of
rTM is to estimate, from the LDR image, the real-world luminance values as faithfully as
possible.

In accordance with the development of HDR imaging, it is expected that the number
of HDR images will grow rapidly and that collections of this type of images will become
available in different application domains. Therefore, the development of effective HDR
image indexing and retrieval methods is becoming extremely important. In the literature,
many works have focused on LDR image retrieval using different methods. In the last few
years, deep learning approaches have become foremost choice to address most problems in
the fields of computer vision and image processing like Image Dehazing [50, 51], Recom-
mender System [34], Object Detection [35], Visual Captioning[11] and Image retrieval [2,
12, 15, 18, 40, 44]. The latter is a fundamental task in many computer vision applications.
It gained the interest of the scientific community to access, search or browse effectively the
images from databases. Several CNN based methods have been developed in this field to
supply a high-level description of image content. In Section 2, we introduce some of them.

The CNN architecture provides an attractive solution for different tasks thanks to its high
performance, discriminative power, and compact representation, allowing for a large-scale
data modeling. However, to the best of our knowledge, no CNN-based scheme has been
proposed yet for the purpose of HDR image retrieval. In this paper we aim to shed light
on this issue. Specifically, we propose a query-by-example HDR image retrieval method
that uses the Fully Connected (FC) layer activation to define the relevant features of HDR
images. Before passing through the descriptor computation stage, the HDR pixels are mod-
ified by using a Perceptually Uniform (PU) encoding [1] to map the luminance values in a
perceptually uniform scale. The originality of our approach lies in extracting and testing the
CNN features on the HDR contents. To this end, we selected the method that has powerful
descriptors and high HDR retrieval accuracy. The novel contributions of this work are listed
as follows:

– Design an algorithm for HDR image retrieval based on CNN.
– Apply PU encoding [1] to HDR content and evaluate its influence on the retrieval

accuracy.
– Build an HDR image database for the purpose of retrieval performance evaluation.
– Analyse the efficiency of CNN descriptor and report the performance of Visual

Geometry Group Network (VGGNet).
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– Evaluate the effectiveness of the proposed retrieval algorithm according to the number
of layers in CNN.

– Demonstrate the competitiveness of conventional and FC layers for LDR and HDR
datasets.

– Present experiments showing significant accuracy improvements on recent state-of-the-
art method.

The paper is structured as follows: In Section 2, we give a brief overview on the related
works regarding HDR image retrieval and the use of CNN methodology. In Section 3 we
present the commonly used CNN architecture. In Section 4, we describe the proposed CNN-
based scheme for HDR image retrieval. In the experimental Section 5 we compare our
method to other ones in the literature and assess their accuracy. Finally, conclusions are
drawn in Section 6.

2 Related work

In the last few years, some works have focused on HDR image retrieval. In [19], the authors
proposed to use histogram intersection to define an HSV color descriptor. The results of
the experiments have revealed that HSV histograms can be efficiently used as a global
descriptor for HDR image retrieval task. To ameliorate their method, the authors in [20, 22]
combined the HSV color histograms with color moments. Despite their practical use, these
approaches [19, 20, 22] seem to be very limited compared to the abilities of local descriptors
that have been proved to be very effective for indexing applications. Some researchers [5,
37, 38] turned their attention to the detection of key-points in HDR images, under changing
illumination conditions, varying camera viewpoints, camera distances and scene lighting.
Experimental results, reported in [5, 38], demonstrated that the direct use of HDR image in
a linear scale is inappropriate for key-points detection. In [21], the authors introduced a new
retrieval method based on LDR expansion. They improved the feature extraction by using
reverse tone mapping and applying a tone mapping operator to determine the Scale Invariant
Feature Transform (SIFT) descriptor. The experimental results showed the potential of the
tone-mapped HDR content for detecting the local descriptors and demonstrated that the
selected features are more descriptive than those extracted from LDR and HDR versions.
The authors in [21] also established that the use of local SIFT descriptors is not appropriate
for HDR images.

