Multimedia Tools and Applications (2021) 80:23135-23156

https://doi.org/10.1007/511042-020-10262-4
1154T: CONTENT-BASED MULTIMEDIA INDEXING IN THE ERA OF ARTIFICIAL o
INTELLIGENCE ()

Check for
updates

Bag of indexes: a multi-index scheme for efficient
approximate nearest neighbor search

Federico Magliani' © . Tomaso Fontanini' - Andrea Prati’

Received: 27 June 2019 / Revised: 2 September 2020 / Accepted: 9 December 2020 /
Published online: 15 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

During the last years, the problem of Content-Based Image Retrieval (CBIR) was addressed
in many different ways, achieving excellent results in small-scale datasets. With growth of
the data to evaluate, new issues need to be considered and new techniques are necessary
in order to create an efficient yet accurate system. In particular, computational time and
memory occupancy need to be kept as low as possible, whilst the retrieval accuracy has
to be preserved as much as possible. For this reason, a brute-force approach is no longer
feasible, and an Approximate Nearest Neighbor (ANN) search method is preferable. This
paper describes the state-of-the-art ANN methods, with a particular focus on indexing sys-
tems, and proposes a new ANN technique called Bag of Indexes (Bol). This new technique
is compared with the state of the art on several public benchmarks, obtaining 86.09% of
accuracy on Holidays+Flickr1M, 99.20% on SIFT1M and 92.4% on GIST1M. Noteworthy,
these state-of-the-art accuracy results are obtained by the proposed approach with a very
low retrieval time, making it excellent in the trade off between accuracy and efficiency.

Keywords Content-based image retrieval - Approximate nearest neighbor search -
Hashing - LSH
1 Introduction

The methods applied for the resolution of the Content-Based Image Retrieval (CBIR)
problem on small datasets recently reached excellent results. However, with the growth

P4 Federico Magliani
federico.magliani @studenti.unipr.it

Tomaso Fontanini
tomaso.fontanini @studenti.unipr.it

Andrea Prati
andrea.prati @unipr.it

IMP lab, University of Parma, Parco Area delle Scienze, 181/A, Parma, Italy

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-10262-4&domain=pdf
http://orcid.org/0000-0001-5526-0449
mailto: federico.magliani@studenti.unipr.it
mailto: tomaso.fontanini@studenti.unipr.it
mailto: andrea.prati@unipr.it

23136 Multimedia Tools and Applications (2021) 80:23135-23156

of images, the large-scale retrieval task became more interesting. The retrieval on large
datasets, composed by almost millions of images, is not yet capable of achieving perfor-
mances comparable to the small-scale scenarios, because it brings with it several additional
challenges. Moreover, it is worth to note that these challenges are not only related to com-
puter vision tasks, but they are typical also, e.g., to the information retrieval field. First,
the amount of data representing the descriptors of the images does not fit into the memory,
because they are usually high-dimensional features. There are two main solutions: the first
one is to reduce the size of the descriptors in order to fit into the memory (e.g., with descrip-
tors of maximum size of 32 bits); an alternative solution is to avoid storing the descriptors
into the memory by adopting a similarity metric between images not based on image
descriptors distance. Of course, these two strategies can be also applied simultaneously.

A second challenge to take into account is related to the retrieval time which tends to be
quite slow if a brute-force approach is employed. In fact, the brute-force strategy linearly
increases the time spent on the retrieval with the growth of the number of images in the
dataset and becomes quickly inapplicable for the resolution of the Nearest Neighbor (NN)
search problem due to the well-known curse of dimensionality problem [1]. For solving
this problem, the Approximate Nearest Neighbor (ANN) search can be a good strategy.
ANN search consists in a non-exhaustive search, since it finds only the elements that have a
high probability to be the nearest neighbor of the query descriptor. More specifically, ANN
consists in returning a point that has a distance from the query equals to at most ¢ times the
distance from the query to its nearest points, where ¢ = (1+¢) > 1 and € is an infinitesimal
value. The trade-off between retrieval performance and query time is at the basis of this task.

Using indexing algorithms is the common approach to efficiently solve ANN problems.
The first step is to organize the descriptors of the dataset in an efficient way and then, during
the retrieval, to search only the interesting elements. Finally, a re-ranking method based on
real distances between descriptors can be implemented to obtain a short list of results. This
two-steps approach is intended to improve efficiency, while preserving accuracy. In fact,
the reduction of candidate elements through ANN search should retain in the short list all
the relevant elements, by applying the brute-force approach on a limited set of elements, for
the sake of efficiency. In other words, thanks to this pipeline, the complexity in the search
can be reduced up to O (log(n)), considering that the brute-force approach has a complexity
equals to O(n), where n is the number of the images to be checked in the dataset.

