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Abstract
Here we propose a new method for the classification of texture images combining fractal
measures (fractal dimension, multifractal spectrum and lacunarity) with local binary pat-
terns. More specifically we compute the box counting dimension of the local binary codes
thresholded at different levels to compose the feature vector. The proposal is assessed in the
classification of three benchmark databases: KTHTIPS-2b, UMD and UIUC as well as in a
real-world problem, namely the identification of Brazilian plant species (database 1200Tex)
using scanned images of their leaves. The proposed method demonstrated to be competitive
with other state-of-the-art solutions reported in the literature. Such results confirmed the
potential of combining a powerful local coding description with the multiscale information
captured by the fractal dimension for texture classification.

Keywords Fractal geometry · Multifractals · Texture classification · Box counting ·
Local binary patterns

1 Introduction

Texture analysis, and in particular texture recognition, has been one of the most important
tasks in computer vision. Despite most of the initial applications of this area being focused
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on material sciences, during the last decades it has been applied to problems in a wide range
of research areas, such as Medicine [8, 21], Biology [34, 37], Engineering [12, 43], Physics
[14, 45], and many others.

Although texture images do not have a consensual formal definition, they are usually
associated to structures commonly found in nature and composed by elements whose com-
plexity makes them difficult to be described by the classical Euclidean geometry. This
observation naturally opened space for the possibility of analyzing such objects by employ-
ing techniques developed in fractal geometry [34, 38, 39]. Indeed, a fractal is a geometrical
set characterized by the self-repetition of basic patterns and by a high degree of complexity.
It was in fact described by Mandelbrot in his seminal book [26] as the “geometry of nature”.

Despite the recent popularization of deep learning / neural networks methods in texture
analysis, the intrinsic connection between the way that natural structures are composed and
the self-similar replication of fractals allows the development of specific purpose models,
which present some advantages over deep learning methods, like not requiring so much
annotated data for training and the possibility of more straightforward interpretation of the
obtained results. The difficulty in obtaining large amounts of annotated data and importance
of result interpretation are key aspects, for example, in the analysis of medical images.

However, the theoretical interest in fractals still struggles with some practical limitations.
The first and most obvious one is that there is no mathematical fractal in nature. Fractals are
defined in infinite scales and this is obviously infeasible in the real world. In this way we
need to be aware that the fractal geometry representation is an approximation, a modeling of
a real system. A second point is that fractal geometry deals with geometrical sets embedded
within a continuous N -dimensional space, whereas the most practical way of analyzing a
real world object is by inspecting its digital image representation. This issue was addressed
for example in [29], where a relation between the “fractality” of a surface and its respective
photography was established. That work also accomplished a psychological experiment that
established connections between the fractal dimension and the natural visual perception of
attributes such as smoothness and roughness.

Since then, a number of works applying fractal geometry to texture recognition have been
presented in the most diverse areas of applications. Nevertheless, a third point still remains
without a convincing solution: this is the ideal representation of the image to estimate
measures like the fractal dimension.

Among the attempts we have seen the fractional Brownian motion (fBm) model [44]
(and similar variations like the Fourier-based fractal dimension [32]) and the geometri-
cal approaches [9]. fBm has achieved considerable success in texture synthesis, but there
is no relevant success reported in recognition. A possible explanation for this is the high
degree of specialization of the model, which is the reason for its success in texture synthe-
sis, but at the same time also makes it highly prone to over-fitting in texture recognition.
On the other hand, the geometrical approaches rely on interpreting the image as a surface
(or cloud of points) embedded in the three-dimensional Euclidean space. This approach
has achieved interesting results in texture classification [11]. However, it clearly lacks an
effective explanation for using the pixel spatial domain (its localization) and the intensity
domain (its gray value) to compose a unique three-dimensional space. Questions like “how
a homogeneous resolution scale can be defined in such conditions?” are definitely not well
answered.

The multifractal theory [38, 39, 41, 42] represented a noticeable attempt to address this
issue with an advanced mathematical framework based on Measure Theory. It also achieved
promising results on classification problems [38, 39], even though not too much of these
results have been reported on more modern and challenging texture databases.
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Finally, a simple solution would be to take a family of images resulting from thresholding
the original texture image at different levels. The direct application of this strategy to the
texture image is not feasible as the relation between the gray values of neighbor pixels is
lost and this is known to be a fundamental characteristic to distinguish textures of different
materials. The authors in [31] elegantly solved this issue by applying the threshold strategy
to the local binary pattern (LBP) [28] map of the texture. This is a representation well known
to capture the relations between neighbor pixels [24]. This allows the preservation of such
locality information even in the thresholded image.