Recently, to achieve a higher level of robustness, researchers have successfully used
machine learning approaches in many imaging applications. Generally speaking, deep learn-
ing systems allow building rich features with hierarchical representation, resulting is an
effective classification [26]. Particularly, CNN architecture becomes one of the most inter-
esting topics that revolutionized the field of computer vision like segmentation and object
detection [3, 39]. It is characterized by its ability to capture different patterns while achiev-
ing a high classification accuracy. In literature, several systems, based on CNN, have been
investigated to effectively describe LDR images. Among these, some methods use the acti-
vations of fully connected or convolutional layers as image descriptors [2, 12, 18, 40, 44].
In [39], authors propose off-the-shelf CNN features. They extract generic features from
OverFeat network using the fully connected (FC6) of AlexNet and demonstrate that this
approach clearly outperforms local features methods. Various works use the activations of
max-pooling from convolutional layers like [53]. To obtain compact descriptors, a number
of dimensionality reduction methods are applied like Principal Component Analysis (PCA)
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[2, 44], Bag-of-Words [32], VLAD [33] and Fisher Vectors [45]. Authors in [36] propose
to use a trainable Generalized-Mean (GeM) pooling layer. The idea consists in adding a
new pooling layer with learnable parameters after the convolutional layers. Then, a whiten-
ing is applied to reduce the descriptor dimensionality. In [36], the authors introduce a new
weighted query expansion. The work presented in [14] consists in building a descriptor
based on the regional maximum activations of convolutions (R-MAC) descriptor [44] and
learn CNN weights in an end-to-end method, and applying the siamese network with three
streams and a triplet loss for training. Regional network is proposed to select the relevant
regions of the image, using image scaling to extract local features. Other solution consists
in adding a new layer named NetVLAD that can be applied in any CNN architecture. It
is trainable through backpropagation for an end-to-end manner. The obtained features are
reduced using PCA. In [15], authors introduce a spatial pyramid pooling (SPP) of CNN
features which is an extension of the BoW. It generates a fixed-length representation regard-
less of image size/scale. Recently, authors in [46] introduce an end-to-end trainable network
using multiscale local poling based on NetVLAD and a triplet mining. In [16], the authors
present global descriptors REMAP based on a hierarchy of deep features using multiple
CNN layers.

A number of methods have been developed to define binary codes based on deep learn-
ing [28, 42]. Recently, a unified framework has been introduced for image retrieval and
compression [42]. This framework applies the deep hashing method to learn compact binary
codes and uses a new loss function to adapt the binary representation. For retrieval purpose,
VGG network is used with a specific configuration. For a manifold structure of the training
data, K-Nearest Neighbor (KNN) algorithm is applied to create a neighborhood matrix dur-
ing the learning of neural networks, which can be unsupervised or supervised. Experimental
results show that this method outperforms some existing state-of-the-art ones.

Using CNN features can be global [3, 26], local [33, 49] or regional [13]. However, the
CNN has a common architecture which described in the following section.

3 CNN architecture

Convolutional layer The convolutional (Conv) layer is the main component that allows
extracting the images features. It is performed on the input image using a set of kernels
(weights) as parameters. The different kernels are convolved across the width, height, and
depth of the input volume using a dot product for returning the output volume. This layer
comprises a rectangular grid of neurons. Specifically, each block of pixels is stretched into
a matrix column, and the number of columns corresponds to the number of all local regions.
As a result, the matrix multiplication is converted to the output volume with a depth that
corresponds to the kernel number for obtaining the compact description of the input volume.

Pooling layer After each convolutional layer, a pooling layer may be used. The latter is
a simple operation that is applied independently on the input volume. In the kernel, the
pooling layer represents the outputs of neighboring groups of neurons. The most common
type of pooling is the maximum. It is used to decrease the size (width and height dimensions)
of the feature map while preserving the relevant information.