In this paper we present a novel indexing method called Bag of Indexes (Bol). This unsu-
pervised approach allows to index image descriptors in a fast and representative way and
then execute efficiently the query, obtaining excellent retrieval results. In order to demon-
strate the goodness and generality of the proposed approach, experiments are conducted on
several different descriptors: SIFT [21] and GIST [32] features and locVLAD [24] descrip-
tors. Firstly, the image descriptors are hashed multiple times through LSH [13] projections.
The system works also with different hashing functions for the projection phase, but LSH
is preferred because it is faster to execute and simpler to implement than other techniques.
Secondly, the descriptors are searched during the retrieval phase only in the query bucket
and in its neighborhoods, assigning weights to the retrieved descriptors and creating a rank-
ing list. This approach allows our system to reduce the search space by obtaining both a fast
and accurate retrieval, supposing that the hash dimension and the number of hash tables are
appropriate. Finally, in order to improve the results, only the top elements of the ranking are
re-ranked based on the Euclidean distance between the query and the database descriptors.
This step exploits the brute-force strategy, but it is executed only for a subset of database

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23137

elements, usually not more than the 0.1% of the database descriptors, so the impact on the
query time is negligible.
The main contributions of this paper are the followings:

a very effective Bag of Index structure, similar to Bag of Words, that contains the

indexes of the database images;

— a high-quality weighting strategy applied to the Bol structure, that allows to improve
the quality of the retrieval phase;

— an efficient search strategy based on multi-probe LSH that allows to select the number
of buckets to check every hash table (gap), in order to both reduce the computational
time and preserve the retrieval accuracy;

— a complete ablation analysis of the parameters and the strategy adopted in the Bol
adaptive multi-probe LSH algorithm (e.g. different weighting strategies);

— good retrieval performance and excellent trade-off between performance and computa-

tional time on several public image datasets.

This paper is organized as follows. Section 2 explains the approaches used in the state
of the art. Section 3 presented the proposed Bag of Indexes (Bol) approach, which is then
evaluated in Section 4 on public benchmarks: Holidays+Flickr1M, SIFT1M, and GIST1M.
Finally, concluding remarks are reported.

2 Related works

This section will briefly describe the most relevant previous works on ANN search. The
methods are subdivided based on their approach in: scalar quantization, permutation pivots,
hashing functions, vector quantization and neural networks.

2.1 Scalar quantization

Zhou et al. [38] proposed to apply a scalar quantization on a SIFT descriptor in order
to obtain a descriptive and discriminative bit vector. Moreover, the proposed quantizer is
independent from the collection of the images. The threshold used for the quantization is
computed through the calculation of the median and the third quartile of the bins of each
descriptor. After that, the vector is hashed using 2 bits. Considering in input a SIFT descrip-
tor of 128D, the final input will be 256 bits long. It is worth to note that only the first 32 bits
are used for indexing the descriptor in an inverted file and that no codebook is needed to be
trained in their quantization scheme. Ren et al. [33] extended the previous work, evaluat-
ing the reliability of bits and then checking their quantization errors. The proposed strategy
for the unreliable bits is to flip them during the search phase, similar to a query expansion
technique.

Zhou et al. [39] proposed to use scalable cascade hashing (SCH) sequentially for cal-
culating the scalar quantization. Also in this case, no codebook is required for the scalar
quantization application. The method is applied on vectors using PCA on SIFT descriptors.
This process allows to ensure a final high recall. Chen and Hsieh [4] proposed a fast image
retrieval scheme, where SIFT descriptors are transformed in binary values, allowing to use
hashing for the retrieval phase. The quantization process is executed using a threshold,
calculated as the median of all the SIFT descriptors.

@ Springer

23138 Multimedia Tools and Applications (2021) 80:23135-23156

2.2 Permutation pivots

Permutation Pivots [7] represents the image descriptors through permutation of a set of
randomly selected reference objects.

Firstly, a reduced number of random database descriptors are chosen. Generally speak-
ing, the lower the number of the reference objects, the lower the retrieval time is, but with
losses in the performance. Secondly, all the database descriptors are ordered by the distance
to the reference objects. Usually Euclidean distance is adopted. Thirdly, at query side, the
distances between the query descriptor and the reference objects are computed. In this way
only the best reference objects are evaluated because if a query is not close to a reference
object, then probably the database descriptors that are close to this reference objects are not
close to the query descriptor. The distances between query and database descriptors are com-
puted following the Spearman Footrule Distance [2]. The distance value is the sum of the
difference of ranking positions between the query descriptor and the database descriptors
on the best, previously selected, reference objects. Finally, re-ranking is applied through the
calculation of the original distance between the query descriptor and the retrieved database
descriptors.

This method is simple to implement, easy to understand and produces also good results.