Based on this context, we propose here the combination of numerical techniques to
estimate the fractal dimension of binary images with a well known local encoding of
texture images, namely, LBP. We use the fractal dimension of the encoded image thresh-
olded at a range of levels to compose a vector of image descriptors, which are employed
for texture classification. To compose the descriptors we verify the use of box-counting
and Bouligand-Minkowski fractal dimension as well as the lacunarity measure and the
multifractal spectrum.

Two main novelties are presented by the proposed method: the combined use of numer-
ical estimators of fractal dimension, lacunarity and multifractal spectrum to summarize
the information expressed by an LBP map, replacing the basic histogram typically used,
and a statistical model explaining how the numerical estimators of fractal dimension ana-
lyzed here are capable of quantifying and distinguishing complex patterns arising in natural
textures.

The proposed descriptors are compared with other fractal-based texture features, namely,
invariant multifractals [38], wavelet multifractals [39], and pattern lacunarity spectrum
[31]. Other classical and state-of-the-art texture descriptors are also compared, such
as VZ-MR8 [35], local binary patterns [28], convolutional neural networks [6], and
others. Comparative tests were carried out over three well known texture benchmark
data sets, to know, KTH-TIPS2b, UIUC and UMD. The descriptors were also applied
to the identification of species of Brazilian plants (database 1200Tex). The proposed
method outperformed the compared approaches in terms of classification accuracy and the
results confirmed the potential of such a strategy to provide rich and meaningful texture
descriptors.

2 Fractal geometry

Roughly speaking, a fractal is a mathematical object defined at infinite scales and charac-
terized by self-similarity, i.e., repetition of geometrical patterns at different scales and high
degree of complexity, which basically means that a hypothetical observer would never see
the same object at different scales. It is also commonly distinguished from Euclidean ele-
ments for presenting non-integer dimension. Its formal definition is in fact stated in terms
of a dimension, technically called Hausdorff dimension.

2.1 Hausdorff dimension

Given a set X, its Hausdorff measure is defined as:

Hs(X) = lim
σ→0

Hs
σ (X) where Hs

σ (X) = inf

{ ∞∑
i=1

|Xi |s : Xi is a σ -cover of X

}
, (1)
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where |Xi | is the diameter of Xi given by |Xi | = sup{d(x, y) : x, y ∈ Xi}, being d(x, y) a
metric. We say that a family of sets {Xi} is a σ -cover of a set X if:{

X ⊂ ⋃∞
i=1 Xi

0 < |Xi | < σ .
(2)

If X is a fractal structure, it can be demonstrated that there exists a real and non-negative
value D such that Hs

σ = ∞ for s < D and Hs
σ = 0 for s > D. Then D is defined as the

Hausdorff dimension of X. Formally:

D = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}. (3)

To gain some intuition on this formalism, we illustrate it with a rather simplified example.
Let us suppose that X is a hyper-cube corresponding to the interval [0, 1]D and we are
trying to fill it with s-dimensional cubes with side-length 1

n
. This corresponds to a σ -cover

of X with σ = 1
n

. If D is integer, it is easy to see that we need nD of such 1
n

-length cubes
to perfectly cover X. As we are assuming that all cubes have the same side-length, the sum
of diameters, which is the idea of

∑∞
i=1 |Xi |s in (1), would roughly be the number of cubes

multiplied by the side-length, i.e., nD · 1
ns = nD−s . A cover with σ → 0 corresponds in

this case to n → ∞. But if n → ∞, we have that ns−D → ∞ if s < D and nD−s → 0
if s > D. Therefore D is the dimension of X. The Hausdorff dimension is basically the
extension of such idea to non-integer values of D. The reader can refer to the specialized
literature, e.g. in [9], for more details.

The most widely accepted definition of fractal is that of a geometrical set whose
Hausdorff dimension strictly exceeds its Euclidean (topological) dimension.

