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Abstract
The development of the Internet, together with the progress of multimedia pro-
cessing techniques, has led to the problems of data piracy, data tampering and
illegal dissemination. Digital watermarking is an effective approach to data au-
thentication and copyright protection. This paper proposes a geometrically robust
multi-bit video watermarking algorithm based on 2-D DFT (two-dimensional
discrete Fourier transform). While most of the existing video watermarking
schemes require synchronization to extract the watermark from rotated or scaled
videos, which is time-consuming and affects the accuracy, the proposed method
can do direct extraction without performing synchronization for videos attacked by
rotation, scaling or cropping. For embedding the watermark, circular templates in
DFT domain are transformed into spatial masks and added to the video frames in
spatial domain. A perceptual model based on local contrast is applied to keep the
fidelity of the watermarked video. We also propose an accurate and efficient
extraction method which is based on the cross-correlation between the Wiener-
filtered DFT magnitude and the stretched template sequence in polar coordinates.
Experimental results show that the proposed algorithm is robust against various
kinds of attacks, such as compression, filtering, rotation, scaling, cropping, frame
averaging and frame rate changing.
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1 Introduction

Digital multimedia data are spreading widely and rapidly via the Internet. Meanwhile,
problems of data piracy, data tampering and illegal dissemination are becoming increasingly
serious, and hence copyright protection has received much concern in the digital world. Digital
watermarking is a powerful tool for protection of copyrights on multimedia product. It is a
technique of hiding a piece of data called watermark into digital multimedia content called host
data [4]. The host data can be of any type, including text, image, audio, video and software. In
terms of robustness with respect to transformations of host data, watermarking techniques can
be classified into two types: robust watermarking and fragile watermarking. Robust water-
marks are resistant to malicious attacks and often used in copyright protection to declare
rightful ownership, while fragile watermarks are very sensitive and commonly used for
integrity proof. In the present study, we only focus on the robust watermarking technique.

Most of the research has dealt with image watermarking. Image watermarking algorithms
can be classified as spatial domain algorithms and transform domain algorithms. Spatial
domain algorithms [5, 11, 15] embeds the watermark by modifying the gray levels of some
subsets of image pixels. These methods have the advantages of simple operation and high
speed. However, transform domain algorithms have attracted more research interest because of
their higher robustness and stability [20]. Such algorithms insert the watermark into trans-
formed coefficients of images. The most commonly used transform methods are the discrete
cosine transform (DCT), discrete wavelet transform (DWT) and discrete Fourier transform
(DFT). DCT based algorithms [19, 22] and DWT based algorithms [1, 23] follow the same
guidelines, and they are robust against simple image processing attacks such as compression,
low pass filtering and noise addition. Compared with DCT and DWT, DFT has the advantage
of being invariant to rotation, scaling and translation (RST), which are considered as the most
challenging attacks for image watermarking. Some researches on DFT based algorithms are
briefly described in the following.

Solachidis and Pitas [21] proposed a DFT based approach for RST invariant watermarking
of digital images. A circularly symmetric watermark is embedded in the magnitude of DFT
domain. Since the watermark is circular in shape and symmetric with respect to the image
center, it is robust against geometric rotation attacks.

Pramila, Keskinarkaus and Seppänen [18] proposed a watermarking algorithm that takes
advantage of multiple watermarking. A circular template consisting of 0’s and 1’s arranged
around the origin symmetrically is embedded in the magnitude of DFT domain. Once the
image undergoes geometric transformations this template is searched to resynchronize the
image. The robust message watermark embedded in wavelet domain is extracted after the
inversion of geometric transformations.

Liao, Li and Yin [10] proposed a method of separable data hiding in encrypted images by
using compressive sensing and discrete Fourier transform. This method takes full advantage of
both real and imaginary DFT coefficients for ensuring great recovery of the original image and
providing flexible payload. The data is embedded into the high-frequency coefficients by using
compressive sensing. Compared with the previous work, the quality of decrypted image is
greatly improved when concealing the same embedding capacity.

Urvoy, Goudia and Autrusseau [24] proposed a novel DFT based watermarking algorithm
featuring perceptually-optimal visibility versus robustness. The watermark is a noise-like
square patch of coefficients embedded by substitution in Fourier domain. A perceptual model
of human visual system (HVS) based on the contrast sensitivity function and a local contrast
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pooling is used to determine the optimal watermark strength. This method is highly robust
against various kinds of attacks, especially geometric distortions.

Compared with image watermarking, video watermarking is a much more challenging task.
There is a large amount of redundant data between video frames, thus the compression ratio for
videos is usually higher than that of images, which requires the watermarking algorithm to be
much more robust. Another reason for the difficulty of video watermarking is that besides
general image processing, a good video watermarking algorithm must be robust against many
other attacks, including frame rate changing, frame swapping, geometric distortions and so on.
Lastly, a low time complexity is also necessary. A one-minute video clip can contain more
than one thousand frames, suggesting it is hard to implement an ordinary image watermarking
algorithm for each video frame without optimization in time.

Video watermarking techniques can be classified into two types: compressed domain
watermarking and uncompressed domain watermarking. Compressed domain watermarking
algorithms have very high speeds because they only partly decode the video streams, but such
techniques are usually limited to a specific compression standard and not robust enough to
resist practical video processing attacks [6, 14, 16]. On the other hand, although watermarking
algorithms in uncompressed domain are time-consuming, they are much more robust against
various kinds of distortions. For example, Liu and Zhao [13] proposed a zero-bit video
watermarking algorithm robust to RST attacks, by using 1-D DFT in temporal direction and
Radon transform in temporal frequency domain. Faragallah [7] proposed an efficient, robust
and imperceptible semi-blind video watermarking scheme based on DWT and singular value
decomposition. Chen and Zhao [2] proposed a blind video watermarking scheme, in which the
watermark is embedded to the principal components of the largest contourlet coefficients of the
last directional subband. However, the above algorithms are far from perfect, because they
require synchronization to extract the watermark from rotated or scaled videos, which may be
an exhaustive search and is too time-consuming to be used in practice.