2.3 Hashing functions

Locality-Sensitive Hashing (LSH) [13] is probably the most famous hashing technique used
for compression and indexing tasks. It projects points that are close to each other into the
same bucket with high probability. It is defined as follows [35]: a family of hash functions
H is called (R, cR, Pi, P>)-sensitive if, for any two items p and q, it holds that:

- ifdist(p,q) < R, Prob[h(p) = h(q)] = P,
- ifdist(p,q) = cR, Prob[h(p) = h(q)] < P,

with ¢ > 1, P; > P>, R is a distance threshold, and /() is the hash function. In other words,
the hash function & must satisfy the property to project “similar” items (with a distance
lower than the threshold R) to the same bucket with a probability higher than Py, and have a
low probability (lower than P, < Pp) to do the same for “not-similar” items (with a distance
higher than ¢cR > R).

The hash function used in LSH for Hamming space is a scalar projection:

h(x) = sign(x-v) (D

where X is the feature vector and v is a vector with the components randomly selected from
a Gaussian distribution A/ (0, 1).

The process is repeated L times, with different Gaussian distributions, to increase the
probability to satisfy the above constraints. The retrieval phase using LSH has a complexity
of O(log(N)), where N is the number of descriptors.

Performing a similarity search query on an LSH index consists of two steps:

1. apply LSH functions to the query image;
2. search in the corresponding bucket possible similar images, ranking the candidate
objects according to their distances from the query image.

In order to reduce the number of hash tables, a different LSH implementation called multi-
probe LSH [23], that checks also the buckets near the query bucket, can be used. This

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23139

approach allows to improve the final performance because usually exploiting the LSH pro-
jections similar elements are projected in the same bucket or in near buckets. Densitive
Sensitive Hashing (DSH) [16] is a variant of LSH, that explores the geometrical structure of
the data in order to better project in a more reduced space than the original LSH. Spectral
Hashing [36] is a data-dependent hashing method used for the projection of data. It learns
the projection matrix by solving a minimization problem. All the data-dependent hashing
methods are slower than LSH and therefore they are not suitable for our purposes. Du et al.
[5] proposed the use of random forest for calculating an hash signature through the applica-
tion of linear projections. It is also worth to note that they adopted a different metric from
the common Hamming distance, used in the majority of hashing task.

2.4 Vector quantization

Product Quantization (PQ) [15] decomposes the space into a Cartesian product of low
dimensional subspaces and quantizes each subspace separately. A vector is represented by
a short code composed of its subspace quantization indices.

PQ works as follow:

— the input vector x is split into m distinct sub-vectors u#;,1 < j < m of dimension
D* = D/m, where D is a multiple of m;

— the sub-vectors are quantized separately using m distinct quantizers;

— agiven vector x is therefore mapped as follows:

X{seeny XD%s oy XDoD*41s > XD —> q1 (U1(X)) -+ oy G (Ui (X)) (2)
[—— [—)
uy (x) tm (x)

where ¢ is a low-complexity quantizer associated with the j th sub-vector;

— the index set Z;, the codebook C; and the corresponding reproduction values c; are
associated with the subquantizer g;

— the codebook is therefore defined as the Cartesian product:

C=C1><~~«Xcm (3)

where a centroid of this set is the concatenation of centroids of the m subquantizer.

Recently, PQ has been improved thanks to the work of [8, 18] that addressed the problem of
optimal space decomposition. OPQ [8] minimizes quantization distortion, while LOPQ [18]
locally optimizes an individual product quantizer per cell and uses it to encode residuals.

Norouzi and Fleet [30] proposed two variants of k-means (namely, orthogonal k-means
and Cartesian k-means), exploiting the principle approach of PQ: the compositionality of
the application of several sub-quantization on the input vector. Furthermore, Gao et al. [11]
proposed a Residual Vector Quantization (RVQ): the basic idea is to try to restore the quan-
tization errors using multi-stage quantizers, instead of the decomposition used by PQ and
its variants.

Ercoli et al. [6] proposed a novel version of k-means vector quantization approach. The
main advantage of this technique is the reduced number of clusters needed for the quanti-
zation. First, a classical k-means is computed in order to create a dictionary, using a very
small number k& of centroids for maintaining low the computational cost. The compression
is obtained through the association between each centroid and specific bit of the hash code.

@ Springer

23140 Multimedia Tools and Applications (2021) 80:23135-23156

The authors proposed different thresholds to be used and the best results are obtained using
the arithmetic mean. The proposed approach creates different hash signatures using a much
smaller number of centroids than using the k-means baseline algorithm.

2.5 Neural networks

Recently, with the advent of the Convolutional Neural Networks (CNNs) and the deep
learning approach, many computer vision tasks are solved using these new architectures
and techniques. The CNNs are used in order to create a compact binary code of an image,
inserted in the input of a deep neural network [25]. By following the strategy of end-to-end
training, it is possible to improve the representativeness of the binary codes and, therefore,
the retrieval performance increases [9, 27, 28]. Lu et al. [22] proposed a new deep supervised
hashing method for efficient image retrieval, designing a novel deep network with a hash
layer as the output layer. Zhu et al. [40] proposed the Deep Hashing Network (DHN) archi-
tecture for supervised hashing. The architecture is composed by a fully-connected hashing
layer, a pairwise cross-entropy loss layer and a pairwise quantization loss. The cross-entropy
loss allows to maintain the similarity between the image descriptors, whilst the quantiza-
tion loss controls the hashing quality. A potential weakness of deep learning and of all the
supervised approaches is the need of huge amount of data in order to train the classifier
to recognize the different pictures (elements/views) of a class. To solve this problem Cao
et al. [3] introduced HashGAN, that creates binary hash codes from real images and different
images synthesized by generative models.