2.2 Numerical estimates in fractal geometry

Although objects with fractal characteristics can be easily found in nature, such real-world
structures differ from mathematical fractals in two crucial points: first, they do not have
infinite self-similarity; second, the rules dictating the formation of the structure are usually
not known. The analytical calculation of the Hausdorff dimension in this scenario is infea-
sible [26]. In this context, a large number of numerical values were developed to estimate to
which extent these objects can be approximated by a fractal set. Especial interest has been
devoted to methods that estimate the fractal dimension of these structures.

Essentially, the computation of the Hausdorff measure involves an infinite covering by
units with diameter smaller than σ . The diameters of these elements are therefore raised
to an exponent s and summed up. A discrete approximation of this operation can be
accomplished with the aid of an exponential function:

Mσ ∝ σ s, (4)

where Mσ is a measure of the object at the scale σ , in such a way that any detail larger than
σ is not counted. By changing the definition of M and σ , we have definitions of the fractal
dimension that are alternative to Hausdorff formulation. These alternative definitions may
(and often do) assume values that do not coincide with the Hausdorff dimension, but they
preserve the idea of measuring the complexity and spatial occupation of the object: the most
complex the structure, the highest the dimension. Many of these alternative definitions are
more suitable for numerical computation. Among the most popular definitions possessing
this property we have box-counting and Bouligand-Minkowski dimension and lacunarity
[9, 40].
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2.2.1 Box-counting

Mathematically, if X is a non-empty bounded subset of R
n and Nδ(X) is the smallest

number of sets with diameter at most δ covering X, then we define the lower and upper
box-counting dimension of X respectively by

dimB(X) = lim inf
δ→0

log Nδ(X)
− log δ

dimB(X) = lim sup
δ→0

log Nδ(X)
− log δ

.
(5)

If both limits have the same value, we simply call it the box-counting dimension:

dimB(X) = lim
δ→0

log Nδ(X)

− log δ
. (6)

In fact, this definition has strong connections with the Hausdorff definition (1). It basi-
cally means that Nδ(X) � δ− dimB(X). In this way and considering that δ � 1, we have
Nδ(X)δs → ∞ if s < dimB(X) and Nδ(X)δs → 0 if s > dimB(X). But Nδ(X)δs corre-
sponds to nD · 1

ns in our intuition on the Hausdorff dimension and that was also the sum of
diameters in a δ-cover of X in (1). More details can be found in [9].

However, the most interesting equivalent definition of box-counting dimension for prac-
tical purposes is that defined under a mesh of hyper-cubes. In R

n we define a δ-mesh of
hypercubes by

[m1δ, (m1 + 1)δ] × · · · × [mnδ, (mn + 1)δ], (7)

where m1, · · · , mn are integer numbers. The measure Nδ in (6) can be replaced by the num-
ber of δ-mesh cubes intersecting X as they can be demonstrated to be equivalent measures
[9].

2.2.2 Bouligand-Minkowski

The first step in the calculus of the Bouligand-Minkowski dimension of X ∈ R
n is to dilate

X by balls in R
n with radius δ forming the structure D(δ) according to:

D(δ) = {p : ‖p − p′‖2 ≤ δ, ∀p′ ∈ X}. (8)

The hypervolume of D(δ) is obtained by simply counting the number of points in D(δ), i.e,

V (δ) =
∑
p∈Rn

χD(δ)(p), (9)

where χ is the characteristic function: χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise.
Finally, the dimension dimM is provided by

dimM(X) = n − lim
δ→0

log V (δ)

log δ
. (10)

The relation with Hausdorff dimension can be justified in a similar way to that employed
for the box-counting dimension.

2.2.3 Lacunarity

For the calculus of the lacunarity of X a hypercube with side-length δ glides through X and
a histogram Hδ(k) stores the number of hypercubes intersecting exactly k points of X. The
lacunarity at scale δ is computed by
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Λδ(X) = E[(Hδ)
2]

(E[Hδ])2
, (11)

where E is the expected value for the distribution represented by H . Finally, a scale-
independent lacunarity is provided by

Λ(X) = lim
δ→0

log Λδ(X)

log δ
. (12)

Roughly speaking, Λδ(X) captures the idea of a ratio between the variance of the number
of hypercubes (assuming mean zero) and that number on its own (the square plays the role
of a normalizer). Such variance represents, for example, the heteogeneity of a binary image
for each δ. Λ(X) measures how this measures varies with scale. The reader can find more
details in [26].

