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Abstract
To increase transfer and storage efficiencies of the information, data compression has
emerged as a significant issue in the communication environments. This paper introduces
compression and encryption of speech signals based on DiscreteWavelet Transform (DWT)
and Chaotic signals. DWT sparsens and codes the speech signal to the wavelet coefficients.
The less impactful coefficients are eliminated to reduce the amount of data. After that, a new
coding process which utilizes the chaotic signals is proposed to encode, in encrypted form,
the residual coefficients. A High strength to the encryption process is realized by using four
linked Hènon Chaotic Maps (HCM) in the proposed scheme. Multi HCM guarantees larger
than 10240 of key space to the encryption process. The proposed system obtains up to
−41.449 dB of spectral segmental signal-to-noise ratio, which measures and proves the
strength of encryption. Also, at 10% compression ratio, signal-to-noise ratio of 11.549 dB
and perceptual evaluation speech quality of 3.02945 demonstrate that the proposed system
has high quality and intelligibility of the reconstructed speech.

Keywords Speech compression . Speech encryption .Wavelet transform . Chaotic map

1 Introduction

Speech is the most operative medium used in telephony, mobile communications and trans-
missions. Speech compression is one of the means that attempts to exploit all the available
capabilities and resources of the communication systems. Compression is made by reducing
the size or bit rate of the transmitted speech signal components [2, 4]. This process saves
bandwidth of the communication channel. It also decreases the memory space which is needed
for storage speech files. Speech compression is done according to the fact that a large number
of redundant information is originated in the speech signals. By coding necessary speech
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information and neglecting non–essential information, a compressed signal is generated. The
amount of discarded information must be suited to the level which is desired to restore the
original speech with high intelligibility. Today, speech compression is used in many different
applications such as voice mail, video teleconferencing systems, satellite and cellular commu-
nications [10]. For the purpose of preparing the speech signal to compress, some transforms
such cosine and wavelet are utilized [11, 14, 19, 31]. These transforms have the ability to deal
with speech’s time and frequency domains with high resolution.

Discrete wavelet transform decomposes the speech signal by decorrelating its samples into sets
of coefficients. Many of these coefficients are almost zero [3, 27]. Thereby, the compression can
be performed by coded effective coefficients only and give zero to the other coefficients when
achieves a decompression process. Hence, wavelet transform based compression is still an
interesting field by the researchers. Supatinee K. et al., [14] examined the application of Haar,
Biorthogonal andDiscreteMeyerwavelets to compress speech signals. The experiments indicated
that the Biorthogonal wavelet provides a good compression ratio and quality of the reconstructed
signal compared with two others. The enforcement of Coiflet wavelet based on speech compres-
sion was tested by Snehanka G. et al., [19]. This paper seeks to get a high auditory quality to the
recovered speech. Fatma z. Chelali et al., [3] used DWT for speech compression and denoising.
The results showed that the compression of an acoustic signal using DWT outperforms compared
with use of discrete cosine transform. In [27], speech compression using a hybrid wavelet is
proposed by Rekha V., and Sachin S. Chauhan. The held energy for the speech frames
coefficients, which sets as a threshold, controls the required compression levels. Another com-
pression algorithm for a distributed speech recognition system is proposed by Syu-SiangW. et al.,
[29]. This algorithm uses suppression by selecting wavelets to achieve compress and efficient data
transmission. DWT filters speech signals into two frequency levels. The low frequency level is
kept then transmitted while the high frequency level is discarded.

To get an increment in the compression ratio of the signal compared with existing schemes
based on wavelet, an interesting compression approach called Compressive Sensing (CS) has
been used recently. This approach introduces reduction in acquisition time and complexity.
But this scheme has a challenge represented by that the processing power at the decoder limits
the reconstruction quality of the signals [6, 13, 21, 25]. In [20], Vinitha R. et al., proposes a
compression system based on CS to enhance and compress speech signals. Improving
compression ratio is presented through a scheme proposed by Maher K. M. Al-Azawi et al.,
[1]. CS and chaotic system are utilized. All these compression algorithms intend to increase the
compression level while retaining as much as possible of the quality and intelligibility of the
recovered speech signal.