Lin et al. [20] proposed a deep learning framework for quickly generating binary hash
codes for image retrieval. The CNN is used for learning the image representation and, then,
the hash signature is learned using a hidden layer composed by a set of attributes. Xia et al.
[37] proposed a supervised hashing method for image retrieval. Starting from the pairwise
similarity matrix of the training set, the approach tried to decompose the dot product in order
to learn the best transformation matrix. Then, using a set of hash functions, the deep neural
network learns the best representation. Wang et al. [34] proposed an hashing pipeline based
on multimodal deep learning. The pre-training is executed using a Deep Belief Network and
the fine-tuning through an Orthogonal Multimodal AutoEncoder. Lin et al. [19] proposed
to use Unsupervised Triplet Hashing, a fully unsupervised method in order to calculate the
hash signatures for each input image. Firstly, a Stacked Restricted Boltzmann Machines is
applied and, then, triplet networks are used for fine-tuning the previously-learned binary
embeddings.

The proposed method belongs to the latter strategy. However, our proposal adopts several
different techniques in order to assure that elements similar to the query are projected in
nearby buckets. As such, our method can be considered as an hybrid method. In fact, an
important difference between our method and those based on scalar quantization is that no
codebook (and, therefore, no training) is needed.

In comparison to permutation pivots, our proposal results much faster since it does not
require to store a large number of reference objects. Moreover, in case of large and complex
datasets, methods based on permutation pivots might struggle to find the right reference
objects to compare with.

Vector quantization techniques are pretty fast but with a generally-low accuracy. Finally,
compared with neural network-based approaches, ours does not require cumbersome tuning
of parameters and the best configuration is easy to find, as will be shown in the ablation
analysis in Section 4.3.

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23141

3 Bag of indexes
3.1 Overview

Bag of Indexes (Bol) [26]! borrows concepts from the well-known Bag of Words (BoW)
approach. It is a form of multi-index hashing method [10, 31] for the resolution of ANN
search problem.

Figure 1 shows the steps of Bol algorithm. For each input query image a Bol structure
is created and stored in memory. Then, the query image is projected with the same hash
functions used for the database images. During the retrieval phase, elements similar to the
query are searched, by computing the query neighbors as it will be described in Section 3.4.
For all the database elements retrieved, the corresponding weights are updated as described
in Section 3.3.

In order to reduce the computational time, the gap can be reduced based on the current
number of hash tables processed (see Section 3.4). Finally, a re-ranking step is executed in
order to increase the retrieval performance.

3.2 BolLSH

Following the LSH approach, L hash tables composed by 2° buckets (that will contain
the indexes of the database descriptors) are created. The parameter § represents the hash
dimension in bits. The list of parameters of Bol and chosen values are reported in Table 1
in Section 3.4. Then, the descriptors are projected L times using hashing functions. The L
projection values obtained are the buckets of the hash tables that will contain the index of
the images. The complete method for the calculation of the projection is reported, for the
sake of completeness, in the Appendix A. It is worth to note that this approach can be used
in combination with different projection functions, not only hashing and LSH functions.
However, in the following explanation and experiments, the LSH approach has been used.
At query time, for each query, a Bol structure is created, that is a vector of n weights
(each corresponding to one image of the database) initialized to zero. Every element of the
vector will be filled based on the weighting method explained in Section 3.3. By apply-
ing this procedure for each of the L hash tables, a coarse-grain evaluation of similarity
between the query and the database images can be achieved, by taking into account the fre-
quencies computed for each bucket. This avoids the computation of all pairwise Euclidean
distances, employed by a standard brute-force approach. Subsequently, at the end of the
retrieval phase, the ¢ elements of the vector with the highest weights are re-ranked accord-
ing to their Euclidean distance from the query. The nearest neighbors are then searched only
in this short re-ranked list. By computing the Euclidean distances only at the end of the
retrieval phase and only on this short list (instead of computing them on each hash table like
in standard LSH), the computational time is greatly reduced. When the dataset used is big-
ger, for obtaining good retrieval performance the Bol structure needs to be filled with a lot
of elements. So, in order to reduce the insertions of useless elements, a threshold («) was
set. If the weight of an image, at the end of the process of all the hash tables, is less than
the threshold, the index will not be inserted in the Bol structure. Reducing the length of this
list allows to improve the speed of the sort function, that depends by the number of the ele-
ments contained in the Bol structure since it has a complexity equals to O (NlogN), where

IThe C++ code is available on GitHub

@ Springer

https://www.github.com/fmaglia/BoI

23142 Multimedia Tools and Applications (2021) 80:23135-23156

Reading query image

l

Creation of Bol
structure

l

Hashing function

i

Search of similar

elements A
All hash tables processed l
. Other hash
Add weight to Bol tables to process?
structure
! !
Re-ranking Gap modification

A4

Final ranking list

Fig. 1 Workflow figure of Bol approach

N are the elements on which the function is applied. Furthermore, this approach, unlike
LSH, does not require to maintain a ranked list without duplicates for all the L hash tables.
The detailed analysis of the memory occupation of Bol is reported in Appendix B.

