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Abstract
A novel color image encryption algorithm based on coarse-grained fractional chaotic
system signals is proposed in this paper. First, color images are divided into three
channels, which are encrypted based on the corresponding three states of the chaotic
system. Second, the chaotic systems are defined as fractional chaotic, in which the
fractional order enlarges the parameter space. Third, the fractional chaotic signals are
handled with unfixed coarse-grained methods instead of being utilized directly. In
addition, the original image and the chaotic signals are divided into bit signals from the
pixel values, and the high and low bits are encrypted, respectively. To demonstrate the
effectiveness and robustness of the proposed color image encryption algorithm, its
properties, including the key space, information entropy, correlation analysis, key sensi-
tivity, and resistance to differential attacks, are provided using a numerical simulation.

Keywords Image encryption . Fractional systems . Coarse-grained . Bit-level . Color image

1 Introduction

Owing to the rapid development of computer science and big data technology, text processing,
particularly digital image processing, has recently attracted widespread attention of researchers
and has become a hot research field [1, 18, 21, 29, 30]. Digital images typically show various
texts; in addition, encryption is needed in almost all aspects of modern life, and the
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requirements for security and humanity are increasing. Because the amount of data is large and
the pixels in adjacent areas are strongly correlated in general images, traditional image
processing algorithms, including RSA [5] and DES [6], are unsuitable, and the development
of new image encryption schemes is challenging.

By contrast, a chaotic signal is widely utilized as an external key in image encryption owing
to its pseudo-randomness and sensitivity to the initial conditions. Chaotic keys refer to the
uncertain signals generated by certain systems, and they have potential applications in physics,
biology, chemistry, and medical analysis [4, 7, 12, 14, 15, 23, 25, 27, 28]. For chaotic image
encryption, many studies have been conducted, based upon which, it has been proven that the
use of chaos is a superior method for image encryption [11, 13, 24, 33].

Traditionally, image encryption has been divided into pixel- and bit-levels [8, 16, 20, 31, 32,
34]. Although pixel-level image encryption is fast, bit-level encryption achieves better results;
thus, both methods have been utilized in recent studies. For example, Yao et al. [31] obtained an
encrypted image by scrambling the image pixels and diffusing the image information using a
chaotic logistic map. However, other researchers have focused on bit-level image encryption.
For instance, Teng et al. [20] proposed an image encryption algorithm with bit-level scram-
bling. Gray image encryption [8, 11, 13, 16, 20, 24, 32, 33] and color image encryption [9, 17,
19, 26, 31] have also been extensively researched. For example, Faragallah et al. [9] proposed a
color image cryptosystemwith a chaotic baker map, and Parvaz et al. [17] designed a combined
chaotic system and applied it to color image encryption.

In general, chaotic signals are directly used in image encryption. However, the generated
signals are fixed once the initial values and parameters of the chaotic system are selected.
Differing from previous studies, in the present study, coarse-grained methods are applied to
chaotic signals before the signals are used as keys, which makes the signals unpredictable while
applying different coarse-grainedmethods. In addition, to obtain various chaotic signals, a discrete
logistic map and a coupled fractional lattice chaotic system (CFLCS) are considered during the
encryption process. In addition, image information is divided into high and low bits throughout
the entire encryption process. During the scrambling, with the generated coarse-grained fractional
chaotic signals, the high bits are row- and column-scrambled. By contrast, the low bits are global
scrambled using coarse-grained logistic chaotic map signals. During the diffusion process, the bit
streams are also handled through a cyclic shift and XOR operation with coarse-grained chaotic
signals. Motivated by the aforementioned analysis, a novel bit-level color image encryption
algorithmwith different coarse-grained chaotic signals is proposed in this paper. The contributions
of this paper are as follows: 1. The coarse-grained method is utilized to handle different kinds of
chaotic signals and make the signals unpredictable. 2. Different scrambling methods are used in
the high and low bits simultaneously. 3. The bit planes are decomposed, and parallel processing is
utilized in different planes for both scrambling and diffusion. 4. Chaotic signals for the encryption
of different planes in a color image are concurrently generated using CFLCS. The remainder of
this paper is organized as follows. In the following section, the main image encryption algorithm
is proposed. Section 3 provides the experimental results and corresponding analysis. Finally,
some concluding remarks are given in section 4.

2 The coarse-grained chaotic system and encryption algorithm

In this section, the coarse-grained chaos-based image encryption algorithm is described. For
greater efficiency and security, a discrete chaotic map and continuous fractional chaotic system
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are considered. First, take the following logistic map (1) as an example of a discrete chaotic
map. The equation can be defined as

x k þ 1ð Þ ¼ μx kð Þ 1−x kð Þð Þ; k ¼ 0; 1; 2… ð1Þ
where discrete state x(k) ∈ (0, 1) and control parameter μ ∈ [0, 4]. When 3.5699456 < u ≤ 4,
the Logistic map is chaotic.