Normalization layer This layer supports a faster convergence. It allows adjusting the inter-
nal activations by using it before the activation function. In literature, various models of
normalization have been proposed for ConvNet architectures. The two most commonly
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types used are the Local Response Normalization (LRN) and Batch Normalization (Batch-
Norm). The later performs a more global normalization. However, LRN implements the
normalization in a small local neighborhood for each pixel. This method introduced in [26]
and applied in [41] using the same parameters. The normalized output is given as following:

Y i
x,y = Xi

x,y/

⎛
⎝κ + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(
X

j
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)2

⎞
⎠

β

(1)

where Xi
x,y and Y i

x,y are the pixel values at the (x, y) position of the the kernel i before
and after normalization respectively. N is the total number of feature channels in X. The
different constants are used as hyper-parameters where κ = 2, n = 5, α = 10−4 and
β = 0.75.

Fully-connected layer All neurons in this layer are connected to all activations in the pre-
vious layer, which can be calculated with a matrix multiplication followed by a bias offset.
It takes as input the result of the previous layers (convolution and pooling) and returns a sin-
gle vector which describe the image. However, this layer occupies the major part of CNN
memory and requires high computation cost, due to the large number of parameters.

Correction layer (activation function) To improve the CNN efficiency, a correction layer
is incorporated between layers. Its role consists in using an activation function to make the
output nonlinear. The commonly used activation function is the rectified linear unit (ReLU)
that applies an element wise function (f (x) = max(x, 0)). In addition to its simplicity, the
ReLu activation function does not require any additional parameter and does not change the
size of input volume.

Loss layer Loss layer is the last layer in the neural network. It specifies how network train-
ing penalizes the gap between expected and actual signal. Various loss functions, adapted
to different tasks, can be employed. In particular, the Softmax function, also known as nor-
malized exponential function, is used to predict a single class among K mutually classes.
The Softmax function takes as input a vector of K real numbers and normalizes it into a
probability distribution consisting of K probabilities (σ (.)) proportional to the exponentials
of the input numbers. In the case of neural network, given the vector of the output layer
z = [z0, . . . , zK−1], the conventional Softmax function can be expressed as follows:

σ(z)j = ezj

∑K
k=1e

zk

(2)

where j the index of the output unit, with j = 1, 2, . . . , K .
Many studies [2, 13, 40] have shown that CNN features can be successfully retrieved

from traditional LDR images. On the other hand, deep learning methodology has been pre-
viously proposed for companding HDR image from a single exposed LDR one [9, 10, 52].
Additionally, the CNN architecture has been used to reconstruct HDR video using multiple
exposures captured over time [17]. But, to the best of our knowledge, the CNNs have never
been investigated for the purpose of HDR image indexing and retrieval.

In this work, we attempt to exploit the many advantages of the CNNs to design an HDR
image retrieval system. The proposed method is discussed in detail in the following section.
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4 Proposedmethod

To determine the adequate descriptor, we model an HDR image as a collection of fea-
tures using the VGG19 architecture [1]. Figure 1 summarizes the main steps that constitute
the proposed scheme for Query-by-example HDR image retrieval. The database is divided
into training and testing sets. Firstly, a perceptually uniform (PU) encoding [1] is applied
on HDR images. This encoding procedure is defined by a specific transfer function that
prepares the HDR content to the feature extraction. Notably, the PU encoding is used to
make sure that the distortion visibility is perceptually uniform through the coded pixels. For
example, it can decrease the color sensitivity when the luminance is low. Secondly, a CNN
descriptor is performed by extracting the rich features using FC layer activation. Doing so,
each image in the dataset (training data and test data) will be indexed by a CNN feature
vector (DT r (Descriptors of traing data) and DT s(Descriptors of testing data)). Finally, the
sought HDR images are retrieved according to the Support Vector Machines (SVM) classi-
fication. We note that the model of SVM classifier is determined according to the features
of training samples.