3.3 Bol multi-probe LSH

As previously reported, Bol can be used in combination with different hashing functions.
When used with baseline LSH, at query time only the corresponding bucket, called query
bucket and obtained through the application of LSH projection at the query image, will
be checked. In this case, even though it is faster than LSH, the accuracy suffers a signifi-
cant loss. Conversely, when Bol is combined with multi-probe LSH, also the /-neighboring
buckets are considered. Following the idea of multi-probe LSH, several buckets of a hash
table are checked considering the Hamming distance between each bucket and the query
bucket. More formally, we consider the /-neighbors, that are the buckets that have a Ham-
ming distance less than or equal to / from the query bucket. Different weighting strategy are

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23143

Table 1 Summary of Bol algorithm notation

Symbol Definition Chosen value
n number of images -

) hash dimension 216 — 65536
L number of hash tables 50

Y0 initial gap (at the first hash table processed) 320

1 neighbors bucket 3-neighbors
o threshold applied before re-ranking L %0.10

B elements in the re-ranking list 500

- reduction sublinear

implemented. The first one is called exponential strategy:

“

1 . .
wiiq.n= {7 GO
0 otherwise

where i is a generic bucket, g is the query bucket and H (i, ¢) is the Hamming distance
between i and q.

Alternatively, two linear strategies are implemented, which reduce the weight by a value
B at each step (with 8 = 0.2 for the so-called Linear! strategy, and 8 = 0.3 for Linear2):

|- BxHG,q) ifHGq) <I
0 otherwise

w(i, g, 1) = { (&)

The Bol multi-probe LSH approach increases the number of buckets considered during
the retrieval and, thus, the probability of retrieving the correct result, by exploiting the main
principle of LSH that similar objects should fall in the same bucket or in the ones that are
close to it. However, even if we want to account for some uncertainty in the selection of the
correct bucket, we also want to weight less as soon as we move farther from the “central”
bucket.

Figure 2 shows an exemplar overview of the Bol computation. With L = 3 hash tables
and 1-neighbours (i.e.,/ = 1), a query can be projected in different buckets. The correspond-
ing weights (in case of exponential strategy, see (4)) are accumulated in the Bol (see the
graph on the right of the image). Only the € images with the highest weights are considered
for the last step (re-ranking) for improving the recall.

3.4 Bol adaptive multi-probe LSH

The described Bol multi-probe LSH approach has the drawback of increasing the computa-
tional time since it also needs to search in neighboring buckets (which are Zﬁzo (f), being
d the hash dimension). To mitigate this drawback, we introduce a further variant, called Bol
adaptive multi-probe LSH. The main idea of this approach is to iteratively refine the search
bucket space, by starting with a large gap yy (e.g., 250) and slowly reduce y when the num-
ber of hash tables increases. The gap y represents the number of the neighboring buckets to
check during the retrieval phase at a certain hash table number. At the beginning y = yy,
but during the retrieval process it is modified. At the i-th hash table it is equals to y = ;.
This adaptive increase of focus can, on the one hand, reduce the computational time and,

@ Springer

23144 Multimedia Tools and Applications (2021) 80:23135-23156

Hash Hash Hash
Table 1 Table 2 Table 3

Index of query
image for each
ISENMELE 5
3
{1.4}
Bag of Indexes
3
52
=z 1 | [
, H mm - m @ m
1 2 3 4 5 6 7

Image index

m HashTable 1 m®Hash Table2 ™ Hash Table 3

Fig.2 Overview figure of the retrieval through Bol multi-probe LSH

on the other hand, reduce the noise. In fact, at each iteration, the retrieval results are sup-
posed to be more likely correct and the last iterations are meant to just confirm them, so
there is no need to search on a large number of buckets. In order to avoid checking the same
neighbors during different experiments, the list of neighbors to check is shuffled randomly
at each experiment.