2.2.4 Multifractals

For the multifractal spectrum we follow the method in [30]. First, the image is partitioned
into boxes of sizes L. Therefore a local measure μi is defined for a range of q values as

μi(q, L) = p
q
i (L)∑N(L)

i=1 p
q
i (L)

, (13)

where pi (L) is the ratio (probability) of white points (points of interest of the analyzed
object) falling inside the ith box of size L and N(L) is the number of L-sized boxes.

The spectrum f (q) is obtained by

f (q) = lim
L→0

∑N(L)
i=1 μi(q, L) log[μi(q, L)]

log L
. (14)

The essential idea of a multifractal spectrum is to capture “fractality” at two lev-
els, locally and globally. Locally we define a measure μ, whereas globally the spectrum
expresses the fractal dimension of the set of points whose local measure is α. Here, we
employ the moments method as in [30] and it can be demonstrated that the exponent q is
tightly related to α in the original definition.

3 Proposedmethod

We propose here the combined use of box-counting, Bouligand-Minkowski, lacunarity and
multifractal spectrum to quantify the fractality of binary images with a well known local
encoding of texture images, namely, LBP codes. We use the fractal measure of the encoded
image thresholded at a range of levels to compose a vector of image descriptors, which are
employed for texture classification.

In practice, for a binary image I like that used here, δ values follow an exponential
sequence δ = 2, 4, 8, 16, · · · , log(M) where M is the smallest dimension of the image. In
the calculus of box-counting dimension, for each δ the number of squares intersecting the
object of interest is accumulated in the variable Nδ and the numerical dimension is estimated
by

dimB(I) = −α, (15)

where α is the slope of the straight line fit by minimum least squares to the curve log δ ×
log Nδ . We also employ the linear coefficient of the straight line to compose the feature
vector. Figure 1 illustrates the procedure.
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Fig. 1 Box counting descriptors for LBP mappings. To simplify the visualization we use P = 4 and R = 1
as LBP parameters. a Texture. b LBP codes. c LBP thresholds. d Box-counting dimension

The procedure to compute Bouligand-Minkowski dimension is similar and we use
Euclidean distance transform to optimize the calculus of V (δ) and we employ a maximum
radius of 9, as recommended in [3]. Again, we use the slope and linear coefficient of a
straight line fit to log δ × log V (δ).

For the lacunarity, the radius δ ranges between 2 and 14, as recommended in [31] and we
also employ both linear and angular coefficients to compose the feature vector.

Finally, the multifractal spectrum is computed according to the description in
Section 2.2.4 and using L = 2, 3, 5, 10, 25, 50, 100, 125, 250 as in [30].

3.1 Motivation

Fractal dimension and other fractal measures in their strict sense, as in [9], are usually not
suitable for the analysis of digital images. To start with, digital images are discrete and as a
consequence their geometrical representation is countable. Fractal dimension of countable
sets is, by definition, zero [9] and hence such images cannot be identified using fractal
dimension. One could construct a continuous model based on the image, but that would
introduce artificial data to the process.

Based on this context we develop here a statistical model to investigate how measures
like box counting or Bouligand-Minkowski dimension behave in the analysis of digital
images. For that purpose, LBP codes can be assumed to follow a uniform distribution, which
substantially simplifies the statistical analysis. It is also worth to mention that the other mea-
sures explored here, i.e., lacunarity and multifractal spectrum, can be employed in a similar
analysis, but the conclusions are expected to be similar, given that both also share the same
main objective of measuring the fractality of the image.