In this paper a high-quality system of compression and encryption of a speech signal based
on DWT and Hènon chaotic maps is proposed. The excellent sparsen process of the signal
which is produced by multi-level wavelet decomposition guarantees a high compression ratio
after thresholding. Also, the new efficient coding process of the remaining wavelet coefficients
using chaotic signals upsurge the auditory quality of the reconstructed speech and reduce the
appended information required to decompress speech signal. The substantial characteristics for
the eight chaotic signals assurance high security level to the compressed speech. A unified
framework of compression and encryption processes is provided by using a combination of
DWT and chaotic signals in the proposed approach.

The paper sets as follows; Section 2 shows DWT and Hènon chaotic map. Section 3
illustrates the proposed system of the speech compression and encryption. Finally, the
simulation results and conclusions are presented in Sections 4 and 5 respectively.



2 Discrete wavelet transform and chaotic map

2.1 Discrete wavelet transform (DWT)

Wavelet transform applies different window scales to split the data into various ranges of
frequency components. It captures time location and frequency information of the signals with
high resolution [5, 28]. The coefficients (W) of the DWT which are computed for a signal S[n]
is defined by the equation [28].

W j; kð Þ ¼ ∑
n
S n½ �2− j

2ψ 2− jn−k
� �

; ð1Þ

where j and k are the scale and shift parameters, respectively.
ψ(t) is called the mother wavelet. There are many wavelet families, each one is character-

ized by its mother wavelet shape.
Haar is the oldest, simplest, an orthogonal wavelet and it has linear phase characteristic.

Haar wavelet owns one vanishing moment with two filter coefficients and it doesn’t use the
overlapping windowing technique [17, 28]. The mother Haar wavelet is given by the equation.

ψ tð Þ ¼
1 0 < t <

1

2
;

−1
1

2
≤ t < 1 ;

0 otherwise :

8>>><
>>>:

ð2Þ

Daubechies-p (db) and Coiflets-p (coif) are another orthogonal wavelet with longer compactly
supported length than that of haar. These families use overlapping windows to decompose the
data samples. The daubechies filters have 2p coefficients while coiflets filters have 6p
coefficients. Therefore, these families deal with each 2p and 6p adjacent data element
respectively. The results of windowing processes produce a smoother representation in the
wavelet domain to the signal than in haar. One more wavelet family which has two different
wavelet functions is Biorthogonal wavelet (bior). It is orthogonal to the shifted base function
under different scale factors. But for the same scale factor, it is not orthogonal [14, 19].
Figure 1 shows haar, db4, coif1, and bior2.2 mother wavelet families respectively.

To decompose the signal, DWT passes the input data through successive low and high pass
filters which have dissimilar cutoff frequencies. This process produces an orthogonal set of
wavelets which have almost zero information components. In multilevel, DWT analyzes the
data into approximation and detail coefficients by pushing those data through filters. Down-
sampling by two is carried out to characterize the wavelet signal [7, 16, 30]. Therefore, the
time resolution is halved while frequency resolution is doubled. Approximation coefficients
are decomposed and subsampling again for each next level. Mathematically, the output
coefficient vector can be written as

W nð Þ ¼
∑
∞

k¼−∞
S k½ �L 2n−k½ �

� �
↓ 2 ;

∑
∞

k¼−∞
S k½ �H 2n−k½ �

� �
↓ 2;

8>>><
>>>:

ð3Þ

Where S, L, and H are the input signal, low pass and high pass filters respectively.
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Several of one-dimension H and L filters are applied to obtain a two-dimensional (2D)
wavelet (input data is a 2D matrix). First, each row of the input data is pushed through the two
filters. Then after downsampling, each column of the resulting coefficient matrix is passed
again through the filters. Three details subbands which represent highest resolution wavelet
coefficients and one approximation subband which represents smooth coefficients of the
original data. To conduct more analysis of the signal features with different scales, the last
one subband is further decomposed through the next level [12, 15].