Two different techniques for the reduction of the number of hash tables are evaluated:

— linear: the number of neighboring buckets y is reduced by a quantity (x), that depends
on the starting gap (yo), every fifth of the L hash tables, i.e.:

i1 — if d5=0 A i > 1
yi:{)’tl X if r mo Vi > ©)

Yi—1 otherwise

withr ={1,...,L};
— sublinear: the number of neighboring buckets y is reduced by a quantity (x), that

depends on the starting gap (yp), each fourth of hash tables, but only after the first half
of hash tables, i.e.:

Vi—1 ifr <L/2 AN yi>1
Vi=1Vi-1 — X ifr>L/2 AN rmodd=0 A y>1 @)
Yi—1 otherwise

withr = {1,..., L}

The quantity x should be greater than 0, and proportional to the number of hash tables used.
The objective is that, in the last part of the hash table processing, the retrieval is limited to a

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23145

small number of hash tables. The condition y; > 1 is set for avoiding a negative gap. Also, in
this case, the computation time will be very huge and it is not desirable for our application.
The proposed approach contains several parameters, summarized in Table 1 and some
chosen value for the parameters. Their values were chosen after an extensive parameter
analysis, reported in Section 4.3 that depend to the used dataset. In general, L, § and [should
be as low as possible since they directly affect the number of buckets ./\/Z to be checked and
therefore the computational time at each query ¢, as follows:
(7 oo
ACI:LZ(i):LZi!(yi—i)! ®
i=0 i=0
where y; = yo = 6, Vi for standard Bol multi-probe LSH, whereas, in the case of Bol
adaptive multi-probe LSH, y; can be computed using the (6) or (7).

4 Experimental results

All the code is implemented in C++ and compiled with pragma omp parallel in order to
execute the script on multiple threads. The proposed approach and other state-of-the-art
approaches are tested and compared on different public image datasets in order to detect
which algorithm reached the best trade-off between retrieval accuracy and average retrieval
time.

4.1 Datasets

There are many different image datasets used for Content-Based Image Retrieval (CBIR).
The most used datasets are the following:

— Holidays [14] is composed of 1491 high-resolution images representing the holidays
photos of different locations and objects, subdivided in 500 classes. The database
images are 991 and the query images are 500, one for every class;

— FlickrlM [12] contains 1 million Flickr images under the Creative Commons license.
It is used for large scale evaluation. The images are divided in multiple classes and are
not specifically selected for the image retrieval task.

Images taken from Flickr1M are usually employed as distractors to make more difficult the
retrieval phase, creating the Holidays+Flickr1M dataset, often used in the literature.
The public benchmarks used for large-scale evaluation are the following:

— SIFTIM [15] is composed by 1 million 128D SIFT descriptors. The queries, also rep-
resented by 128D SIFT descriptors, are 10k and the nearest vectors for each query are
100;

— GISTIM [15] is composed by 1 million 960D GIST descriptors. The queries, also
represented by 960D GIST descriptors, are 1000 and the nearest vectors for each query
are 100.

The information about the tested datasets are summarized in Table 2.
4.2 Evaluation metrics

To evaluate the accuracy in the retrieval phase, mean Average Precision (mAP) is used on
Holidays+FlickrIM. The mAP is the mean of average precision that identifies how many

@ Springer

23146 Multimedia Tools and Applications (2021) 80:23135-23156

Table 2 Datasets characteristics

Dataset Db images Query images Metric
Holidays [14] 991 500 mAP
Holidays+Flickr1M 1000991 500 mAP
SIFTIM [15] IM 10k recall@R
GISTIM [15] 1M 1k recall@R

correct elements are found. In the other datasets, in order to fairly compare with the state of
the art, Recall @R is used, which is the average rate of queries for which the 1-nearest neigh-
bor is ranked in the top R positions. In order to compare a query image with the database,
L, distance is employed. It is also reported the average time required for the execution of a
single query, which allows to calculate the ratio accuracy/queries per second. The ratio accu-
racy/queries per second represents a measure of the trade-off between retrieval accuracy and
the number of queries that the system is able to perform in a second (e.g., if, on average, a
query is retrieved in 1 msec, the query per second will be 1000 queries per second).

4.3 Ablation analysis

This section reports different experiments aiming at selecting the best set of parameters
for the proposed approach. Each of the analysed parameters has been selected by extensive
experimentation.

4.3.1 Weighting strategy

The different weighting strategies (reported in Section 3.3) have been tested on SIFT1M and
GIST1M datasets, in order to find which one results more convenient in terms of accuracy
(the efficiency is basically the same). The three strategies (exponential, linearl and linear2)
have been compared using slightly different parameters for the two datasets. In the case
of SIFT1M dataset, we used the values L = 50, § = 8, and ¢ = 500, while in the case
of GIST1M, chosen values are L = 100, § = 8, and ¢ = 500. Tables 3 and 4 report the
Recall @R, for R=1,10,100.

The results reported in Tables 3 and 4 showed that the Linear2 strategy produced the best
retrieval results in both cases.