3.1.1 Box counting

For box counting, we can employ a model similar to that developed in [20]. Let us suppose
that the probability of a white point in the binary image (point of interest) is p and we have
a total of N points. Let us also suppose that in R

1 the data is enclosed within the interval
I = [0, 1]. The probability that a box with size s (subinterval of I ) does not contain any
point is

p0 = (1 − s)Np . (16)
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Correspondingly, the probability of the same box to contain at least one point of interest is
the complement of p0:

p1 = 1 − (1 − s)Np . (17)

The expected number of nonempty boxes used in the calculus of box counting dimension is
given by

B(s) = [1 − (1 − s)Np]/s. (18)

Likewise, in R
2 we work on an interval I 2 = [0, 1] × [0, 1] and have

B(s) = [1 − (1 − s2)Np]/s2. (19)

The trick in [20] is that for a self-similar set with self-similar dimension dS we would have

B(s) = [1 − (1 − sdS )Np]/sdS . (20)

Box counting dimension is obtained by fitting a straight line to the curve log s × log B(s)

using least squares. Variable s assumes value within a predefined range (typically linear or
exponential) s1, s2, · · · , sn. To simplify the mathematical notation we define xi = log si
and yi = log B(si). Least squares have a statistical interpretation in which the straight line
equation y = αx + β is defined in terms of variances and covariances.

At first, we define the variances of x and y and the covariance between x and y:

σ 2
x =

∑n
i=1(xi−x)2

n
σ 2

y =
∑n

i=1(yi−y)2

n
cov(x, y) =

∑n
i=1(xi−x)(yi−y)

n
, (21)

where x and y denote the mean of x and y respectively. Then it is well known from least
squares theory that

α = cov(x, y)

σ 2
x

and β = y − αx. (22)

Such relations express how the measure (number of boxes) is statistically associated to the
scale s. Figure 2 shows α and β for different numbers of points Np and dimension dS . For
different similarity dimensions, the box dimension (α) and linear coefficient (β) present
different behaviors when plotted against the distribution of points (Np). In terms of image
descriptors, this corresponds to a more complete representation than the sole dimension or
the probability p, even though those important features continue to determine the shape of
the curve.

Fig. 2 α and β in box counting for different numbers of points Np and dimension dS
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3.2 Bouligand-Minkowski

A formal analysis of the dilation area of circles is significantly more complicated than for
box counting and the interested reader can have some idea of that in [33]. Nevertheless, for
a statistical study, we can reduce the problem to a one-dimensional binary “image” in R

1,
more specifically over the [0, 1] interval. Now the morphological dilation of Bouligand-
Minkowski corresponds to placing bars with length s (s < 1) centered at points (white
points) randomly dropped over the interval. The aim is to compute the expected length
covered by at least one bar.

As we need to take care of the boundaries of [0, 1], it turns out that for a single bar, the
probability p1 of a point at the position x being covered can assume three possible values
depending on the value of x:

p1 =
⎧⎨
⎩

x + s
2 if s ∈ [0, r

2 ]
s if x ∈ [ s

2 , 1 − s
2 ]

−x + s
2 + 1 if x ∈ [1 − s

2 , 1].
(23)

The probability of x being uncovered is 1 − p1. In a similar way to what we did in box
counting, we suppose that our “image” has N points and the probability of occurrence of
a white point is p. Therefore the expected number of white points is Np. The probability
of x being uncovered after n bars is randomly placed in [0, 1] is (1 − p1)

Np . Hence the
probability of x being covered by at least one bar is

pn = 1 − (1 − p1)
Np . (24)

Finally the expected length of the covered region is given by

〈L〉 =
∫ 1

0
pndx. (25)

In practice we work with dilation radii much smaller than the size of the image, which
makes possible to disregard the effect of boundaries and focus on the region x ∈ [ s

2 , 1 − s
2 ].

This simplifies the integral to
〈L〉 = 1 − (1 − s)Np. (26)

This expression can be rewritten as

〈L〉 = 1 −
(

1 − Nps

Np

)Np

, (27)

which for large N allows for the use of the exponential limit:

lim
n→∞〈L〉 = 1 − e−Nps . (28)

This limit confirms the power law relation naturally appearing in fractal-like phenomenons.
However, for our purposes, it is also worthwhile to investigate (26), which determines the
behavior of 〈L〉 for not so large values of N .

Using a strategy similar to that in [20], in two dimensions we have circles with radius s

and (26) is rewritten as
〈L〉 = 1 − (1 − πs2)Np . (29)

For a self-similar structure with self-similar dimension dS we can resort to the formula for
the volume of the n-dimensional ball, yielding

〈L〉 = 1 −
⎛
⎝1 − πdS/2

Γ
(

dS

2 + 1
) sdS

⎞
⎠

Np

, (30)
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where Γ is the Euler’s gamma function. α and β are provided by (22) as usual. Figure 3
shows α and β for different numbers of points Np and self-similar dimension dS . As in
Fig. 2 we have different curves for each similarity dimension.