In the previous study, once the initial value and system parameter of system (1) are fixed,
the chaotic signals generated are fixed because of the fine-grained iteration step. If the initial
value and system parameter are known, the keys will no longer be safe. To make the chaos
signal more secure, coarse-grained methods will be applied in the signals before encryption.
For example, a coarse-grained parameter C can be brought in, and a key signal with C chaotic
signals can be generated. For the sake of simplicity, the mean value of the chaotic signals is
calculated as the final key in this paper. With the same initial value, x0 = 0.3874926, and
system parameter, μ = 3.999999, but different coarse-grained parameters 4 and 8, the derived
key signals are as shown in Fig. 1. The corresponding NIST test results are shown as following
Table 1.

From Table 1, it is exhibited that all p-values for different coarse-grained parameters are
greater than 0.01, and NIST tests are all passed. This means that the proposed coarse-grained
signals are sufficiently good and it can be utilized in the code applications which require
randomness.

However, for a continuous chaotic system signal, the coarse-grained method will be more
suitable for dealing with an analog signal because the discretization will be completed during
the coarse-grained process. As a result, the derived key signal can be directly utilized to
encrypt the digital images. In the following section, a coarse-grained simulation based on
fractional chaotic signals is described. Before the simulation, the following fractional defini-
tion should first be introduced.

Definition 1 (Caputo differential definition) [3]:

Fig. 1 Discrete key signals with different coarse-grained parameters
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The Caputo fractional differential definition is most commonly expressed in the following
form:

Dqu(t) = Js − qu(s)(t)(q > 0),where s is an integer which is not less than q, u(s) is the s-
order derivative, and Jq is the q-order Reimann–Liouville integral operator in the
following form:

Jqv tð Þ ¼ ∫t0 t−τð Þq−1v τð Þdτ
Γ qð Þ ;

where Γ is the Gamma function, and Dq represents a θ-order Caputo differential operator.

Table 1 The test results of NIST SP800–22 for different coarse-grained parameters

Test P-Values(C=4) Pass or not P-Values(C=8) Pass or not

Frequency (Monobit) test 0.3202 Pass 0.6284 Pass
Frequency test 0.6320 Pass 0.2166 Pass
Runs test 0.2770 Pass 0.2484 Pass
Longest-run-of-ones in a block 0.9371 Pass 0.0105 Pass
Binary matrix rank test 0.2583 Pass 0.0192 Pass
Discrete Fourier transform test 0.3098 Pass 0.2577 Pass
Non-overlapping template matching test 0.5391 Pass 0.1977 Pass
Overlapping template matching test 0.9866 Pass 0.2781 Pass
Maurer’s universal statistical test 0.6392 Pass 0.9512 Pass
Liner complexity test 0.7062 Pass 0.0671 Pass
Serial test (p-value1) 0.1149 Pass 0.0168 Pass
Serial test (p-value2) 0.2121 Pass 0.0113 Pass
Approximate entropy test 0.6512 Pass 0.8727 Pass
Cumulative sums test (Forward) 0.9992 Pass 1 Pass

(Backward) 1.0000 Pass 0.7967 Pass
Random excursions test (x=−4) 0.8077 Pass 0.9132 Pass
Random excursions test (x=−3) 0.4781 Pass 0.6853 Pass
Random excursions test (x=−2) 0.3439 Pass 0.7431 Pass
Random excursions test (x=−1) 0.0614 Pass 0.7231 Pass
Random excursions test (x=1) 0.5443 Pass 0.9737 Pass
Random excursions test (x=2) 0.5234 Pass 0.6656 Pass
Random excursions test (x=3) 0.0764 Pass 0.4223 Pass
Random excursions test (x=4) 0.3546 Pass 0.7851 Pass
Random excursions variant test (x=−9) 0.3358 Pass 0.7863 Pass
Random excursions variant test (x=−8) 0.2515 Pass 0.6650 Pass
Random excursions variant test (x=−7) 0.1730 Pass 0.6198 Pass
Random excursions variant test (x=−6) 0.2315 Pass 0.9462 Pass
Random excursions variant test (x=−5) 0.6366 Pass 0.7942 Pass
Random excursions variant test (x=−4) 0.7479 Pass 0.6420 Pass
Random excursions variant test (x=−3) 0.4725 Pass 0.5157 Pass
Random excursions variant test (x=−2) 0.7025 Pass 0.4386 Pass
Random excursions variant test (x=−1) 0.9247 Pass 0.3143 Pass
Random excursions variant test (x=1) 0.5708 Pass 0.8231 Pass
Random excursions variant test (x=2) 0.4450 Pass 0.6514 Pass
Random excursions variant test (x=3) 0.4220 Pass 1 Pass
Random excursions variant test (x=4) 0.4320 Pass 0.5828 Pass
Random excursions variant test (x=5) 0.7290 Pass 0.6280 Pass
Random excursions variant test (x=6) 0.9773 Pass 0.5666 Pass
Random excursions variant test (x=7) 0.9791 Pass 0.5558 Pass
Random excursions variant test (x=8) 0.7327 Pass 0.5444 Pass
Random excursions variant test (x=9) 0.6141 Pass 0.4641 Pass
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Based on Definition 1, the CFLCS [22] can be expressed as follows:

Dqwi tð Þ ¼ 1−εð Þ f wi tð Þð Þ þ 1

2
εf wiþ1 tð Þð Þ þ 1

2
εf wi−1 tð Þð Þ ð2Þ

where ε is the coupled intensity, w is the state vector, i(i = 1, 2,⋯, n) is the lattice index, and n
is the lattice length. As a whole, system (2) is periodically connected. In detail, local system f is
set as the following Lorenz system form

ẋ ¼ a y−xð Þẏ ¼ bx−y−xzż ¼ xy−cz
n

ð3Þ

where x, y, and z are state variables of the Lorenz system, and the system parameters are a = 10,
b = 28, and c ¼ 8

3.With randomly generated initials, by applying the coarse-grainedmethod to the

chaotic signals from system (2), the derived key signals for different coarse-grained parameters
C1 = 2 and C2 = 3 are shown in Fig. 2.

With the coarse-grained keys generated using the above logistic map and the CFLCS
signals, the digital images can be encrypted with proper scrambling and diffusion algorithms.
It should be noted that, because fractional system (2) can generate three different coarse-
grained keys simultaneously, as shown in Fig. 3, the keys can be applied in the encryption of
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Fig. 2 The key signals generated with coarse-grained parameters C1 and C2 from different chaotic state signals in
system (3): a The first system states generated keys, b The second system states generated keys, c The third
system states generated keys
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R, G, and B channels in parallel for color images. The entire encryption can be applied as
indicated in Fig. 3. For the proposed method, images can be recovered using a symmetrical
decryption method and a detailed encryption analysis, as described in the following
subsections.

2.1 Scrambling analysis

In this section, the pixels of a color image in different channels are translated into different bit
streams, and these bits are scrambled using different methods. The detailed steps are provided
as follows:

Step 1. For a given color image F of height ×width, generate R, G, and B vectors Fr, Fg, and
Fb, respectively. For each Fr, Fg, or Fb vector, the following steps are applied.

Step 2. Extract the high bit planes in the corresponding channel and reconstruct the bit
matrix. For the fifth through the eighth bits, the sizes of the extracted bit planes
BPi(i = 5, 6, 7, 8) are all height × width. Combine these bit planes as vector
H = [BP5 BP6 BP7 BP8 ]height × 4width.

Step 3. With the above coarse-grained methods and CFLCS (2), generate encryption keys k1 and
k2. The lengths of k1 and k2 are height and 4width, respectively. Using the MATLAB
function sort(•), obtain index vectors Index1 and Index2 from k1 and k2, respectively.

Fig. 3 The global flow diagram for color image encryption with coarse-grained keys
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Step 4. From i = 1 to i = height, apply the loop operation Q(:, i) = P(:, index2(i)). From i = 1 to
i = 4 ×width, apply the loop operation Q(:, i) = P(:, index2(i)). Then, the high bit
planes are obtained as a row vector H = reshape(Q, 1, 4 × height ×width).

Step 5. Extract the low bit planes in the corresponding channel and reconstruct the bit matrix.
For the first through the fourth bits, BPi(i = 1, 2, 3, 4)can be obtained and reshaped as
BPi = reshape(BPi, 1, height ×width). Then, the low bit planes can be expressed as
L = [BP1 BP2 BP3 BP4 ]1 × (4 × height ×width).

Step 6. With the above coarse-grained methods and logistic map (1), generate a 4 × height ×
width encryption key k, and sort k to obtain the corresponding vector Index. From i =
1 to i = 4 × height ×width, conduct the loop operation O(1, i) = L(1, index(i)). Then,
reset L =O, and complete the scrambling process.

It can be observed that both the CFLCS and the logistic map chaotic signals are utilized in the
scrambling. In addition, high bits and low bits are scrambled using different methods according to
the importance of different bits to make the scrambling robust. For the CFLCS, three different
keys based on coarse-grained chaotic signals in different states can be applied in the scrambling of
the R, G, and B channels simultaneously, thereby making the encryption more efficient.

2.2 Diffusion analysis

In any R, G, or B channel, for bit vectors H and L after scrambling, the following diffusion
operations should be applied:

Step 1. With a logistic map (1), generate chaotic signals, and apply a coarse-grained process
with parameter C to obtain diffusion key T. Reset Ts = mod(floor(T × 1014), 256), and
extract the bit vectors BCi(i = 1, 2,⋯, 8) from Ts. Then, reconstruct vectorsB1and B2

as B1 = [BC1 BC3 BC5 BC7 ]1 × (4 × height ×width) and B2 = [BC2 BC4 BC6 BC8 ]1 × (4

× height ×width), respectively.
Step 2. Based on the calculation, obtain the summation of all bits in BPi(i = 5, 6, 7, 8) as

sum1. Next, obtain the summation of all bits in BPi(i = 1, 2, 3, 4) as sum2. Apply a
cyclic shift operation asL = circshift(LΤ, C × sum1 + sum2)Τ.