4.1 Extraction of CNN features

VGGNet [41] is a widely known network that encompasses 19 layers (convolutional and
fully-connected). It is recognized by its simplicity and the large feature maps. Conforming
to its architecture, each hidden layer uses the activation function ReLU. Depending on the
training data, the size of RGB image is fixed to 224 × 224. A stack of convolutional layers
is applied to the image using 3 × 3 filters, with very small sizes, for capturing the different

Fig. 1 Block diagram of the proposed HDR retrieval method
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left/right, up/down and center details like mentioned in [41]. For example, 1×1 convolution
filters are used as linear transformation. The stride of convolution equals to 1 pixel and the
spatial padding is 1 pixel for 3 × 3 convolutional layers. Concerning the pooling layer, the
operation is applied on 2 × 2 pixel window and stride 2. In total, five max-pooling layers
are used after some convolutional ones. The convolutional layer is designated by Convm n,
where m and n refer to the order of the convolutional layer in the stack and the order of the
stack, respectively. For example, Conv1 1 is the first convolutional layer in the first stack
whereas Conv5 4 is the deepest layer in this network. In the top level of this architecture,
there are three FC layers. The latter are applied after a set of convolutional layers that are
characterized by the same architecture. The first and the second FC layers are of size 4096
channels; while the third one comprises only 1000 channels. As illustrated in Fig. 2, the
global network architecture uses 19 weight layers: 16 convolutional and 3 FC layers. It
is worth noting that the VGG16 architecture uses a configuration with decreasing depth.
Only 16 layers are implemented without using Conv3 4, Conv4 4 and Conv5 4 layers. In
this network, each layer has different feature maps that can be applied as local descriptor
with a specific dimension. Previous work established that the use of FC features improves
the image retrieval accuracy [18, 44]. This is mainly due to their high generalization and
semantic descriptive ability. In this work, we propose to extract the 4096 dimensional output
of the second FC layer. Then, replace the softmax layer with a linear SVM model which
is recognized by its very good practical results. The next section gives an overview of the
linear SVM.

4.2 Linear SVM

SVM is one of the commonly used algorithms in machine learning applications, thanks to
its powerful discriminative classifier. A hybrid approach which combines CNN and linear
SVM has been proposed in some works such as [43, 47, 54]. The latters have concluded
that CNN architecture can achieve an impressive performance if it is combined with linear

Fig. 2 The VGGNet architecture used for CNN features extraction
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SVM instead of Softmax. As demonstrated in [47], the linear SVM algorithm can be used
for each layer with no additional fine-tuning of hidden representation.

In the field of image retrieval, the linear SVM algorithm allows to find the optimal sepa-
rating hyperplane between classes using training samples. In our work, the feature vector is
normalized used L2. For a given training dataset xi, yi , with i ∈ 1, . . . ; , N and N the num-
ber of training samples, yi equals +1 and −1 for class ω1 and class ω2, respectively. In the
case of linearly separable descriptors, it is possible to find at least one hyperplane defined
by a vector of weights w with a bias b, if we can separate the classes without error using the
following classification function:

f (x) = w · x + b = 0. (3)

Therefore, to find an hyperplane, we need to estimate w and b using the following functions:

yi(w · xi + b) ≥ +1 f or yi = +1 (class ω1), (4)

yi(w · xi + b) ≤ −1 f or yi = −1 (class ω2). (5)

5 Experimental results

In this section, we present and compare the experimental results on LDR and HDR datasets.
Firstly, we describe HDR databases and valuation criteria which were used in these experi-
ments. Then, we provide a quantitative evaluation of the HDR image retrieval performance
compared to LDR one using the features extracted with the CNN framework. Also, we
provide comparative evaluations to other related methods. Finally, we assess the time
complexity.

5.1 Databases andmeasures

Although there is a growing interest in HDR content, the amount of available data remains
limited to evaluate and test HDR indexing and retrieval systems. Fortunately, the rapid
development of HDR tools has made it possible to easily generate an HDR image. Thus, in
order to create HDR databases, we used the inverse tone mapping method presented in [25],
which provides very satisfactory results, to build HDR images by expending LDR ones. In
the current work, we consider LDR PASCAL VOC2007, CIFAR-10, and Wang databases.