4.3.2 Hash dimension and number of hash tables

Two crucial parameters (tightly correlated) are the hash dimension é and the number of hash
tables L. The hash table is composed by some buckets, the total number of buckets is 2°. On

Table 3 Results in terms of Recall@R on SIFT1M, changing weighting strategy on Bol multi-probe LSH

Method R=1 R=10 R=100

Exponential 95.75% 96.33% 96.33%
Linearl 95.02% 95.64% 95.64%
Linear2 96.80 % 97.44% 97.44%

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23147

Table 4 Results in terms of Recall@R on GIST1M, changing weighting strategy on Bol multi-probe LSH

Method R=1 R=10 R=100
Exponential 65.50% 66.20% 66.20%
Linearl 59.30% 59.70% 59.70%
Linear2 68.60% 69.50% 69.50%

the one hand, by setting this value high, the probability of having similar objects mapped
on the same bucket is reduced (which is not desirable), but, on the other hand, decreasing
this value too much will bring, during the retrieval phase, in the creation of a large number
of indexes (especially for the large-scale scenario), affecting the efficiency of the retrieval.
This is known as the problem of overpopulation and, in order to solve it, the only strategy
is to increase the number of buckets of each hash table.

A similar consideration can be made for the number of hash tables L, where increasing
L improves the accuracy of the results, but at the cost of computational time.

In order to find the optimal values of L and §, we run the algorithm on SIFT1M using dif-
ferent values: L = 25,50,75and § € [7, ..., 17]. Table 5 shows the obtained Recall @ 100.
As foreseeable, increasing the number of hash tables results in a higher accuracy. This is
also the case when increasing the hash dimension, but with § = 17 the performance is
slightly worse, while the best accuracy is obtained with § = 16. This is probably due to
the fact that increasing too much the hash dimension brings to project similar elements in
different buckets. The combination with a too high value for hash dimension and a reduced
number of hash tables do not allow to achieve the best retrieval results, but only to reduce
the retrieval time.

Despite this reasonable and expected result, increasing the number of hash tables and the
hash dimension has a cost in terms of computational time. Therefore, we also compute the
indexing time (on the database images - Fig. 3) and the retrieval time (on the query image
- Fig. 4). As said above, there is an overall tendency of higher computational time (both
for indexing and retrieval) when the the number of hash tables and the number of buckets
increase.

Table5 Accuracy on SIFT1M changing L and hash dimension

) L=75 L=50 L=25
7 98.81% 96.33% 76.22%
8 99.20% 96.70% 81.24%
9 99.42% 97.65% 84.44%
10 99.58% 98.18% 86.36%
11 99.83% 98.58% 87.27%
12 99.76% 98.73% 88.88%
13 99.79% 99.12% 90.31%
14 99.82% 99.21% 90.48%
15 99.87 % 99.17% 91.17%
16 99.85% 99.15% 91.57%
17 99.82% 99.08% 91.27%

@ Springer

23148 Multimedia Tools and Applications (2021) 80:23135-23156

Indexing time on SIFT1M changing L and o

250 —-5=17
—-5=16
5=15
200 5=14
—-5=13
—5=12
s —5=11
3 150 —=5=10
Zz —-5=9
2 —~—5=8
= 100 ~5-7
50
0
25 50 75
Number of hash tables

Fig.3 Indexing time on SIFTIM changing L and hash dimension

As a conclusion, the considered values affect accuracy and efficiency in a conflict-
ing manner. Therefore, we propose a possible score that accounts for both these needs to
compute an overall trade-off value 7' O:

Recall@loo + mh}(.lrime) + mir}e(erime)
T 0 — time time (9)
3
where Recall @100 stands for the retrieval accuracy (which can be also computed with
other metrics, such as mAP), I;;,. is the time (in msec) needed for indexing all the database
items, and Ry, is the average retrieval time (also in msec). In order to best evaluate the

Retrieval time on SIFT1M changing L and 6

7 —-5=17
—5=16
5=15
60 5=14
—-5=13
50 —5=12
> ——=5=11
3 X
2 40 —-5=10
g —-—5=9
5} ——5=8
,E 30 =7
20 ==
10
0
25 50 75
Number of hash tables

Fig.4 Retrieval time on SIFT1M changing L and hash dimension

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23149

Table 6 Calculation of Trade-Off

value for the SIFT1M dataset s L TO
16 25 74.81%
16 50 78.62%
16 75 73.30%
17 25 63.42%
17 50 76.33%
17 75 73.51%

time (both indexing and retrieval), it is needed that the lower the time is, the higher the trade-
off should be. By using the ratio between the minimum time and the computed time we can
weigh more very low time values. Finally, the three values are equally weighted through the
application of an arithmetic mean. For obtaining a percentage as a final result, the mean is
multiplied by 100. By using this trade-off value, we can select, among the most reasonable
values coming from the above analysis, the optimal set of value. From Table 6, it is evident
that the best trade-off for the SIFT1M dataset is obtained by the § = 16 and L = 50.