Step 3. Move on to the diffusion with the XOR operation as follows:

L 1ð Þ ¼ L 1ð Þ⊕H 1ð Þ⊕L 4� height � widthð Þ⊕B1 1ð Þ
L ið Þ ¼ L ið Þ⊕H ið Þ⊕L i−1ð Þ⊕B1 ið Þ; i ¼ 2; 3;⋯; 4� height � width;

�
: ð4Þ

Step 4. Analogously, for high bits, apply a cyclic shift operation as H = circshift(HΤ, C ×
sum2 + sum1)Τ. Then do the XOR operation as:
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Fig. 4 Encryption and decryption results: a Original image of Girl, b Encrypted image of Girl, c Decrypted
image of Girl, d Original image of Baboon, e Encrypted image of Baboon, f Decrypted image of Baboon, g
Original image of Tree, h Encrypted image of Tree, i Decrypted image of Tree, j Original image of House, k
Encrypted image of House, l Decrypted image of House
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H 1ð Þ ¼ L 1ð Þ⊕H 1ð Þ⊕H 4� height � widthð Þ⊕B2 1ð Þ
H ið Þ ¼ L ið Þ⊕H ið Þ⊕H i−1ð Þ⊕B2 ið Þ; i ¼ 2; 3;⋯; 4� height � width;

�
: ð5Þ

Step 5. Recombine the color image with the derived bit streams in the R, G, and B channels
after the diffusion. The encryption is then complete.

Similar to the scrambling, the diffusion of high bit streams and low bit streams are
different. In addition, the proposed encryption is a symmetrical encryption method,
and the encrypted image can be recovered with a completely reversed decryption
process.

3 Performance analysis

In this section, simulations to analyze the encryption algorithm are conducted using MATLAB
R2014a on identical Thinkpad L470 laptops running Microsoft Windows 10, with a 2.70 or
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Fig. 5 Histogram of original images and encrypted Lena images: a Original image of Lena, b Encrypted image
of Lena, c Red component of (a), d Red component of (b), e Green component of (a), f Green component of (b),
g Blue component of (a), h Blue component of (b)

Table 2 Information entropies of encrypted images

Image R component G component B component

Lena 7.9975 7.9972 7.9977
Girl 7.9973 7.9973 7.9974
Peppers 7.9993 7.9994 7.9994
Tree 7.9968 7.9975 7.9972
Airplane 7.9993 7.9993 7.9993
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2.90 GHz Intel(R) Core(™) i7-7500U CPU and 16.0 GB of RAM. The color images included
“Girl.tiff,” “Tree.tiff,” “House.tiff,” and “Baboon.tiff.” and these images are from test collec-
tions USC-SIPI. Using the aforementioned methods, the original, encrypted, and decrypted
images are shown in Fig. 4.

Figures 4a-c present a Girl image, an encrypted Girl image, and a decrypted Girl image,
respectively. Figures 4d-f depict a Baboon image, an encrypted Baboon image, and a
decrypted Baboon image, respectively. Figures 4g-i show a Tree image, an encrypted Tree
image, and a decrypted Tree image, respectively. Figures 4j-l present a House image, an
encrypted House image, and a decrypted House image, respectively. It can be observed that,
for different color images, any information in the encrypted images is difficult to identify, and
the encrypted image can be successfully recovered.

3.1 Histogram analysis

In this section, histograms of the original image and an encrypted image are described. It
should first be noted that a histogram is used to display the distribution pixel information of an
image, and an ideal algorithm can generate an encrypted image with uniformly distributed
histograms. If the histograms are sufficiently flat, a statistical attack will be useless in the pixel
analysis. Taking the Lena image as an example, the distributions of all 256 pixels are as shown
in Fig. 5.

Histograms of the encrypted images are presented in Fig. 5d, f, h. Compared with the
histograms in Fig. 5c, e, g before encryption, the histograms after encryption are flat and can
effectively resist a statistical attack.

3.2 Key space analysis

For a robust algorithm, larger key space means the algorithm is more secure because one
cannot find out the correct keys from the large key space. From the global encryption process
described in sections 2.1 and 2.2, it can be observed that three discrete logistic chaotic series

Table 3 Information entropy comparisons of “Lena image” with some Ref.

Methods R component G component B component

Our algorithm 7.9975 7.9972 7.9977
Zhang [34] 7.9966 7.9966 7.9968
Suryanto [19] 7.7325 7.7339 7.7264
Parvaz [17] 7.9975 7.9970 7.9970

Table 4 NPCR and UACI for encrypted color images

Image NPCR(%) UACI(%)

R component G component B component R component G component B component

Lena 99.5590 99.5895 99.6063 33.5696 33.4967 33.5644
Girl 99.6109 99.6170 99.6750 33.4030 33.5253 33.4748
Peppers 99.6273 99.6010 99.5945 33.4462 33.4547 33.3990
Tree 99.6124 99.6033 99.6201 33.4277 33.5333 33.6586
Airplane 99.6231 99.6284 99.6098 33.4997 33.4394 33.4807
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and a fractional chaotic series will be generated. Let us suppose that the computational
accuracy is 10−15, the key space of the discrete initial values for logistic chaos is 1015× 3,
and the key space of the parameter for logistic chaos is (4 − 3.57) × 1015 × 3. Assuming that the
coupling number of the lattices is n = 10, the fractional order is 0 < q ≤ 1, and the coupling
strength is 0 < ε < 1. Then, the key space of the parameter for CFLCS chaos is 1015× 2, and the
key space of the discrete initial values for logistic chaos is 1015 × 10. The entire key space is at
least (4 − 3.57) × 10270, and the key space is sufficiently large to resist the force attack
effectively. In addition, for the coarse-grained chaotic methods, different coarse-grained