2.2 Hénon chaotic map

Chaotic maps produce deterministic sequences which have many unique properties such
sensitivity to its parameters, noise-like behavior, and ergodicity. Thus, the chaotic signal
confers additional confidentiality when the encryption scheme employs it [26]. In 1976,
Michel Hénon introduced a chaotic map with two chaotic behavior signals. This map is
defined as in the equation

xn ¼ 1−rxn−12 þ yn;

yn ¼ cxn−1;
ð4Þ

where (xn, yn) ∈ R are the generated chaotic sequences. r and c are the control parameters seed.
To guarantee chaotic performance of Hénon map signals, the control parameter may be

having values r ∈ (1.399,1.4) and c ∈ (0.299,0.3) [18].

3 Proposed system of compression and encryption speech signal

Figure 2 shows the block diagram of the proposed compression and encryption system for the
speech signals. This system utilizes DWT and Hénon chaotic signals to compress and encrypt
speech signals. The speech signal is arranged into an almost squared matrix with respect to the
length of speech signal. 2D spectrogram is constructed by applying the discrete cosine
transform (DCT) for each column vector. DCT works as the first level of data sparsity. After
that, multilevel 2D-DWT is applied on the spectrogram matrix to generate a wavelet coeffi-
cient matrix. A hard threshold value is chosen to attain the required compression level of the

Fig. 1 Mother functions of several wavelet families
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signal. All the details wavelet coefficients have values less than the threshold are reset to zero.
The matrix is converted to 1D vector (W) to prepare it for the compression step. A new coding
process is suggested for the compression scheme. This process is used to compress and encode
the significant wavelet coefficients. Eight chaotic signals such (x1, y1, x2, y2, x3, y3, x4,
y4) which are generated from four Hénon maps are employed for this mission. These signals
are used to code each single, double, third, fourth, fifth, sixth, seventh, and eighth adjacent data
samples respectively. The chaotic signals are joined together to assure high quality randomness
of these signals. The joining process is accomplished by modifying ‘s equations such as

y1n ¼ c1 x1n−1 þ y2n−1ð Þ;
y2n ¼ c2 x2n−1 þ y3n−1ð Þ ;
y3n ¼ c3 x3n−1 þ y4n−1ð Þ;
y4n ¼ c4 x4n−1 þ y1n−1ð Þ;

9>=
>; ð5Þ

where c1, c2, c3, and c4 are the control parameters for each map respectively.
Quantization process is applied for each chaotic signal to be compatible with bits per

sample of speech signal. Then, to ensure there are no repeated values of chaotic samples, the
elimination process cancels each sample which has the same values within an instantaneous
chaotic plane (ICP). ICP is a stream of the eight quantized chaotic signals that have a thousand
samples of each signal started with an instantaneous sample to the next thousand samples of
those signals. ICP can be given as

ICP ¼

ex1n ex1nþ1

ey1n
ex2n

ey1nþ1

ex2nþ1

⋯ ex1nþ1000

⋯
⋯

ey1nþ1000

ex2nþ1000

⋮ ⋮ey4n ey4nþ1

⋱ ⋮
⋯ ey4nþ1000

2
666664

3
777775; ð6Þ

where n is an instantaneous sample shifted with the process, ex and ey are quantized chaotic signals.
The compression and encoding of wavelet coefficients are performed using ICP planes.

The number of adjacent information in the wavelet coefficients decides which ICP compo-
nents are to be chosen to represent code of this information. To clarify that, if there are A
adjacent information components (up to eight) that have non-zero value in the wavelet
coefficients located at a P position with respect to the instantaneous thousand components,
therefore ICPA,P is chosen to encode these information components. As an example, if the
wavelet coefficients have a stream of data, such …, 0, 0,W77, W78, 0…, the value in the 2nd
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Fig. 2 The structure of proposed speech compression system
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row (two non-zero adjacent samples) -77th column of ICP ey177ð Þ is chosen to be coded. The
compressed signal will be contained ey177, W77, W78. Figure 3 illustrates an example to the
compression and encoding process.