In general, all this analysis corroborates the interest in analyzing local characteristics
of the image like LBP codes by inspecting properties of the log − log dimension curve.
Here we use the slope and linear coefficient of such curve and verify that such potential
theoretically predicted is also confirmed in practical situations.

4 Experiments

The performance of the proposed descriptors was evaluated on three benchmark databases
widely used in the recent literature of texture classification methods. We also applied the
same method to a practical problem, namely the identification of species of Brazilian plants
using scanned images of leaves.

The first benchmark data set is KTHTIPS-2b [16], a database comprising 4752 images
uniformly divided into 11 material classes. An important characteristic of this data is its
focus on the material represented in the image rather than on the instance of the pho-
tographed object. In each material class the images can still be divided into 4 samples. Each
sample follows a particular scheme of scale, pose and illumination. The validation proto-
col is the most typically employed in the literature, where 1 sample is used for training and
the remaining 3 samples are used for testing. The accuracy (percentage of images correctly
classified) and respective standard deviation are obtained by averaging out the results for
the 4 possible combinations of training/testing.

The second database is UIUC [23], containing 1000 images evenly divided into 25 tex-
ture categories. The images were collected under non-controlled conditions and contain
variation in albedo, perspective, illumination and scale. For the validation split we randomly
select 20 images of each texture for training and the remaining 20 images for testing. This
is repeated 10 times to provide the average accuracy and deviation.

The third data set is UMD [38]. This is composed by a collection of 1000 high-resolution
images collected by a family camera without any illumination control. The images are
uncalibrated and unregistered and are categorized into 25 classes, each one with 40 images.

Fig. 3 α and β in Bouligand-Minkowski for different numbers of points Np and self-similar dimension dS
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Each image has a resolution of 1280 × 960. The database is characterized by high variance
in viewpoint and scale, what makes its classification a more challenging task.

To reduce dimensionality and attenuate the effect of redundant information, the proposed
descriptors are subject to principal component analysis [18] before the classification. For
the classification, we tested four possibilities: support vector machines (SVM) [7] with a
configuration similar to what is employed in [6], i.e., linear kernel, C = 1 and L2 normal-
ization, random forests (RF) [17] with a number of trees empirically determined from the
training set within the [100, 500] interval, artificial neural networks (ANN) [27] using one
hidden layer with the number of neurons defined empirically (around 10 worked fine) and
trained by scaled conjugate gradient, and linear discriminant analysis (LDA) [22].

5 Results and discussion

An initial test was accomplished to verify the performance of the proposed method for the
four compared classifiers, i.e., SVM, RF, ANN, and LDA. For this test we employed box
counting descriptors as those have more straightforward interpretation and allow more unbi-
ased evaluation of the classifier. Table 1 lists the percentage of images correctly classified in
each compared database as well as the respective standard deviation. LDA provided higher
accuracies in all tested data. The success of linear approaches can be justified by the rela-
tively large number of input features, which causes non-linear approaches to overfit. Based
on this and on the fact that LDA has no parameter to be adjusted, which makes it more
controllable, the remaining experiments are carried out using this classification scheme.

In Table 2 we analyze the performance of the individual fractal descriptors: box counting
(BC), Bouligand-Minkowski (BM), lacunarity (L), and multifractal (MF). From that table
it is possible to state that each fractal metric can be more or less recommended depending
on particularities of the data set. This also suggests that combining different fractal features
could provide even better classification results.

Table 3 shows the accuracy when some of the investigated fractal features are combined
into a single vector of descriptors. Other combinations were verified but at the end those
ones presented in Table 3 had the most competitive performances. In general, some subtle
improvement over the individual features was obtained in most data sets when combined
descriptors were used.