Based on the above, we propose a geometrically robust video watermarking algorithm
based on 2-D DFT to efficiently embed and extract multi-bit watermarks. This algorithm is
processed in uncompressed domain, so it is suitable for most video compression standards.
The watermark is a sequence of circular templates consisting of 0’s and 1’s symmetrically
arranged around the center of the magnitude of DFT domain. In order to reduce the time
complexity, the algorithm transforms the circular templates in DFT domain to spatial masks
independent of video frames and embeds the watermark in spatial domain. Since embedding is
processed in spatial domain, a perceptual model based on local contrast of video frames can be
easily applied to improve the invisibility of the watermark. To embed multi-bit watermarks, the
proposed scheme segments the video frames into groups of pictures (GOPs). The frames from
one GOP contain the same template and each of the GOPs holds one watermark bit. For
watermark extraction, the proposed algorithm never needs to perform synchronization. It is
only necessary to perform one DFT for each GOP and then compute the cross-correlation
between the Wiener-filtered DFT magnitude and the stretched template sequence in polar
coordinates, which is not only efficient but very accurate for template detection.

The main contributions of this paper can be summarized as follows: (1) A sequence of DFT
templates is used as the watermark to handle geometric attacks; (2) The DFT templates are
transformed to spatial masks to speed up embedding and facilitate the implementation of the
local contrast-based perceptual model; (3) The extraction procedures including DFT, Wiener
filtering and cross-correlation in polar coordinates are fully optimized to improve the compu-
tational efficiency and the accuracy of extraction.
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The rest of this paper is organized as follows. Section 2 gives a brief overview of DFT and
introduces the preliminaries of DFT template. Section 3 details the embedding and extraction
steps of the proposed method. Section 4 presents the experimental results. Section 5 gives the
conclusions of this paper and discusses about the future directions.

2 Preliminaries

2.1 2-D DFT and its properties

The discrete Fourier transform (DFT) is a frequency domain representation of finite-extent
sequences [12]. Let the image be a real-valued function f(x, y) defined on an integer-valued
Cartesian grid 0 ≤ x <M, 0 ≤ y <N. The 2-D DFT of f is defined as:

F u; vð Þ ¼ ∑
M−1

x¼0
∑
N−1

y¼0
f x; yð Þe− j2πxu=M− j2πyv=N ð1Þ

where 0 ≤ u <M, 0 ≤ v <N. The inverse transform (IDFT) is:

f x; yð Þ ¼ 1

MN
∑
M−1

u¼0
∑
N−1

v¼0
F u; vð Þe j2πux=Mþ j2πvy=N ð2Þ

The first important property of DFT is that it is linear:

af x; yð Þ þ bg x; yð Þ↔aF u; vð Þ þ bG u; vð Þ ð3Þ

This is convenient, since when the watermark is added to the host image in DFT domain,
adding the IDFT of the watermark in spatial domain can achieve the same effect.

The rotation property of 2-D DFT is also useful. This means that rotating spatial domain
contents by θ rotates frequency domain contents by θ. This can be formally described by the
following relationship:

f x; yð Þ↔F u; vð Þ⇔ f x0; y0ð Þ↔F u0; v0ð Þ
x0

y0

� �
¼ cos θ −sin θ

sin θ cos θ

� �
x
y

� �
;

u0

v0

� �
¼ cos θ −sin θ

sin θ cos θ

� �
u
v

� � ð4Þ

The scaling property of DFT also plays an important role in image watermarking. This means
that shrinking in one domain causes expansion in the other. The equation describing this is:

f ax; byð Þ↔ 1

ab
F

u
a
;
v
b

� �
ð5Þ

One last property of DFT is its translation invariance. In fact, spatial translations or shifts only
affect the phase component of DFT, thus the magnitude of DFT is translation invariant. As can
be seen in the following subsection, this property can directly lead to the watermark’s
robustness against cropping. The equation governing this property is:

f x−x0; y−y0ð Þ↔F u; vð Þe− j2πux0=M− j2πvy0=N ð6Þ
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2.2 The circular template in DFT domain

The DFT template forms the basis of the proposed algorithm. As in [18], it is a circular
sequence consisting of 0’s and 1’s symmetrically arranged around the center of the magnitude
of DFT domain. The basic principles are illustrated in the following simple example.

Suppose the 0–1 template sequence is an array of length l that alternates between 0 and 1.
After transforming the image using DFT, we first shift the magnitude component so that the
zero frequency is at the center. To balance the robustness and invisibility of the template, a ring
at the middle frequencies is chosen as the embedding region. Then we pick l equally spaced
points corresponding to the 0–1 array from the upper half of the ring. For each 1 of the array, a
constant C is added to the magnitude of the DFT coefficient at its corresponding point on the
ring. The watermarked DFT magnitude must be symmetric with respect to the center to ensure
the IDFT is real [21], thus we also add the constant to the magnitudes at the symmetric points
on the lower half of the ring. As a result, a sparse circle that contains l equally spaced points is
added to the magnitude of DFT. The watermarked magnitude of the 512 × 512 Lena image is
shown in Fig. 1.

As discussed in the previous subsection, the DFT template is robust against rotation and
scaling. Rotation in spatial domain causes rotation in Fourier domain by the same angle, and
shrinking in spatial domain causes expansion in Fourier domain. Thus for a rotated or scaled
image, the DFT template is still a circular sequence symmetrically arranged around the center,
which means an extraction method that can detect the rotated or scaled circle is all we need.
Another important property of the DFT template is that it is invariant to cropping. This means
for a cropped image, the template is still the same sequence at the same frequencies. An
intuitive explanation of this is that cropping is basically a kind of shifting, so the magnitude of

Fig. 1 Watermarked DFT magnitude of the 512 × 512 Lena image. The template sequence is an array of length
40 that alternates between 0 and 1
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DFT is not changed; and because cropping does not change the sampling frequency, the
sequence is still at the same frequencies. As an example, the templates of the 512 × 512 Lena
images attacked by rotation, scaling and cropping respectively are shown in Fig. 2.