After each thousand wavelet coefficients, a sample with zero value is inserted in the streams
of the compressed signal. This sample identifies ICP length and is used to revive the decoding
process if any error in the compressed signal samples occurs. To retrieve the speech signal
from compressed data, the inverse steps of the compression process are performed at the
receiver side. If the decoder receives ICPA,P, the next Ath samples is put in the position started
with Pth of the decoding vector. All next samples are set to zero until the next Pth position of the
ICPA,P is detected. As an example, if the decoder receives data beginning with a sample which
has the same ex465 value, the next seven samples are put with position starting with 65 to 71 in
the decoding vector. Then the eighth sample, next to the seven samples mentioned before, is
compared with the ICP sample to know the corresponding position and data size. After whole
this process is done, two-dimensional inverse Discrete wavelet (2D-IDWT) and inverse Cosine
(ICT) transforms are applied respectively to the generated decoding vector.

4 Simulation results

Different speech files which are obtained from ‘NOIZEUS’, ‘CMU_Arctic’ and ‘TIMIT’
speech databases are used to experience the performance of the proposed speech compression
system. All tested signals have samples of 16 bits. Eight level DWT- haar family (basically) is
applied to get wavelet coefficients. As well as, four linked Hènon maps which have different
initial conditions and control parameters are utilized to generate eight chaotic signals. To
prepare chaotic signals to the encoding process, all signals are quantized to 216 levels respected
to speech bit per sample (16 bits for speech files which are tested). Repeated samples in ICP,
with dimensions 8 × 1000, are eliminated to ensure correct reconstruction of speech signal at
the receiver. Figure 4a shows y2 samples, as an example, corresponding to the samples which
have similar values in the other quantized chaotic signals. The red points indicate the similarity
of the y2 samples with that of other chaotic signals. Figure 4b shows the same relation after the
eliminating process. So, it can be seen that the samples which have similar values within ICP
are eliminated. The ICP is ready now to be used for the coding process.

Each one of the chaotic signals assigned to encode a specific group which have a certain
number of adjacent samples in the wavelet coefficient samples. Up to eight adjacent samples
can be encoded corresponding to eight chaotic signals. Figure 5 depicts the number of adjacent
samples in the wavelet coefficients with respect to compression level for the Sp21 speech file
in NOIZEUS database.
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Fig. 3 An example of compression and encoding process
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Many performance statistical measures are used to evaluate the proposed speech compres-
sion system listed in the next subsection.

4.1 The performance measures

The objective measures are useful to measure the residual intelligibility and quality of
compressed speech and retrieved signal respectively. The quality of the retrieved speech signal
is mostly measured by Signal to Noise Ratio (SNR) [1]. High value of SNR corresponds with
high quality of recovered speech. Higher quality of retrieved speech can be also measured by a
higher value of another objective factor known as Peak Signal to Noise Ratio (PSNR) [10].
Perceptual Evaluation of Speech Quality (PESQ) [8, 24] is an accurate international standard
factor for estimating speech quality. PESQ became a worldwide industry standard test for the
applications which enhance speech quality used by voice processing and telephone networks.
Moreover, Segmental Spectral Signal to Noise Ratio (SSSNR) [1] indicates the amount of
residual intelligibility of encoded speech signal. The more negative value of SSSNR means
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Fig. 5 Number of adjacent samples in the wavelet coefficients
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more strength of the encryption process. Furthermore, Correlation coefficient (CF) [23] is a
statistical measure used to test the signals similarity. CF has values between +1 to −1. The near
zero value for CF means a large difference between the signals. When the CF value is almost
one, the similarity is confirmed. Finally, Number of Non-Zero Coefficients (NNZC) before
thresholding process and Number of Wavelet Coefficients (NWC) are suggested here. NNZC
is applied to compute the percentage ratio of non-zero coefficients (coefficients which are
processed to acquire a compressed signal) to the total coefficients before thresholding process.
NWC is employed to compute the percentage ratio of increment in the number of decompo-
sition coefficients for a wavelet family to that in haar wavelet family. NNZC and NWC are
given as in the following equations:

NNZC ¼ number of non−zero befor threshold
total elements

*100% : ð7Þ

NWC ¼ number of coeff : of a family
number of coeff : of haar wavelet

−1
� �

*100% : ð8Þ

Fig. 6 Waveform of original, compressed, and recovered speech signals

Fig. 7 Spectrogram of original, compressed, and recovered speech signals
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All these statistical measures are computed with respect to Compression Ratio (CR). CR is
used to obtain the percentage ratio of the size of compressed signal to that of the original
speech signal.