Table 4 lists the accuracy performance of the proposed descriptors in KTHTIPS-2b,
UMD and UIUC, compared with other results published in the literature. Details concerning
parameters and other implementation details for each result can be obtained in the respec-
tive references. Here the fractal features outperformed advanced approaches like SIFT +
VLAD or SIFT + BoVW in KTHTIPS-2b. Methods based on automatic (deep) learning

Table 1 Classification accuracy using SVM and LDA classifier

Database SVM RF ANN LDA

KTHTIPS-2b 63.4±3.4 63.5±3.8 59.7±7.6 65.5±3.5

UIUC 96.3±0.5 95.3±0.8 89.1±1.9 97.3±0.6

UMD 98.0±0.7 97.4±1.0 95.3±1.3 98.6±0.6

1200Tex 81.9±1.7 81.2±0.6 62.1±3.7 86.6±1.1

Bold values correspond to the highest accuracies
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Table 2 Classification accuracy of the individual fractal descriptors: BC (box counting), BM (Bouligand-
Minkowski), L (lacunarity), and MF (multifractal)

Database BC BM L MF

KTHTIPS-2b 65.5±3.5 66.3±3.1 65.9±3.6 58.9±3.3

UIUC 97.4±0.5 97.6±0.4 97.8±0.5 86.7±1.4

UMD 98.6±0.6 99.0±0.6 99.1±0.4 97.2±0.6

1200Tex 86.4±1.1 85.9±1.3 84.9±1.1 67.2±1.5

Bold values correspond to the highest accuracies

like FC-CNN were also outperformed in UIUC and UMD. These are canonical examples of
what could be defined as “textures in their strict sense” and the results confirmed the poten-
tial of fractal-based methods to analyze such types of images. Finally, MFS and PLS are
examples of fractal-based approaches for texture recognition. Both were also outperformed
by the proposed descriptors in UIUC and UMD.

Figure 4 shows the confusion matrices for the benchmark databases. Box counting
descriptors were used to generate these pictures. Such representations essentially confirm
the accuracies in Table 2, but they also provide information regarding the accuracy in each
class, what opens possibility for a more elaborate analysis on the classification outcomes.
In Fig. 4a we see KTHTIPS-2b with lower accuracy in classes 3 (“corduroy”) and 5 (“cot-
ton”). These are actually materials frequently confused as they are types of clothing fabrics
and possess similar texture patterns. UIUC, on the other hand, yields a nearly perfect clas-
sification result, with some significant misclassification only in class 8 - granite - (confused
with 18 - carpet). Despite being different materials, they are both characterized by a granular
appearance, which poses some difficulties for the automatic discrimination.

5.1 Identification of plant species

Table 5 lists the accuracy of the fractal-LBP descriptors in 1200Tex database [3], compared
with a few state-of-the-art results published in the literature. This is a set of images of plant
leaves for 20 Brazilian species collected in vivo. For each species 20 samples were col-
lected, washed, aligned with the vertical axis and photographed by a scanner. The image of
each sample was split into 3 non-overlapping windows with size 128×128. Those windows
were extracted from regions of the leaf presenting less texture variance and were converted
into gray scale images, resulting in a database with 1200 images. From each species 30
images were randomly selected for training and the remaining images for testing. This pro-
cedure was repeated 10 times, which allowed the computation of the average accuracy and
respective deviation (in Tables 2 and 3).

Table 3 Classification accuracy for some combinations of fractal descriptors

Database BC+BM BC+L BC+MF BM+L BM+MF L+MF BC+BM+L BC+BM+L+MF

KTHTIPS-2b 67.5±2.1 67.6±2.1 65.0±2.1 67.4±2.6 65.4±2.2 66.7±3.1 66.4±2.0 66.4±2.0

UIUC 97.9±0.5 98.1±0.5 96.4±0.7 98.0±0.4 96.3±0.8 97.0±0.6 98.1±0.6 97.6±0.5

UMD 98.9±0.6 99.1±0.5 99.1±0.5 99.1±0.4 99.3±0.2 99.1±0.3 99.0±0.5 99.2±0.3

1200Tex 86.2±1.0 86.3±0.8 82.2±1.6 85.9±1.1 81.6±1.8 80.5±1.6 86.3±0.6 82.5±1.4

Bold values correspond to the highest accuracies
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Table 4 Accuracy of the proposed descriptors compared with other texture descriptors in the literature