The above procedures for embedding the DFT template work well for images, but are not
suitable for videos, because it is too time-consuming to calculate the DFT for a large number of
video frames. Fortunately, we can implement the embedding in spatial domain by using the
linearity of DFT. More specifically, we first embed the template in a single-valued gray scale
image to obtain the difference between the watermarked and the original image, then for each
of the host images, we can simply add the difference image to it in spatial domain. We call the
difference image spatial mask in this paper. The spatial mask is basically an overlapping of
sinusoidal waves, and in fact, a large enough spatial mask can be used for all images with a
smaller size because of the cropping invariance property of the DFT template. The detailed
procedures of generating the spatial mask are as follows.

Step: 1. Generate an L × L (L = 5000 is enough in most cases of video watermarking) gray
level image I, in which the gray values of all pixels are 128.

Step: 2. Calculate the DFT of I. The magnitudes of all coefficients other than the direct
current (DC) component are zero. Then for a given 0–1 sequence, embed the
corresponding circularly symmetric template in Fourier domain through the method
presented above, and obtain the watermarked I by calculating the IDFT using the
watermarked magnitude.

Fig. 2 Geometrically attacked images (top) and their DFT templates (bottom). The attacks from left to right are
rotation by 5°, downscaling from 512 × 512 to 384 × 384 and cropping that only keeps the 384 × 384 upper-left
corner. All images in this figure are scaled to represent their true relative sizes
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Step: 3. Obtain the L × L spatial mask by subtracting the original I from the watermarked I.
Step: 4. To embed the template in an M × N (M, N ≤ L) image J, just add the central M × N

region of the spatial mask to J in spatial domain. For color images, the template is
embedded in the Y component of the YUV decomposition.

The main advantage of using the spatial mask is that we can avoid the heavy computation of
DFT. Also, once we have found a suitable strength for the sparse circle embedded in the DFT
magnitude, we never need to change it. To keep the fidelity of the watermarked image, it is
only necessary to adjust the strength of the mask in spatial domain, which can be achieved by
the perceptual model proposed in the next section.

3 Proposed method

The proposed video watermarking algorithm consists of two parts: watermark embedding and
watermark extraction. Figure 3 shows the block diagram of the algorithm. In the embedding
process, the original video is first divided into groups of pictures (GOPs), each of which hosts
exactly one watermark bit. For each GOP, we adjust the strength of the corresponding spatial
mask by using a perceptual model and then add it to the frames of the GOP successively. To
extract the watermark, we first calculate the DFT of the average image of each GOP. Then the
DFTmagnitudes are processed by theWiener filter, and the filtering results are correlated in polar
coordinates with the stretched template sequences to determine the watermark bits. In the next
two subsections, the principle and implementation of the algorithm will be explained in detail.

3.1 Watermark embedding

In this subsection, we introduce the embedding process, in which the spatial masks are added
to successive video frames after being adjusted by the perceptual model based on local contrast
of the frames.

In image watermarking, the DFT template is usually used as a synchronization pattern to
invert geometric transformations, and a message watermark needs to be embedded in another

Fig. 3 Block diagram of the proposed algorithm
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domain [18]. The drawbacks of such scheme are that images containing multiple watermarks
often have low fidelities and the extraction may fail due to the limited resolution of the DFT
template and the inaccuracy of the synchronization process. In video watermarking, we can
avoid the use of message watermark by embedding different templates into different groups of
frames. The watermark can always be encoded into a bit sequence, thus we only need two
kinds of DFT templates: the zero-template for watermark bit zero and the one-template for
watermark bit one. The only difference between the two templates is that we use different 0–1
sequences to generate the sparse circles, which can be called zero-template sequence and one-
template sequence respectively. To embed a multi-bit watermark into a given video, we first
segment the frames into groups of pictures (GOPs), each of which can host one watermark bit.
Then for every frame within a GOP, we embed the zero-template into it (by adding the spatial
mask) if the corresponding watermark bit is zero, and embed the one-template otherwise. It is
clear that the capacity of the watermark is equal to the total number of GOPs.

The choice of the number of frames in each GOP is the first key point during embedding. In an
extreme case, each GOP contains only one frame. This can maximize the watermarking capacity,
but the watermark is sensitive to attacks like frame swapping and frame averaging. Also we
cannot use the same number all the time, because such scheme is not able to resist the frame rate
changing attack. A better solution is to choose the number according to the frame rate of the host
video. Suppose that the frame rate is r frames per second (fps), then we can set the number of
frames in each GOP to r, i.e., there is one GOP per second and one second of time can host one
watermark bit. For most real world videos, the frame rate is above 20 fps, thus the GOPs are long
enough to resist frame swapping and frame averaging. Later in the extraction process, the
watermarked video will also be segmented based on its frame rate, which guarantees that the
temporal synchronization of the watermark will not be destroyed by frame rate changing.