– PASCAL VOC2007 database: It is one of the most widely used benchmark for image
classification. It contains 9963 RGB images divided into 20 classes (Person, Bird, Cat,
Cow, Dog, Horse, Sheep, Airplane, Bicycle, Boat, Bus, Car, Motorbike, Train, Bottle,
Chair, Dining table, Potted plant, Sofa and TV/Monitor) and is available at http://host.
robots.ox.ac.uk/pascal/VOC/voc2007/index.html

– CIFAR-10: It is one of the most popular deep learning dataset. It comprises 60000
natural images of size 32 × 32 divided into 10 categories (Airplane, Automobile, Bird,
Cat, Deer, Dog, Frog, Horse, Ship, and Truck). From the CIFAR-10 collection, 50000
images are devoted to training (5000 for each class) while the remaining 10000 images
are devoted to testing (1000 for each class) https://www.cs.toronto.edu/∼kriz/cifar.html

– Wang: It contains 1000 images classified into ten categories (Africa, Beach, Buses,
Monuments, Dinosaurs, Elephants, Flowers, Horses, Mountains, Food). Each category
comprises 100 images. http://wang.ist.psu.edu/docs/related/
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Several performance measures can be used to asset the efficiency of indexing/retrieval
methods. Specifically, evaluation over different datasets is performed by using testing
images (one or more images as the query), and ranking the images from the most similar to
the least similar. The performance for a particular method is estimated by the average of the
performances overall query images. To asset the efficiency of the test methods we retained
the following measures:

– Precision against recall plot: A curve illustrating the relationship between precision and
recall for retrieval system. The precision represents the ability of retrieval algorithm to
return only images that are relevant whereas the recall corresponds to the system ability
to return all images that are relevant.

– mAP: The mean Average Precision (mAP) of a set of queries is a common metric used
to evaluate the effectiveness of an image retrieval system. It is worth noting that among
retrieval evaluation measures, mAP has been shown to have good discrimination and
stability.

– Accuracy: It can be defined as the percentage of correctly classified instances

5.2 Image retrieval results

To evaluate the performance of our HDR image retrieval approach and investigate the impact
of CNN, retrieval experiments are carried out from HDR and LDR versions of PASCAL
VOC2007 database using the mAP scores. Table 1 shows the retrieval accuracy using SIFT
and CNN descriptors for LDR (LDR-SIFT/LDR-CNN), Expanded-Mapped (EM-SIFT),
HDR with linear luminance values (HDR-Lin-CNN) and HDR with PU encoding (HDR-
PU-SIFT/HDR-PU-CNN) representations. We note that both LDR-SIFT and EM-SIFT [21]
methods use a bag of visual words as descriptor.

Table 1 mAP scores on the HDR PASCAL VOC2007 dataset using VGG19

Descriptors

Classes LDR-SIFT EM-SIFT HDR-PU-SIFT LDR-CNN HDR-Lin-CNN HDR-PU-CNN

Airplane 87.83 88.65 88.48 99.08 98.49 99.13

Bicycle 64.12 67.70 68.13 96.15 92.90 96.29

Bird 73.27 74.38 73.67 98.30 96.31 98.98

Boat 77.45 79.72 80.98 98.80 95.78 98.28

Bottle 39.66 38.83 37.96 70.93 61.67 74.25

Car 90.25 90.31 91.90 99.39 98.02 99.17

Cat 71.07 71.28 72.78 90.81 91.13 94.88

Dog 68.57 68.44 71.20 93.60 87.81 93.90

Horse 70.71 73.01 71.86 97.46 87.77 97.48

Motorbike 74.84 75.25 76.18 98.12 96.20 98.63

Person 85.45 85.64 85.70 95.37 93.20 95.07

Pottedplant 33.17 34.53 34.31 63.95 58.06 62.65

Sheep 45.27 46.10 46.28 94.46 85.06 92.60

Train 81.44 88.40 78.93 99.14 96.74 99.36

TVmonitor 48.80 48.92 49.04 75.65 65.68 77.98

Average 66.21 66.96 67.32 87.96 85.79 90.67
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From the results reported in Table 1, we observe that in the case of HDR-PU-CNN
descriptor, the mAP scores reveal the excellent results for the majority of classes. This may
be explained by the fact that PU encoding plainly improves the effectiveness of the CNN
descriptor. Additionally, this encoding procedure leads to more accurate results than that
provided by original LDR content. On average, PU encoding provides a gain of about 2.71%
and 1.11% for CNN and SIFT features respectively, when compared to the same features
obtained from LDR representation.