Table 5 NPCR and UACI comparisons of “Lena image” with some Refs

Methods NPCR(%) UACI(%)

R component G component B component R component G component B component

Our method 99.5590 99.5895 99.6063 33.5696 33.4967 33.5644
Zhang [34] 99.6170 99.6231 99.6704 33.6606 33.4486 33.4149
Suryanto [19] 99.45 99.46 99.49 26.12 26.24 26.12
Parvaz [17] 99.6078 99.6140 99.6033 33.4457 33.5589 33.5243

Table 6 Correlations of the original image (OI) and corresponding encrypted image (EI)

Image Component Correlation coefficient Direction to calculation correlation

Horizontal Vertical Diagonal

Lena Red OI 0.9647 0.9639 0.9143
EI 0.0091 −0.0123 0.0258

Green OI 0.9730 0.9407 0.9186
EI −0.0012 0.0047 0.0188

Blue OI 0.9484 0.8907 0.8434
EI −0.0223 −0.0057 −0.0142

Girl Red OI 0.9645 0.9728 0.9457
EI −0.0016 0.0237 −0.0561

Green OI 0.9593 0.9702 0.9517
EI −0.0042 0.0031 0.0271

Blue OI 0.9457 0.9573 0.9426
EI −0.0055 −0.0189 −0.0048

Tree Red OI 0.9271 0.9551 0.9100
EI −0.0219 −0.0003 0.0225

Green OI 0.9461 0.9696 0.9353
EI 0.0230 0.0003 −0.0240

Blue OI 0.9332 0.9635 0.9273
EI 0.0233 −0.0167 0.0264

Airplane Red OI 0.9583 0.9721 0.9180
EI −0.0114 0.0038 −0.0188

Green OI 0.9748 0.09590 0.9457
EI −0.0212 0.0129 0.0123

Blue OI 0.9453 0.9615 0.9217
EI 0.0218 −0.0381 0.0387

Peppers Red OI 0.9642 0.9567 0.9560
EI −0.0350 −0.0084 0.0419

Green OI 0.9849 0.9787 0.9759
EI −0.0191 0.0358 −0.0071

Blue OI 0.9636 0.9679 0.9528
EI −0.0320 −0.0183 0.0448
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parameters lead to different chaotic signals (from Fig. 1). Thus, the key signals are can vary
based on the strength of the security.

3.3 Information entropy analysis

Information entropy is one of the most important properties in the analysis of the encryption
performance. By defining the information source as m, the information entropy formula can be
depicted as follows:

H mð Þ ¼ ∑
L−1

i¼0
p mið Þlog 1

p mið Þ ð6Þ

where L is the total number of symbols, and function p(•) is the occurrence probability of
the corresponding symbol. In general, the information entropy is close to the ideal value of
8 if the encryption algorithm is good. In this paper, the information entropies of the
proposed algorithm for different color images are listed in Table 2, and comparisons of
the proposed algorithm with some of the latest effective encryption algorithms are listed in
Table 3. Compared with previous studies, our entropy schemes are slightly larger; thus,
when our scheme is used, the encrypted images can effectively resist possible statistical
analysis attacks.

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

,y
+

1)

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

+
1,

y)

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

+
1,

y+
1)

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

,y
+

1)

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

+
1,

y)

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

+
1,

y+
1)

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

,y
+

1)

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

+
1,

y)

50 100 150 200 250

50

100

150

200

250

pixel gray value on location (x,y)

pi
xe

l g
ra

y 
va

lu
e 

on
 lo

ca
tio

n 
(x

+
1,

y+
1)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 6 Adjacent pixel correlation of the original Airplane image: a R component, b Horizontal of (a), c Vertical
of (a), d Diagonal of (a), e G component, f Horizontal of (e), g Vertical of (e), h Diagonal of (e), i B component, j
Horizontal of (i), k Vertical of (i), l Diagonal of (i)
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3.4 Differential attack analysis

To resist the differential attack, two criteria, namely the number of pixels change rate (NPCR)
and the unified average changing intensity (UACI), are utilized to analyze the effectiveness.
NPCR and UACI are based on a test of two encrypted images generated from the original
images with just one bit being slightly different. The ideal values for NPCR and UACI are
99.6094% and 33.4635%, respectively. The NPCR and UACI of our proposed method for
different color images are listed in Table 4, and comparisons of the NPCR and UACI obtained
using our method with those obtained using other methods are listed in Table 5. Compared
with previous studies, the values of NPCR and UACI obtained using the proposed method are
closer to the ideal values.