In the design of embedding scheme, we also have to consider the effect of inter-frame coding
used in video compression. Inter-frame coding is a kind of predictive coding method which
encodes the differences between frames rather than each full frame. For a given frame, if it falls
into a different GOP from its reference frames, then the watermark embedded in the reference
frames can probably be detected in the given frame as well. The reason is that the details of the
differences are partly destroyed by compression, which makes it very difficult to completely
erase the watermark of the reference frames when we decode the given frame. According to our
experiments, this phenomenon is particularly evident when there is an intra reference frame in
which the complete image is coded and when the video is downscaled or compressed with a
high ratio. An example of this is shown in Fig. 4. Only the template in Fig. 4(a) is embedded
into the given frame, but after the video is downscaled, the two templates are mixed together. In
the most serious cases, this can be observed in more than half of the frames in one GOP, which
will certainly affect the extraction accuracy. To solve this problem, we can simply insert an
interval with a length of 0.4r between every pair of GOPs. The mixing phenomena will occur
mostly in intervals, but they will be skipped in the extraction process. It is important to note that
0.4r is not always an integer, thus we need to make a correction every 5 intervals (2r frames) to
guarantee the average duration of the intervals is strictly 0.4 s, otherwise there will be a risk of
large accumulative synchronization errors during extraction.

Setting appropriate 0–1 template sequences is another key point. It should be easy for the
extraction process to distinguish between the zero-template sequence s0 and the one-template
sequence s1. Suppose that s0 is a fixed sequence of length l. One strategy is to set s1 as the
complement to s0 to minimize the normalized correlation (NC) value between them, which is
defined as:
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NC s0; s1ð Þ ¼
∑
l−1

i¼0
s0 ið Þ⋅s1 ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
l−1

i¼0
s20 ið Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
l−1

i¼0
s21 ið Þ

s ð7Þ

An example of this is shown in Fig. 4(a) and (b). The two sequences are

s0 ¼ 0101100111000111100001111100000111111000
s1 ¼ 1010011000111000011110000011111000000111

ð8Þ

Clearly the NC between s0 and s1 is zero. However, the sequences can be circularly shifted by
rotation of video frames, resulting in increase of the NC value. For example, if s1 is shifted to
the left by five bits:

s10 ¼ 1100011100001111000001111100000011110100 ð9Þ
then the NC will become 0.7, which means the extractor may have difficulty in distinguishing
between the two sequences. A simple way to solve this problem is to set the two sequences as
follows:

s0 ið Þ ¼ 0 when imod 2 ¼ 0
1 when imod 2 ¼ 1

�
for i ¼ 0; 1;…; l−1 ð10Þ

s1 ið Þ ¼ 0 when imod 4 ¼ 0 or imod 4 ¼ 1
1 when imod 4 ¼ 2 or imod 4 ¼ 3

�
for i ¼ 0; 1;…; l−1 ð11Þ

Obviously, the NC value is always 0.5 no matter how the two sequences are circularly shifted.
The circles corresponding to these two sequences are shown in Fig. 5.

The last step of embedding is to implement a perceptual model to improve the fidelity of the
watermarked video. Since the watermarks are essentially additive noise superimposed on the
frames, the noise masking methods proposed in [1, 3] can be easily applied. However, these
methods depend on a number of parameters, which require lots of fine-tuning and often lead to

(a)                                           (b)                                                   (c)

Fig. 4 An example of the mixing phenomenon. a The circular template that is embedded into the given frame. b
The circular template that is embedded into the frames of the previous GOP. In this case, there is a key frame at
the end of the previous GOP. c The DFT magnitude of the given frame after the video is downscaled from
1920 × 1080 to 1280 × 720
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unstable results. Here we propose a simple but effective perceptual model based on the local
contrast of images. The contrast c at position (x, y) is calculated as follows:

c x; yð Þ ¼ ∑
1

i¼0
∑
1

j¼0
p xþ i; yþ jð Þ⋅D i; jð Þ ð12Þ

where p(x, y) denotes the pixel value at (x, y) and D denotes the operator for computing the
contrast:

D ¼ −1 −1
−1 3

� 	
ð13Þ

The local contrast lc around position (x, y) is the average of the absolute contrast in the 5 × 5
area centered at (x, y) plus a constant a:

lc x; yð Þ ¼ aþ 1

25
∑
2

i¼−2
∑
2

j¼−2
jc xþ i; yþ ið Þj ð14Þ

Let m(x, y) denote the pixel value of the spatial mask at position (x, y). The intensity of the
mask is adjusted according to the following rule:

m0 x; yð Þ ¼ b⋅T ⋅m x; yð Þ if lc x; yð Þ > T
b⋅lc x; yð Þ⋅m x; yð Þ if lc x; yð Þ ≤ T

�
ð15Þ

where T is a threshold and b is the parameter that controls the overall intensity. The principle
behind this is that human eyes are more sensitive to noise in smooth regions and less sensitive
to noise in regions with high contrast. And since the level of local contrast may differ greatly
for different images, we need a threshold that limits the maximum intensity of the mask to
make the model more stable. The value of the overall intensity should be set according to the
desired fidelity of the watermarked video; recommendation for the other parameters is a = 10
and T = 25.

The embedding procedures can be summarized as follows.

(a)                                                                 (b)

Fig. 5 How s0 and s1 are arranged in the DFT magnitude of an image. a s0. b s1
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Step: 1. Construct the zero-template sequence and the one-template sequence according to
Eqs. 10 and 11. Then generate the two spatial masks using the approach described in
the previous section. The results can be stored, so this step does not need to be
performed again for a different input video.

Step: 2. Divide the input video into GOPs with the number of frames in each GOP equal to
the frame rate r. There should be an interval with a length of 0.4r between every pair
of GOPs.

Step: 3. Embed one bit of watermark into each of the GOPs by adding the corresponding
spatial mask to all frames of each GOP. The strength of the spatial masks should be
adjusted by the perceptual model before every time of adding.

Step: 4. Re-encode the frames to obtain the watermarked video.

3.2 Watermark extraction

In this subsection we introduce the extraction process. The goal of extraction is to identify
which DFT template is embedded into each of the GOPs. The video is first divided into GOPs
in the same way as the embedding process. Unlike embedding, the detection of DFT template
has to be performed in frequency domain, but it takes too long to implement a DFT for every
frame. Fortunately, we can make use of the linearity of DFT to speed up this process. Assume
that the same template is embedded into all frames of a GOP. If we compute the average of the
frames and calculate the DFT magnitude of it, the result will be the average of the DFT
magnitudes of the frames plus the embedded template. Then to extract the bit of watermark
embedded in the GOP, we just need to perform one circle detection algorithm. According to
experiments, this trick can increase the speed of extraction by more than four times without
affecting the accuracy.