Earlier studies have shown that the SIFT descriptor is recognized by its ability to capture
the local object details like edges and corners and, consequently, achieves a good perfor-
mance for image retrieval. In the case of HDR images, our experiments prove that the use
of PU encoding allows to enhance the representation of HDR images. On the basis of the
results reported in Table 1, the majority of mAP values of HDR-PU-SIFT are higher than
70%. However, in some classes like Bottle, Pottedplant and Sheep, the mAP scores are
lower than 50%. In counterpart, by examining the results obtained with CNN descriptor, it
appears that the later entails advantages in terms of retrieval efficiency thanks to its capabil-
ity to learn different images and successfully model HDR data. The results of our analysis
reported in Table 1 clearly show that the CNN descriptor systematically outperforms EM-
SIFT [21] and HDR-PU-SIFT ones. Moreover, we remark that the mAP scores obtained by
HDR-PU-CNN method surpass 95% for most classes.

From a more quantitative point of view, we studied the impact of the extracted fea-
tures using VGG16 and VGG19 on LDR, HDR-Lin (HDR with linear luminance values)
and HDR-PU (HDR with PU encoding) representations. For a given HDR-PU content,
we extracted features from some layers (conv5 1 (C5 1), conv5 3 (C5 3), FC1 and FC2)
and compared the matching precisions to those obtained for LDR and HDR-PU versions
in PASCAL VOC2007 dataset. From Fig. 3, we observe that the VGG19 model achieves
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Fig. 3 Retrieval performance using mAP measure for LDR, HDR-Lin and HDR-PU representations using
VGG16 and VGG19 frameworks on some classes of PASCAL VOC2007 dataset
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Fig. 4 Accuracy results for some classes of CIFAR-10 database, using different layers in VGG19 framework

higher performance for HDR content (HDR-Lin and HDR-PU) in different layers. It gives
very high precision and outperforms the VGG16 model. We believe that this is mainly due
to the number of layers which strongly influences the richness of the information in the
HDR feature descriptor. However, in the case of LDR content, the results obtained by using
VGG16 and VGG19 are almost similar. Again, one may also conclude that PU encoding
improves the precision of the HDR content and consequently induces an overall retrieval
efficiency gain. For instance, the gain of PU is about 20.92% in Airplane class using FC2
as descriptor. Moreover, we can clearly notice that when FC layers are considered, the mAP
scores for LDR and HDR-PU contents are very close. For some classes like Dog, the LDR
content exhibits a superior performance compared to HDR representation. This limitation
stems from the high sensitivity of HDR content that badly affects the matching accuracy
against the original dataset. As discussed above, the PU encoding has proven its usefulness
to alleviate this limitation by adjusting the HDR pixel values and reduce their sensitivity.

We have also tested our retrieval method, using VGG19 network, on the CIFAR-10
database. Figure 4 presents the accuracy results for some classes. From this figure, we can

Table 2 Comparison Accuracy scores with other methods using LDR and HDR represenations on the Wang
dataset

Global method [22] Local method [21] CNN method

LDR HDR LDR HDR Expended-mapped HDR LDR

68.49 68.62 92.34 57.78 93.16 100 100
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Table 3 Performance
comparison (mAP) with other
method on the Cifar-10 dataset

Method mAP

Proposed method (LDR) 94.6

Proposed method (HDR-PU) 95.1

BGAN+ [42] 89.4

see that the FC features outperform the convolutional ones for all the recall values. Specifi-
cally, the accuracy of the top layers is superior to that obtained from the bottom ones. One
may also notice that in the case of C5-1 layer, the PU encoding shows a distinctive improve-
ment for all the classes. Quantifying the retrieval performance improvements, brought by
PU encoding, a gain in accuracy of about 3.35% and 1.36% is attained for Automobile and
Deer classes, respectively, when compared it to the HDR-Lin using descriptor FC1.