3.5 Correlation of adjacent pixels

To test resistance to a statistical attack further, the correlation is selected to test the relationship
between two adjacent series. In general, the correlations in the original image are always close
to 1, but in the encrypted images, they are close to zero. In the following image analysis,
correlations between two adjacent pixels horizontally, vertically, and diagonally for different
color images are presented in Table 5, and comparisons of these values with those obtained
using other methods are shown in Table 6. The related correlation equations for two pixel
series x = {xi} and y = {yi} are defined as follows:
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Fig. 7 Adjacent pixel correlation of the encrypted Airplane image: a R component, bHorizontal of (a), cVertical
of (a), d Diagonal of (a), e G component, f Horizontal of (e), g Vertical of (e), h Diagonal of (e), i B component, j
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rxy ¼ cov x; yð Þffiffiffiffiffiffiffiffiffiffi
D xð Þp ffiffiffiffiffiffiffiffiffiffi

D yð Þp
cov x; yð Þ ¼ 1

N
∑
N

i¼1
xi−E xð Þ½ � yi−E yð Þ½ �

D xð Þ ¼ 1

N
∑
N

i¼1
xi−E xð Þ½ �2

E xð Þ ¼ 1

N
∑
N

i¼1
xi

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

In addition, by taking the airplane image as an example, the horizontal, vertical, and
diagonal correlation scatter diagrams of the original and encrypted images are as shown in
Figs. 6 and 7, respectively. Figure 6a, e, and i are three components of the airplane image.
Figure 6b, c, and d show the horizontal, vertical, and diagonal correlation values in the red
channel. Figure 6f, g, and h depict the horizontal, vertical, and diagonal correlation values in
the green channel. Analogously, the horizontal, vertical, and diagonal correlation values in the

Fig. 8 Key sensitive analysis of the color Lake image: a The original image of the Lake, b Encrypted image of
(a), c Encrypted image of (a) with modified u, dDifference of (b) and (c), e Encrypted image of (a) with modified
C f Difference of (b) and (e), g Decrypted image of (a) with u and C, h Decrypted image of (c), i Decrypted
image of (e), j Decrypted image of (a) with modified u k Decrypted image of (a) with modified C
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blue channel are presented in Fig. 6j, k, and l. It can be observed that the correlation values in
the original image are extremely high. By contrast, these correlation values in the encrypted
components in Fig. 7b-d, f-h, and j-l are low, and adjacent pixels cover the corresponding
whole plane. In addition, from Table 6 and Figs. 6 and 7, it can be observed that the proposed
method is effective at not only encrypting different types of images to resist a statistical attack
but also breaking the relationships between adjacent pixels.

3.6 Key sensitivity analysis

A key sensitivity analysis is provided in this section. According to the image encryption
technology, a good encryption algorithm will lead to an unfeasible decryption from even a
minuscule key change. In the following analysis, the sensitivity of the keys for logistic map
parameter u and coarse-grained parameter C will be provided. Set a minuscule change of δ =
10−15for key u, and add a change of 1 for key C. Taking the Lake image as an example, the
derived encryption and decryption images are as shown in Fig. 8.

Figure 8a shows the original Lake image, and Fig. 8b is an encrypted image with correct
keys u andC.With the change in parameter u, the image in Fig. 8a is encrypted as shown in Fig.
8c, and the differences between Fig. 8b and c can be seen in Fig. 8d. It can be concluded that the
tiny change in u will result in completely different encrypted images. Analogously, the same
conclusion for keyC can be derived in Fig. 8e and f. With correct keys, the image in Fig. 8b can
be recovered as in Fig. 8g. However, when the correct keys and algorithm are used, the images
in Fig. 8c and e will not be decrypted, as shown in Fig. 8h and i. In addition, the changed keys
will not decrypt the image in Fig. 8b, as shown in Fig. 8j and k. From Fig. 8, it can be observed
that the images will be recovered using only the exactly correct parameters, thereby demon-
strating that our proposed algorithm is a robust algorithm with good key sensitivity.

In order to further test the key sensitivity and do contrast test with other algorithms, the
MSE(Mean Square Error) and PSNR(Peak Signal to Noise Ratio) analysis are done in the
Lena image as following Table. 7.

From Table 7, it can be found that MSE values are all very large and PSNR values are all
smaller than 10 in different components. Compared with listed references, the proposed
algorithm has larger MSE values and smaller PSNR values. It means the algorithm is very
sensitive to keys and it is robust to resist to possible key attacks.

3.7 Plain-text sensitivity analysis

Similar to a key sensitivity analysis, the plain-text sensitivity analysis is another important
index for testing the encryption algorithm. This means that a good algorithm should also be

Table 7 MSE and PSNR of Lena image

Analysis Test Component Our algorithm [10] [2]

MSE R 10,561.7 10,464.9
8800.42
7119.13

7385.1
8698.7
9580.0

G 9032.2
B 7100.7

PSNR R 7.8935 7.93344
8.68577
9.60653

9.1080
8.7362
8.3167

G 8.5729
B 9.6178
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sensitive to tiny changes in the plain-text information. Taking the Peppers image as an
example, by changing the pixel at position (10,10) by only 1 bit, the derived results are as
shown in Fig. 9.