The template is essentially additive noise superimposed on the magnitude image, thus the
first step of circle detection is to filter the magnitude with a noise extraction filter. As in [18],
we use the adaptive Wiener filter which is a minimum mean square error estimator based on
statistics estimated from a local neighborhood of each pixel [9]. The original Wiener filter is a
low-pass filter that reduces additive noise, thus we need to subtract the filtering result from the
magnitude image. To suppress the pixels that do not contain the watermark information, a
threshold operation is then performed on the result of subtraction. So far, the implementation
of Wiener filtering is the same as in [18], but it needs several additional steps to handle the
stronger attacks on videos. First, values of the pixels on the horizontal and vertical lines at the
middle of the magnitude image should be replaced with zeros. The reason for the appearance
of the two lines is that DFT has an implicit periodicity in both spatial and frequency domains.
For most of the natural images, there are strong horizontal and vertical discontinuities at the
periodical boundaries, thus the intensities of the pixels on the two lines are often stronger than
those of the pixels containing the watermark and need to be suppressed before the threshold
operation. Similarly, pixels at the low frequencies also have strong intensities and often
affect the threshold result. To handle this, we define a parameter R and values of all the
pixels in the circular area of radius R centered at the origin are replaced with zeros. For
an 2 L × 2 L image, we recommend to set R to 0.35 L if the video is not subject to
enlarging attacks; otherwise we should use a smaller R to ensure that watermarks in
enlarged videos will not be erased by this operation. The effects of these two additional
operations are shown in Fig. 6.
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The circle is detected by calculating the cross-correlations between the template sequences
and the one-dimensional sequences each of which represents a ring with a thickness of 1 pixel
in the Wiener-filtered magnitude image. The image is first remapped to polar coordinates so
that a ring centered at the origin becomes a row of the resulting matrix. Then we calculate the
cross-correlations between a template sequence and each row of the remapped image:

corrXY nð Þ ¼ ∑
M−1

m¼0
X mð ÞY mþ nð Þ ð16Þ

where X represents a row of the remapped image,M represents the length of X, Y represents the
template sequence stretched to the length of 0.5M and zero padding is used for the values with
out-of-range indices. In fact, we can calculate all of the correlations by computing a two-
dimensional convolution between the remapped image and the stretched sequence. As in [18],
the scaling factor and rotation angle can be computed by locating the maximum of the result of
convolution. But to extract the watermark, we only need to convolve the remapped image with
the zero-template sequence and the one-template sequence, find the maximums of both results
and choose the bit corresponding to the larger of the two maximums. The advantage of this
method over those of [17, 18] is mainly that it does not need to detect local peaks of the
magnitude image, which requires an additional threshold parameter and thus does not always
produce accurate results.

The extraction procedures can be summarized as follows.

Step: 1. Divide the input video into GOPs in the same way as the embedding process.
Step: 2. For each GOP, calculate the average of all its frames and obtain the Fourier

magnitude by applying DFT to the average image. The average image needs to
be padded to a square before calculating the DFT to prevent the template from
being stretched to an eclipse.

Step: 3. Filter the magnitude image with Wiener filter and subtract the output from it. Then
suppress the “noise” pixels in the subtraction result by setting values of the pixels on
the two middle lines and the pixels at the low frequencies to zeros. Now if the value
of a pixel does not exceed a predefined threshold, it is replaced with a zero.

(a)                                                   (b)                                                   (c)

Fig. 6 The effects of the two additional operations in Wiener filtering. a The result of the method in [18]. Only a
portion of the pixels containing the watermark are extracted. b The result obtained by suppressing the pixels on
the two lines before the threshold operation. More of the pixels containing the watermark are extracted, but the
pixels at the low frequencies are still disturbing the result. c The result obtained by also suppressing the pixels at
the low frequencies. All of the pixels that contain the watermark are extracted by the threshold operation

13502 Multimedia Tools and Applications (2021) 80:13491–13511



Step: 4. Remap the threshold result to polar coordinates. To extract the watermark bit, first
convolve the remapped image with the stretched zero-template sequence and one-
template sequence, then find the maximums of both results and choose the bit
corresponding to the larger of the two maximums. If the maximums are lower than a
predefined threshold, the bit of watermark does not exist or the extraction fails.

Step: 5. Obtain the complete watermark by repeating steps 2 to 4 for each of the GOPs.

4 Experiments

In this section we illustrate the performance of the proposed algorithm.

4.1 Experimental setup

The algorithm is implemented on a 3.6 GHz Intel i7 processor with 16 GB RAM, and is
realized by C++ language with the OpenCV library [8]. We first test four CIF videos, and the
watermark is a 16-bit binary sequence. The host videos are originally uncompressed YUV
sequences, and our watermarking system encodes them into compressed videos using an
H.264 encoder. The average bit rate of the encoded videos is set to 512 kbps (kilobits per
second). The characteristics of these videos are shown in Table 1. In order to evaluate the
algorithm’s performance on modern high-definition videos, we also test four 1080p video clips
whose sources are freely redistributable movies [26]. We choose the official H.264 versions of
the movies and only use the first 90 s of each movie in our experiments. The watermark
embedded into these videos is a 64-bit binary sequence. Since the proposed algorithm needs
1.4 s of time to accommodate a bit of watermark, a length of 90 s is enough for a 64-bit
sequence. The output of the watermarking system is also an H.264 video, and the average bit
rate of the watermarked video is set to the same as the input. The characteristics of the 1080p
videos are shown in Table 2. The snapshots of all the eight test videos are shown in Fig. 7.