Method KTH-TIPS2b UIUC UMD

VZ-MR8 [35] 46.3 92.9 –

LBP [28] 50.5 88.4 96.1

VZ-Joint [36] 53.3 78.4 –

BSIF [19] 54.3 73.4 96.1

LBP-FH [1] 54.6 – –

CLBP [15] 57.3 95.7 98.6

SIFT+LLC [6] 57.6 96.3 98.4

ELBP [25] 58.1 – –

SIFT + KCB [5] 58.3 91.4 98.0

LBPriu2/VAR [28] 58.51 84.4 95.9

SIFT + BoVW [5] 58.4 96.1 98.1

PCANet (NNC) [4] 59.41 57.7 90.5

SIFT + VLAD [5] 63.1 96.5 99.3

RandNet (NNC) [4] 60.71 56.6 90.9

SIFT+IFV [5] 58.2 97.0 99.2

ScatNet (NNC) [2] 63.71 88.6 93.4

DeCAF [5] 70.7 94.2 96.4

FC-CNN VGGM [6] 71.0 94.5 97.2

MFS [38] – 92.7 93.9

PLS [31] – 96.6 99.0

Proposed 67.6 98.1 99.3

All the results except for the proposed method were obtained from the literature. A ‘-’ indicates that no
result was published for that method on that database. A superscript 1 denotes a slightly different protocol in
KTH-TIPS2b where 3 samples are used for training and 1 sample for testing

Figure 5 complements Table 5 by exhibiting the confusion matrix for the proposed
method (box counting features). Generally speaking, the accuracies in all classes are high
and the most critical situation occurs in class 8, which is confused for example with class 6.
These correspond to samples with similar textures, especially with regards to the arrange-
ment of nervures and leaf microtexture, which are prominent elements for the process of
distinguishing among samples from different species.

Generally speaking, fractal descriptors still demonstrate competitiveness when compared
with several state-of-the-art approaches for texture recognition. It is well known that char-
acteristics intrinsic to the way that these materials are formed in nature contribute to this
relation to a significant extent. This can be even more easily observed in data sets of “pure”
textures, like UIUC and UMD, as well as in practical problems where such types of images
naturally arise. This is the case in many biological applications and here is illustrated by the
foliar surface images. To summarize, the most excelling advantages of the proposed method
are its high accuracy without requiring neither large amounts of data nor specific com-
putational resources for training, meaningfulness of fractal characteristics, and an imple-
mentation based on simple numerical methods. As for shortcomings, we can mention the
relatively large number of features, even though techniques like regularization or principal
component analysis, as used here, can attenuate that point and prevent any potential overfit.
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Fig. 4 Confusion matrices. a KTHTIPS-2b. b UIUC. c UMD

The results encourage more research on this topic at the same time that it presents fractal
descriptors as an alternative that should be verified in practical problems, as they can achieve
competitive performance, for example, without requiring large amounts of training data and
they also provide more natural interpretation for the obtained results as fractal sets have
been classically associated with a mathematical model of nature structures.

Table 5 Accuracy of the fractal-LBP descriptors compared with other results in the identification of plant
species

Method Accuracy (%)

LBPV [15] 70.8

Network diffusion [13] 75.8

FC-CNN VGGM [6] 78.0

Gabor [3] 84.0

FC-CNN VGGVD [6] 84.2

Schroedinger [10] 85.3

SIFT + BoVW [5] 86.0

Proposed 86.3
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Fig. 5 Confusion matrix for the plant database

6 Conclusions

Here we developed a combination of local binary patterns with numerical estimates of frac-
tal dimension. More specifically, we compute the dimension of the LBP codes thresholded
at different levels to compose the image feature vector.

The performance of our proposal was assessed in the classification of benchmark
databases typically used in the literature. We also employed such descriptors in a practical
problem with significant importance in botany and related areas, namely, the identifica-
tion of species of Brazilian plants. In both cases our method obtained promising results,
comparable to state-of-the-art results recently published in the literature.

The results presented here suggest that the combination of fractal geometry (and poten-
tially other fractal measures) with a local encoding like LBP can be rather useful to represent
all the rich information conveyed by a texture image.
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1. Ahonen T, Matas J, He C, Pietikäinen M (2009) Rotation invariant image description with local binary
pattern histogram fourier features. In: Salberg AB, Hardeberg JY, Jenssen R (eds) Image analysis.
Springer, Berlin, pp 61–70

2. Bruna J, Mallat S (2013) Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell
35(8):1872–1886
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