Figure 9a is the original image of the Peppers and Fig. 9b is the encrypted image with no
change in the plain-text. With the tiny changed plain-text, the image Fig. 9a is encrypted as
Fig. 9c and the difference between Fig. 9b and c can been seen in Fig. 9d. It can be concluded
that our proposed algorithm is a robust algorithm with good plain-text sensitivity.

Fig. 9 Plain-text sensitive analysis of the color Peppers image: a The original image of the Peppers, b Encrypted
image of (a), c Encrypted image of (a) with one-bit change, d Difference of (b) and (c)

Fig. 10 Encryption and decryption with salt-and-pepper noise: a Encrypted image with noise intensity 0.02, b
Encrypted image with noise intensity 0.05, c Encrypted image with noise intensity 0.1, d Decrypted image of (a),
e Decrypted image of (b), f Decrypted image of (c)

Multimedia Tools and Applications (2021) 80:12155–1217312170



3.8 Resistance to salt-and-pepper noise

There are different types of noise in practice, among which salt-and-pepper noise is a typical
example and has a strong influence on the encrypted image. To test the resistance, three salt-
and-pepper noises with different intensities were considered in color Baboon, Car, and Map
images. The encrypted images with salt-and-pepper noise and the recovered images are shown
in Fig. 10.

Figure 10a shows an encrypted Baboon image with a noise intensity of 0.02. Figure 10b
presents an encrypted Car image with a noise intensity of 0.05. Figure 10c shows an encrypted
Map image with a noise intensity of 0.1. Figure 10d–f present the corresponding decrypted
images. It can be observed that the recovered images are all recognizable under different noise
intensities, thereby indicating that the proposed method is robust to noise attacks.

3.9 Resistance to cropping attacks

The information in an image may not only be influenced by noise but also become lost during
the storage procedure. To test resistance to information loss, we added cropping attacks to the
encrypted images of Female, House, Tree, and Map2. In addition, different information loss
percentages are considered. The experiments are shown in Fig. 11.

Figure 11a shows an encrypted Female image with 6.25% information loss. Figure 11b
shows an encrypted House image with 25% information loss. Figure 11c shows an
encrypted Tree image with 50% information loss. Figure 11d shows an encrypted Map2
image with 56.25% information loss. Finally, Fig. 11e–h present the corresponding
decrypted images. It can be observed that the recovered images are all recognizable under
the different information loss percentages, thereby indicating that the proposed method is
robust to cropping attacks.

Fig. 11 Encryption and decryption with cropping attack: images with following cropping proportions a 6.25%, b
25%, c 50%, d 56.25%, e Decrypted image of (a), f Decrypted image of (b), g Blue component of (c), h
Decrypted image of (d)
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4 Conclusion

In this paper, a color image encryption algorithm based on coarse-grained chaotic keys is
proposed. The coarse-grained method enables the derived chaotic series to be unfixed even with
same initial value and chaotic parameter. In addition, both a discrete logistic map and a fractional
chaotic system are utilized to generate chaotic signals for the coarse-grained process. During the
encryption process, parallel bit-level scrambling, including a high bit row, column scrambling,
and low bit global scrambling, are operated. In addition, a further cyclic shift and XOR diffusion
are applied to the diffused bit streams. During the simulation, the key space, information entropy,
correlation analysis, key sensitivity, plain-text sensitivity, and resistance to differential, noise, and
cropping attacks are presented, thereby demonstrating the advantages of the proposed approach.
Both theoretical analysis and simulation results indicate that the coarse-grained fractional chaotic
encryption algorithm is effective and robust to various types of attacks.

Acknowledgements This research is supported by the National Natural Science Foundation of China (Nos:
61702356, 61672124, 61503375 and 61701070), the Password Theory Project of the 13th Five-Year Plan
National Cryptography Development Fund (No: MMJJ20170203).

References

1. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE
Trans Image Process 1(2):205–220

2. Arshad U, Khan M, Shaukat S, Amin M, Shah T (2020) An efficient image privacy scheme based on
nonlinear chaotic system and linear canonical transformation. Phys A: Stat Mech Appl 546:123458

3. Caputo M (1967) Linear models of dissipation whose q is almost frequency independent-2. Geophys J R
Astron Soc 13(5):529–539

4. Chang YF (2013) Chaos, fractal in biology, biothermodynamics and matrix representation on Hypercycle.
Neuroquantology 11(4):527–536

5. Chen CS, Wang T, Kou YZ, Chen XC, Li X (2013) Improvement of trace-driven I-cache timing attack on
the RSA algorithm. J Syst Softw 86(1):100–107

6. Coppersmith D (1994) The data encryption standard (DES) and its strength against attacks. IBM J Res Dev
38(3):243–250

7. Cramer JA, Booksh KS (2006) Chaos theory in chemistry and chemometrics: a review. J Chemom 20(11):
447–454

8. Diaconu AV, Ionescu V, Iana G, Lopez-Guede JM (2016) A new bit-level permutation image encryption
algorithm. Int Conf Commun 411–416