4.2 Execution efficiency

In this subsection, simulation experiments are carried out using different strategies to show the
efficiency of the proposed algorithm. The average embedding/extraction time per frame is
calculated for each strategy. Two embedding strategies are tested. The first is to embed the
circular template in Fourier domain and the second is to add the noise mask in spatial domain, and
we denote them as Embed_1 and Embed_2, respectively. Also, we test three extraction strategies
that perform different times of DFT and/or Wiener filtering. In the first strategy denoted as
Extraction_1, a DFT followed by a Wiener filter is applied to every frame of each GOP, and the

Table 1 Characteristics of the CIF videos

Video name Bridge close Bridge far Mad900 Students

Size 352×288 352×288 352×288 352×288
Total number of frames 2001 2101 900 1007
Frame rate (fps) 29.97 29.97 29.97 29.97
Color space YUV420p YUV420p YUV420p YUV420p
Bit rate after being watermarked (kbps) 521 527 530 519
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rest of the algorithm is performed on the average of the filtering results. In the second strategy
denoted as Extraction_2, a DFT is performed on every frame of each GOP, and a Wiener filter is
applied to the average Fourier magnitude. Finally, in the last strategy denoted as Extraction_3,
both of DFT and Wiener filtering are performed only once on the average image of each GOP.
The results for CIF and 1080p videos are shown in Tables 3 and 4, respectively. As can be seen in
the tables, reducing the times of performing DFT can significantly improve the time efficiency. In
the subsequent experiments, we will only use the strategies of Embed_2 and Extraction_3, which
are the most efficient and consistent with the description in the previous section.

Table 2 Characteristics of the 1080p videos

Video name Big buck bunny Elephants
dream

Sintel
trailer

Sita sings the blues

Size 1920×1080 1920×1080 1920×818 1920×1080
Frame rate (fps) 30 24 24 23.976
Color space YUV420p YUV420p YUV420p YUV420p
Bit rate before being watermarked (kbps) 2765 9165 11,402 7066
Bit rate after being watermarked (kbps) 2686 8884 10,774 7040

(a)                                     (b)                                      (c)                                    (d)

(e)                                                                                (f)

(g)                                                                                (h)

Fig. 7 Snapshots of the eight test videos. a Bridge close. b Bridge far. cMad900. d Students. e Big buck bunny.
f Elephants dream. g Sintel trailer. h Sita sings the blues
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4.3 Quality metrics

The peak signal-to-noise ratio (PSNR) is used to measure the fidelity of the watermarked videos.
Given the original image I and the watermarked image K, the PSNR (in dB) is defined as:

PSNR ¼ 10⋅log10
2552

1

m⋅n
∑
m−1

i¼0
∑
n−1

j¼0
I i; jð Þ−K i; jð Þð Þ2

0
BBB@

1
CCCA ð17Þ

where m and n denote the height and width of I, respectively. We calculate the PSNR for the Y
channel of YUV color space, and report the average PSNR of all the watermarked frames.
Typically, a watermarked image with a PSNR of about 40 dB looks very close to the original one,
so in our experiments the PSNR values of the watermarked videos are controlled around 40 dB by
adjusting the overall intensity parameter of the perceptual model. The PSNR values of the
watermarked videos are shown in Table 5.

Moreover, the structure similarity index measure (SSIM) proposed in [25] is also used as a
video fidelity measurement. It is a perception-based index that considers image degradation as
perceived change in structural information. The SSIM between images x and y is defined as:

SSIM x; yð Þ ¼
2μxμy þ c1

� �
2σxy þ c2

 �

μ2
x þ μ2

y þ c1
� �

σ2
x þ σ2

y þ c2
� � ð18Þ

where μx is the average of x, μy is the average of y, σx2 is the variance of x, σy2 is the variance
of y, σxy is the covariance of x and y, c1 = 6.5025 and c2 = 58.5225 are the two variables used to
stabilize the division with weak denominator. The SSIM value ranges between 0 to 1 and only
equals 1 if the two images are identical. As in the case of PSNR, we calculate the SSIM for the
Y channel and report the average of all the watermarked frames in Table 5.

Table 3 Time efficiency for the CIF videos (milliseconds per frame)

Bridge close Bridge far Mad900 Students

Embed_1 4.31 4.14 4.26 4.25
Embed_2 1.89 1.75 1.77 1.76
Extraction_1 8.27 8.09 8.03 8.28
Extraction_2 3.21 3.29 3.21 3.19
Extraction_3 1.26 1.21 1.18 1.19

Table 4 Time efficiency for the 1080p videos (milliseconds per frame)

Big buck
bunny

Elephants
dream

Sintel
trailer

Sita sings
the blues

Embed_1 168.08 172.95 172.02 171.00
Embed_2 44.58 47.32 36.65 47.46
Extraction_1 312.67 317.04 313.59 315.45
Extraction_2 119.59 127.80 125.63 130.53
Extraction_3 35.71 43.44 42.48 43.10
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The robustness of the algorithm is measured in terms of the NC value between the original
watermark and the extracted one, which is already defined in Eq. 7.

4.4 Robustness against attacks

The robustness of the proposed algorithm is validated by using a various kind of attacks, such
as noise attacks, filtering attacks, geometric attacks and temporal attacks. The attacking
process first decodes the watermarked video, then implements the attack and finally encodes
the attacked video in H.264 format with the constant rate factor (CRF) being set to 23. The
CRF is used for rate control in most cases of H.264 video compression, and it allows the
encoder to attempt to achieve a certain output quality. A subjectively sane range for CRF is 17
to 28, and increasing it by 6 results in roughly half the bit rate. Tables 6 and 7 show the NC
values from the watermarked videos under these attacks. Moreover, we test the algorithm’s
robustness against H.264 compressions by recoding the watermarked videos with different
CRF values. The results for compressions are shown in Tables 8 and 9. Below we give detailed
descriptions for the attacks used in our experiments.