4.2 The results of proposed speech compression system

The performance of the proposed system illustrates in this subsection. Figures 6 and 7 show
the waveform and spectrogram of the original, compressed and recovered speech signals
respectively. Acoustically, these figures depict high intelligibility and quality of the retrieved
signal at a high compression level (CR=18%). The compressed signal is like noise and it is
dissimilar with respect to the original speech. This analysis is supported by the statistical
results that are shown in Tables 1 and 2.

Table 1 indicates the SNR, PSNR, PESQ, and CF results for the retrieved speech signals
and SSSNR for the encrypted and compressed signal all with various CR levels. By observa-
tion, it is found the high values of all simulated objective measures. High CR results are
realized by the efficient encoding of wavelet coefficients. This process is accomplished with
minimum information which is required to retrieve the speech signal. Also, the linear phase
property of the haar wavelet attains a good reconstructing to the speech signal. That is clearly

Table 1 Simulation results of proposed compression speech system

Speech CR% SNR (dB) PSNR (dB) PESQ CF SSSNR (dB)

NOIZEUS Database 10 11.5496 58.21 3.02945 0.96437 - 39.6507
20 19.2357 59.33 3.26646 0.99402 - 41.449
30 24.2552 66.20 3.55866 0.99812 - 40.995
40 28.9898 69.72 3.83787 0.99937 - 40.554
50 33.8277 72.94 3.97434 0.99979 - 38.742

CMU_Arctic Database 10 14.3461 55.60 2.83454 0.98145 - 29.4533
20 20.1368 59.46 3.29377 0.99514 - 28.9119
30 24.9781 62.68 3.48302 0.99841 - 27.4141
40 29.0439 65.39 3.67659 0.99937 - 27.9536
50 33.3375 68.26 3.91564 0.99976 - 26.4618

TIMIT Database 10 14.1722 60.08 2.80504 0.98068 - 30.1716
20 20.3514 64.46 3.16686 0.99537 - 29.9337
30 25.6765 67.75 3.49660 0.99864 - 29.4170
40 30.7095 71.11 3.80355 0.99957 - 27.9209
50 35.6917 74.43 4.06825 0.99986 −26.2443

Table 2 Comparison results of proposed compression system based on various wavelet families

Wavelet family SNR (dB) PSNR (dB) PESQ CF NNZC (%) NWC (%)

haar/db1/bior1.1 24.255 66.20 3.55866 0.99812 98.5 –
db2 20.309 63.93 3.37155 0.99533 100 5.77
db3 16.034 60.88 3.23349 0.98651 100 11.20
db4 11.610 58.13 3.05760 0.96487 100 18.21
coif1 16.869 61.64 3.32832 0.98966 100 11.21
coif2 5.887 54.32 2.68542 0.86151 100 31.68
bior1.3 16.809 61.60 3.33020 0.98952 100 11.27
bior1.5 6.289 54.58 2.75333 0.87510 100 23.55
bior2.2 15.657 60.83 3.25382 0.98632 100 11.23
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by these results which reflect high quality for the reconstructed speech. As well, Low SSSNR
values (gets between −41.449 and −26.4618) confirm the strength of the encryption process
and refer to high level immunity against any attacks.

To test the effects of applying another wavelet family, Table 2 represents the comparison
results of using some types of db, coif, and bior wavelet instead of haar to compressing a
speech from the NOIZEUS database at CR = 30%. From this Table and except haar wavelet,
NNZC results indicate that all coefficients of the decomposition process which are produced
by db, coif, or bior multilevel 2D-DWT haven’t zero value before the thresholding process.
This fact is a result of a highly smoothing representation of the signal by inherent overlapping
windowing property for these families. But it leads to loss of more information through
thresholding. Also, the NWC results indicate that the db, coif, and bior wavelets produce
more coefficients (gets between 5% to 31%) compared to the coefficients which haar produces.
Where those families have many samples in its FIR L andH filters compared with haar that has
two samples only. For these reasons, the execution of haar wavelet in the proposed scheme
appears superior in terms of SNR, PSNR, PESQ, and CF with respect to CR.