9. Faragallah OS, Afifififi A (2017) Optical color image cryptosystem using chaotic baker mapping based-
double random phase encoding. Opt Quant Electron 49:89

10. Haq TU, Shah T (2020) 12×12 S-box design and its application to RGB image encryption. Optik 217:
164922

11. Huang XL (2012) Image encryption algorithm using chaotic Chebyshev generator. Nonlinear Dyn 67(4):
2411–2417

12. Huang X (2020) Nia M P, ding Q, research on image encryption based on Hyperchaotic system. J Netw
Intell 5(1):10–22

13. Hussain I, Shah T (2013) Application of S-box and chaotic map for image encryption. Math Comput Model
57(9–10):2576–2579

14. Kawashima M (1985) Terminal care (1): Chaos brought about by the progress of modern medical
technology. Kangogaku Zasshi 49(10):1092–1095

15. Kol'tsov NI, Fedotov VK (2018) Two-Dimentional Chaos in chemical reactions. Russ J Phys Chem B
12(3):590–592

16. Li JF, Xiang SY, Wang HN, Gong JK, Wen AJ (2018) A novel image encryption algorithm based on
synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers. Opt Lasers Eng
102:170–180

Multimedia Tools and Applications (2021) 80:12155–1217312172



17. Parvaz R, Zarebnia M (2018) A combination chaotic system and application in color image encryption. Opt
Laser Technol 101:30–41

18. Pasquini C, Boato G, Bohme R (2019) Teaching digital signal processing with a challenge on image
forensics. IEEE Signal Process Mag 36(2):101–109

19. Suryanto Y, Ramli K (2017) A new image encryption using color scrambling based on chaotic permutation
multiple circular shrinking and expanding. Multimed Tools Appl 76:16831–16854

20. Teng L, Wang XY, Meng J (2018) A chaotic color image encryption using integrated bit-level permutation.
Multimed Tools Appl 77(6):6883–6896

21. Trahanias PE, Venetsanopoulos AN (1993) Vector directional filters-a new class of multichannel image
processing filters. IEEE Trans Image Process 2(4):528–534

22. Wang XY, Zhang H (2012) Chaotic synchronization of fractional-order spatiotemporal coupled Lorenz
system. Int J Mod Phys C 23(10):1250067

23. Wang XT, Zhu HF (2019) A novel two-party key agreement protocol with the environment of wearable
device using chaotic maps. Data Sci Pattern Recognit 3(2):12–23

24. Wang X, Zhao J, Liu H (2012) A new image encryption algorithm based on chaos. Opt Commun 285(5):
562–566

25. Wang ZF, Dong JJ, Zhen JQ, Zhu FZ (2019) Template protection based on chaotic map and DNA encoding
for multimodal biometrics at feature level fusion. J Inf Hiding Multimed Signal Process 10(1):1–10

26. Wang XY, Zhao HY, Wang MX (2019) A new image encryption algorithm with nonlinear-diffusion based
on multiple coupled map lattices. Opt Laser Technol 115:42–57

27. Weidenmuller HA, Mitchell GE (2009) Random matrices and Chaos in Nuclear Physics: nuclear structure.
Rev Mod Phys 81(2):539–589

28. Wu TY, Fan XN, Wang KH, Pan JS, Chen CM, Wu JMT (2018) Security analysis and improvement of an
image encryption scheme based on chaotic tent map. J Inf Hiding Multimed Signal Process 9(4):1050–1057

29. Yang JC, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans
Image Process 19(11):2861–2873

30. Yang S J, Ye X, Zhang S J (2017) A new infrared turbulent fuzzy image restoration algorithm based on
Gaussian function parameter identification, International Conference on Image, Vision and Computing,
423–427

31. Yao W, Zhang X (2015) Zheng Z M, Qiu W J, a colour image encryption algorithm using 4-pixel Feistel
structure and multiple chaotic systems. Nonlinear Dyn 81(1):151–168

32. Ye GD, Pan C, Huang XL, Mei QX (2018) An efficient pixel-level chaotic image encryption algorithm.
Nonlinear Dyn 94(1):745–756

33. Zhang J, Zhang YT (2014) An image encryption algorithm based on balanced pixel and chaotic map. Math
Probl Eng 216048

34. Zhang H, Wang XY, Wang SW, Guo K, Lin XH (2017) Application of coupled map lattice with parameter
q in image encryption. Opt Lasers Eng 88:65–74

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Multimedia Tools and Applications (2021) 80:12155–12173 12173


	Bit-level color image encryption algorithm based on coarse-grained logistic map and fractional chaos
	Abstract
	Introduction
	The coarse-grained chaotic system and encryption algorithm
	Scrambling analysis
	Diffusion analysis

	Performance analysis
	Histogram analysis
	Key space analysis
	Information entropy analysis
	Differential attack analysis
	Correlation of adjacent pixels
	Key sensitivity analysis
	Plain-text sensitivity analysis
	Resistance to salt-and-pepper noise
	Resistance to cropping attacks

	Conclusion
	References