4.4.1 Image processing attacks

To test the algorithm’s robustness against noise attacks, we add Gaussian noise and salt &
pepper noise to the watermarked videos. The mean and standard deviation of Gaussian noise
are 0 and 10, respectively. The density of salt & pepper noise is 0.05, which means about 5%
of the pixels in a frame are affected.

Table 5 Fidelity of the watermarked videos

Bridge close Bridge far Mad900 Students Big buck
bunny

Elephants
dream

Sintel
trailer

Sita sings
the blues

PSNR (dB) 39.34 40.04 39.65 39.32 38.99 39.83 40.75 39.80
SSIM 0.964 0.947 0.957 0.960 0.939 0.934 0.931 0.945

Table 6 Experimental results for the CIF videos under various attacks

Bridge close Bridge far Mad900 Students

Gaussian noise 1.000 1.000 1.000 1.000
Salt & pepper noise 1.000 1.000 0.9428 1.000
Histogram equalization 1.000 1.000 1.000 1.000
Median filtering 1.000 0.7144 1.000 1.000
Rotation (1°) 1.000 1.000 1.000 1.000
Rotation (3°) 1.000 1.000 1.000 1.000
Rotation (5°) 1.000 1.000 1.000 1.000
Rotation (10°) 1.000 0.8528 0.7826 1.000
Scaling (3/4) 1.000 1.000 1.000 0.9354
Scaling (2/3) 1.000 1.000 0.9354 0.8660
Cropping 1.000 1.000 1.000 1.000
Frame averaging 1.000 1.000 1.000 1.000
Frame rate changing (15 fps) 1.000 1.000 1.000 1.000
Frame rate changing (50 fps) 1.000 1.000 1.000 1.000
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We also test the robustness of the proposed algorithm against histogram equalization and
median filtering. The histogram equalization is an effective method of contrast adjustment for
grayscale images. In experiments, the sum of histogram bins is set to 255 and the Red, Green
and Blue components of each frame are separately processed. The median filter is a nonlinear
filter used for signal smoothing, and we process the frames of each watermarked video using a
median filter of size 5 × 5 in experiments.

4.4.2 Geometric attacks

Geometric transformations are the most challenging attacks for watermarking algorithms. Here
we rotate the watermarked videos by various degrees (1°, 3°, 5° and 10°) and extract the
watermark from the rotated videos without performing synchronization. The robustness of the
algorithm against scaling attacks is also tested. We downscale each watermarked video to 3/4
and 2/3 of its original size and extract the watermark from the downscaled videos. Finally, we
implement cropping attacks by cropping 5% of the pixels from each side of the watermarked
videos. It can be seen from Tables 6 and 7 that cropping does not affect the performance of the
algorithm but rotation and scaling have slight effects. The cause of the relatively lower
performance under rotation and scaling is the interpolation used by these two attacks. Though
the performance is affected, the high NC values suggest that the proposed algorithm is robust
against rotation and scaling.

Table 7 Experimental results for the 1080p videos under various attacks

Big buck bunny Elephants dream Sintel trailer Sita sings the blues

Gaussian noise 1.000 1.000 1.000 1.000
Salt & pepper noise 0.7974 0.9701 0.9843 0.9354
Histogram equalization 1.000 1.000 1.000 0.9847
Median filtering 0.9847 1.000 1.000 1.000
Rotation (1°) 0.9562 1.000 1.000 1.000
Rotation (3°) 0.9062 1.000 0.9525 0.9062
Rotation (5°) 0.9095 1.000 0.9682 0.9095
Rotation (10°) 0.9428 0.9843 0.9375 0.9263
Scaling (3/4) 0.9847 1.000 1.000 1.000
Scaling (2/3) 0.9398 0.9843 1.000 1.000
Cropping 1.000 1.000 1.000 1.000
Frame averaging 0.9843 0.9843 1.000 1.000
Frame rate changing (15 fps) 1.000 0.9843 1.000 1.000
Frame rate changing (50 fps) 1.000 0.9843 1.000 1.000

Table 8 H.264 compression results for the CIF videos

Bridge close Bridge far Mad900 Students

CRF=23 Bit rate (kbps) 348 239 290 265
NC 1.000 1.000 1.000 1.000

CRF=28 Bit rate (kbps) 112 48 121 115
NC 1.000 1.000 1.000 0.8660

CRF=30 Bit rate (kbps) 66 23 88 85
NC 0.8528 0.1768 0.2041 0.4743
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4.4.3 Temporal attacks

We test the algorithm’s robustness to two kinds of temporal attacks, i.e., frame averaging and
frame rate changing. For frame averaging, each frame of the given watermarked video is replaced
with the average of its five neighboring frames. For frame rate changing, we change the frame rate
of each watermarked video to 15 fps and 50 fps. It can be seen from Tables 6 and 7 that these two
kinds of temporal attacks rarely affect the performance of the proposed algorithm.

4.4.4 H.264 compression

Tables 8 and 9 show the simulation results for H.264 compression. The compression process
takes a watermarked video as input and re-encodes it with different CRF values. The bit rate of
each re-compressed video as well as the CRF value is reported. It can be seen that for 1080p
videos the watermark can be successfully extracted if the bit rate is around or above 2000 kbps,
and for CIF videos this value becomes 120 kbps.