Figures 8 and 9 show the waveform, spectrogram, and correlation of the recovered speech
signal with and without 10−15 change in r1 parameter value respectively, all with CR=40%.

Fig. 8 Waveform, spectrogram and correlation test without any change in Hènon parameters

Fig. 9 Waveform, spectrogram and correlation test with ±10−15 change in r1 parameter only
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The spectrograms and correlation test results depict huge differences between original and
recovered speech. The waveforms of the recovered speech assert that also.

Table 3 displays the SNR and CF with various CR values at a tiny change in r1control
parameter (±10−15). The results of SNR and CF clearly reflect that change by ±10−15 to a
control parameter makes it impossible to retrieve the original speech signal. The low CF values
indicate there is no relation between the original and recovered signals.

In the proposed system,Wavelet family, wavelet level, all the control parameters, and initial
values of the four Hènon maps are exploited as secret keys. Generally, increasing of keys in an
encryption system leads to a high key space of that system. Sixteen parameters of four Hènon
maps give (1015)16 = 10240 key space.

The performance results of the proposed compression and encryption system have been
compared with schemes that are presented in [1, 11, 19, 20, 22, 27], and [9]. Table 4 sets forth
results summary of CR, SNR, PSNR, and PESQ for the proposed system and some of these
objective measures for the compared schemes. It is clear that the proposed compression system
outperforms the other schemes for the same CR values. The SNR and PESQ values indicate
that the proposed system can attain a high level of quality and intelligibility for the

Table 3 SNR and CF of retrieved speech when tiny change in a control parameter

Speech CR% SNR (dB) CF

NOIZEUS Database 10 4.6801- 0.0015
20 −4.7572 0.0021
30 −4.7103 0.0016-
40 −5.0203 0.0023
50 −4.6894 0.0013

CMU_Arctic database 10 −4.3897 0.0007
20 −4.7335 0.0001
30 −4.3743 0.0004
40 −4.8366 0.0013
50 −4.6907 0.0046

TIMIT database 10 −4.5656 0.0031
20 −4.8910 0.0018
30 −5.0210 0.0021
40 −5.0300 0.0018
50 −5.0610 0.0008

Table 4 Comparison results of proposed compression system with various compression Schemes

CR% Reference-Year SNR (dB) PESQ PSNR (dB)

8.24 [22] -2019 6.30 2.88 N/A
Proposed Scheme 10.058 2.915 N/A

10 [19] -2014 9.2014 N/A 14.9047
[11] -2016 6.5955 N/A 14.9747
[27] -2018 N/A N/A 37
Proposed Scheme 11.5496 3.029 58.21

40 [20] -2015 6.49 N/A N/A
[1] -2018 11.836 2.734 N/A
[27] -2018 N/A N/A 48
Proposed Scheme 28.989 3.837 65.39

50 [20] -2015 8.79 N/A N/A
[1] -2018 18.874 3.422 N/A
Proposed Scheme 33.827 3.974 68.26
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reconstructed signal. Also, the encryption strength of the proposed system is confirmed by
lower SSSNR = −38.74 dB compared with −20.78 and −14.834 for [9] and [1] respectively.

The sparse process of the speech information by the multilevel 2D-DWT and efficient
proposed encoding of the valuable coefficients give the proposed compression scheme
dominance in terms of compression ratio and quality of retrieved speech in comparison with
the other schemes.

5 Conclusions

In this paper, the proposed system compresses and encrypts the speech signal simultaneously.
Discrete wavelet Transform sparsens speech information and then the proposed coding process
which is based on eight signals of Hènon map encodes the weighty coefficients. The
simulation results show outperforms the proposed system in terms of SNR, PESQ, PSNR,
CF, and SSSNR with respect to CR ratio. At low CR value equals to 10%, the results get
SNR= 11.5496 dB, PSNR=58.21 dB, PESQ=3.02945, CF=0.96437. These results reflect high
intelligibility and quality of reconstructed speech signals. As well the proposed system
guarantees high encryption strength with large key space for compressed speech. Where it
can note that the SSSNR values (get between −41.449 and −26.4618 dB) are very low.
Consequently, it is harder to extract the original speech signal by any intruder.
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