In Table 2, we compare the CNN method for HDR and LDR representations with other
state-of-the-art methods (Global and local) on Wang dataset. 30 images per class are ran-
domly selected for training. From this table, we can notice that the CNN descriptor offers
the best result for both LDR and HDR content. It achieves good retrieval power for HDR
content because the features are more descriptive than those extracted from [21] and [22].
This is explained by the fact that CNN descriptor fits well for HDR content. Meanwhile,
local method(SIFT) owns the worst accuracy.

Table 3 shows the CIFAR-10 retrieval results based on the mAP for the proposed
method and BGAN+ [42], a recent state-of-the-art learning-based hashing method for image
retrieval. According to these results, we observe that the proposed method achieve strong
results, and it outperforms BGAN+ in terms of precision.

As a last comparison, we carried out evaluations of the proposed retrieval method on
the whole CIFAR-10 database. Figure 5 illustrates the precision–recall plots for the whole
dataset. From the depicted curves, we observe that the configuration that uses the first and
second FC layers owns a higher performance against the other ones. However, the perfor-
mance decreases when using the bottom layers of the CNN framework. One may safely
conclude that the selection of the network architecture and depth are crucial to achieve a
successful HDR content retrieval.
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Fig. 5 Precision vs Recall curves of the tested VGG19 framework (under different configurations) using the
HDR-PU representation on the whole of CIFAR-10 database
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Query 1

Query 2

Query 3

Fig. 6 Some examples of query HDR images from our HDR CIFAR-10 dataset and the top-9 retrieval results

Figure 6 shows three queries and their corresponding top 9 retrieved HDR images from
CIFAR-10 dataset using the proposed method. Query 1 is from Automobile class, Query
2 is from Frog class and Query 3 is from Horse class. The different HDR images are tone
mapped using the TMO proposed in [22] to ensure the rendering on LDR devices. As we
can see from this figure, the retrieved images in the first positions of the rank lists belong
to the same class as their corresponding queries. This proves the effectiveness of the CNN
features in HDR image retrieval despite the large scale difference between images.

5.3 Complexity evaluation

In order to evaluate the time complexity of the proposed CNN method, execution-time tests
are performed on a machine with an Intel(R) Xeon CPU E5-2640 v4 Core 10 at 2.40 GHz.
For example, for the CIFAR-10 dataset, the running time for the retrieval of an HDR image
takes on average: 400 ms for CNN Features Extraction, 4 ms for PU encoding, and 78 ms
for SVM classifier.

6 Conclusion

We have presented an HDR image retrieval method based on the CNN paradigm. To ame-
liorate the accuracy of the proposed approach, the PU encoding is applied on the HDR pixel
values before passing to the computation of the descriptor components. Through this work,
we have reported, for the first time, results competing with some methods on the challeng-
ing HDR PASCAL VOC2007, CIFAR-10 and Wang datasets. In the same context, we have
provided good practices for extracting features from some layer of the CNN, using VGG19
pre-trained model. Experimental assessments have demonstrated that the CNN features
exhibit substantial performance improvements over SIFT descriptor. Moreover, the obtained
results reveal that the FC layers offer the best performance among the other CNN interme-
diate layers. Hence, we can claim that it is very appropriate for describing HDR images.
However, it must be emphasized that in some layers, especially in VGG16 framework, the
accuracy of our retrieval method, applied on HDR images is lower than its counterpart
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applied on LDR images. This discomfort is particularly faced when using a decreasing num-
ber of layers. As future work, we intend to resolve this problem, by incorporating additional
discriminative cues in the layers to enhance the HDR features based on CNN descriptor.
As another promising line of future work, we plan to investigate the HDR datasets on deep
CNN architecture like ResNet and adjust it to HDR content.
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