4.5 Discussion

In this subsection we discuss the factors influencing the performance of the algorithm. The first
is the bit rate of the watermarked video. It can be seen from Table 7 that the proposed algorithm
has a lower performance on Big Buck Bunny (BBB). This is because the watermarked BBB has
a bit rate of 2686 kbps, which is the lowest of the four 1080p videos. But in practice, 2686 kbps
is a fairly low bit rate for 1080p videos, so the average NC of 0.96 for BBB suggests the
proposed algorithm has enough robustness for practical use. Another factor influencing the
proposed algorithm is the color range of the video frames. From Table 7, the watermark
extracted from Elephants Dream has a high probability of one-bit error. The reason is that the
last frames of this video have a lot of large black regions, as shown in Fig. 8. The values of the
watermarked pixels of such regions are often negative, so they are clipped to zeros in the result,
which can be regarded as a strong attack. This is a common phenomenon in manywatermarking
algorithms, but fortunatelymost real videos have a less extreme color range. Lastly we point out
that the size or resolution of the original video has almost no influence on the algorithm, since it
has quantitatively similar performances on the CIF and 1080p videos.

4.6 Performance comparison

In this subsection, we provide some discussions on our experimental results by comparing
them with the results obtained by other two related methods proposed by Faragallah [7] and

Table 9 H.264 compression results for the 1080p videos

Big buck bunny Elephants dream Sintel trailer Sita sings the blues

CRF=23 Bit rate (kbps) 3218 4846 3690 5016
NC 1.000 0.9843 1.000 1.000

CRF=28 Bit rate (kbps) 1959 2070 1427 2267
NC 0.9525 1.000 1.000 1.000

CRF=33 Bit rate (kbps) 967 1007 729 1346
NC 0.7016 0.7267 0.9232 0.9520
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Chen et al. [2]. Chen’s algorithm uses the normalized correlation as the robustness measure
while Faragallah’s algorithm calculates the bit error rate as well as the normalized correlation.
The watermark in [7] is a 54 × 12 binary image and the watermark in [2] is a pseudo-noise
sequence that carries one bit of message. The comparisons are performed on the CIF videos, so
the watermark of the proposed algorithm is a 16-bit sequence. The comparison results are
shown in Table 10.

For the algorithm in [2], the PSNR values of the watermarked videos are around 40 dB, which
are very close to our results. The average NC value of the CIF videos compressed with a bit rate of
1000 kbps is around 0.75, while our algorithm has an NC of 1.0 when the bit rate is above
200 kbps. The algorithm in [7] has a higher average PSNR of 44 dB, and the H.264 compression
does not affect its performance. However, it has to be pointed out that the reason for the higher
imperceptibility and robustness against compressions is partly due to the semi-blindness of the
method, i.e., its extraction process requires the singular vectors of the original frames.

Our scheme has better performance over the other methods in terms of robustness against
geometric attacks. The algorithms in [2, 7] need to perform resynchronization to extract the
watermark from rotated or scaled videos, but our algorithm does not require to do so. In our
experiments the average NC of rotated videos is 0.91 and the corresponding NC values in [2,
7] are 0.88 and 0.84, respectively. For scaling attacks, the average NC of our algorithm is 0.97

Fig. 8 A frame at the end of elephants dream

Table 10 Comparison between different methods

Faragallah [7] Chen et al. [2] Proposed

Blindness Semi-blind Blind Blind
Geometric resynchronization Required Required Non-required
Robustness against cropping Non-robust Non-robust Robust
PSNR 44.85 40.80 39.59
Compression (1000 kbps) 1.00 0.75 1.00
Rotation 0.88 0.84 0.91
Scaling 0.95 0.85 0.97
Gaussian noise 1.00 0.75 1.00
Salt & pepper noise 1.00 0.84 0.95
Median filtering 0.96 0.95 0.93
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and the NC values of [2, 7] are 0.95 and 0.85, respectively. In addition, the two algorithms in
[2, 7] cannot deal with cropping attacks, since the spatial synchronization of the frames are
destroyed.

For image processing attacks, the proposed algorithm also has a comparable performance.
The Gaussian noise rarely affects Faragallah’s and our algorithms, but the NC value of [2] is
only 0.75. For salt & pepper noise, the average NC of our algorithm is 0.95, the NC value of
[2] is 0.84 and the error rate of [7] is 0.0%. In our algorithm the average NC of the videos
processed by median filter is 0.93, the corresponding NC in [2] is 0.95 and the error rate in [7]
is 4.11%.

5 Conclusion and future work

In this paper, a geometrically robust video watermarking algorithm based on 2-D DFT is
proposed. For embedding the watermark, circular templates in DFT domain are transformed
into noise masks and added to the video frames in spatial domain. The extraction process is
based on the cross-correlation between the Wiener-filtered DFT magnitude and the stretched
template sequence in polar coordinates. To improve the fidelity of the watermarked video, we
also propose a perceptual model based on local contrast of the frames. The main contributions
of this paper can be summarized as follows:

(1) The DFT template is used to handle the RST attacks on videos. To embed a multi-bit
watermark, we design two kinds of templates that represent 0 and 1 respectively and
segment the host video into GOPs each of which holds one bit of watermark.

(2) The linearity of DFT is used to accelerate the frame-by-frame watermarking
scheme. In embedding, we avoid the computation of DFT by adding the noise
masks in spatial domain. In extraction, we only need to perform a DFT on the
average image of each GOP.

(3) The process of detecting the DFT template in an image is improved. This is also
useful for image watermarking algorithms that use the DFT template as a synchro-
nization pattern.

It can be seen from the experiments that the proposed algorithm has a good robustness and
imperceptibility. The algorithm can resist general image processing attacks, such as the noise
attacks, filtering attacks and contrast adjustment attacks. For geometric attacks, the algorithm
also has a good performance and the extraction process does not require synchronization. To
demonstrate the practicability of the proposed algorithm, we use some 1080p videos of H.264
format in the experiments and test the algorithm’s robustness against H.264 compression. The
results show that our algorithm is very robust to the modern compression technique.

One of the shortcomings of the proposed algorithm is its relatively low capacity. Also, the
algorithm is not robust against frame dropping attacks. The temporal synchronization can be
destroyed by randomly dropping some of the frames. One solution may be to add a third kind
of DFT template for temporal synchronization, but this can further decrease the capacity. We
will carefully consider these problems in the future work.
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