4.3.3 Bucket reduction strategy

The initial gap (yp) is directly connected to the number of neighbors bucket (/), since with
the increase of neighbors buckets to be checked, also the number of neighbors increases as
a consequence. Therefore, the proposed Bol adaptive multi-probe LSH allows to reduce the
query time by reducing the buckets to check (and, consequently, the corresponding indexes).
In order to evaluate which of the two proposed strategies (linear and sublinear) performs
better, we tested them on SIFT1M. The results, reported in Table 7, show that the sublinear
strategy obtains better results than the linear one, thanks to its ability to keep a larger focus
than the linear one, therefore collecting more indexes and increasing the likelihood to find
the correct nearest neighbors. It is also worth to note that the linear strategy is slightly faster
in calculating the nearest neighbors of a query.

4.3.4 Number of top elements &

Once the candidate elements are found through indexing and hashing, the ¢ top elements
are re-ranked by computing (only on them) the Euclidean distance. Therefore, this value is
crucial to improve the final retrieval accuracy. However, selecting a high ¢ value results in
having the Euclidean distance computed on a larger number of elements, which can affect
the retrieval time. In the case of large datasets, the original descriptors can be pre-loaded in
memory to improve the time needed for the re-ranking.

Table 8 reports the retrieval results by changing the number of the re-ranking elements.
Increasing the value of ¢ allows to obtain better results, but with an extra cost in the retrieval

Table 7 Comparison between linear and sublinear strategy on SIFT1M dataset

Strategy Recall@100 Avg retrieval time Ratio
Linear 87.36% 4.5 msec 222.22
Sublinear 91.57% 6 msec 166.66

@ Springer

23150 Multimedia Tools and Applications (2021) 80:23135-23156

Table 8 Comparison between -
different values for the parameter € Recall@100 Avg re-ranking time
& on SIFT1M dataset

500 91.57% 0.2 msec
2500 97.60% 1 msec
5000 98.68% 2 msec
10000 99.39% 4 msec

time. For the sake of completeness, the table shows only the average re-ranking time and
not the average retrieval time.

Otherwise, in the case of SIFT1M, re-ranking the top 500 elements directly from the disk
needs approximately 4 msec more than loading them from memory, while for the top 10k
elements the difference raises to 40 msec.

4.3.5 Cut-off parameter o

The cut-off parameter («) allows to reduce the number of elements in Bol structure in order
to optimize the execution and to reduce the time required for the sorting phase, before the
re-ranking step. The cut-off step is executed in an unsupervised manner and only the indexes
of the Bol that did not exceed the threshold are removed. This value is usually set to the 10%
of the number L of hash tables. It is advisable to keep this value static and not to compute
it dynamically because there is no exact knowledge about the distribution of the weights.

Table 9 reports the retrieval results by changing the values for the o parameter. As fore-
seeable, increasing the value of this parameter, the average retrieval time decreases, but the
accuracy slightly diminishes.

4.4 Results on Holidays+Flickr1M dataset

Table 10 shows the current state-of-the-art methods on Holidays+Flickr1M with reference
to the retrieval accuracy and the average retrieval time.

LSH and Multi-probe LSH obtained the best results, but requiring an huge average query
time (3103 msec for LSH and 16706 msec for Multi-probe LSH). Instead, PP-index [7]
reduced the retrieval time, but with a loss in terms of accuracy.

FLANN [29] is an open source library for ANN and one of the most popular for approx-
imate nearest neighbor matching. It includes different algorithms and has an automated
configuration procedure for finding the best algorithm to search in a particular data set. It
represents the state of the art in indexing techniques, and the achieved accuracy is rather
good (83.97%). On the contrary, the accuracy achieved by LOPQ [17] is only 67.22%.
Moreover, LOPQ and FLANN are faster than the others method: the first one employed
only 4 msec and the second one 995 msec.

Table9 Comparison between -
different values for the parameter a Recall@100 Avg re-ranking time
o on SIFT1M dataset

0.01 x L 91.38% 17 msec
0.02% L 91.26% 15 msec
0.1%L 91.15% 8 msec

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23151

Table 10 Results in terms of mAP, average retrieval time and ratio on Holidays+Flickr1M. * indicates our
re-implementation

Method € mAP Avg retrieval time Ratio
LSH* 250 86.03% 3103 msec 0.32
Multi-probe LSH* (L = 50) 250 86.10% 16706 msec 0.05
PP-index* [7] 250 82.70% 2844 msec 0.35
LOPQ [17] 250 36.37% 4 msec 250
FLANN [29] 250 83.97% 995 msec 1.00
Bol LSH 250 78.10% 5 msec 200
Bol multi-probe LSH 250 85.16% 12 msec 83.33
Bol adaptive multi-probe LSH 250 85.35% 8 msec 125
PP-index* [7] 10k 85.51% 15640 msec 0.06
LOPQ [17] 10k 67.22% 72 msec 13.88
FLANN [29] 10k 85.66% 1004 msec 0.99
Bol adaptive multi-probe LSH 10k 86.09% 16 msec 62.50

The proposed Bol adaptive multi-probe LSH achieved an excellent trade-off between
accuracy (85.35%) and retrieval time (8 msec for a query), using / = 3 and L = 100.

The bottom part of Table 10 reports a comparison with some of the state-of-the-art meth-
ods by increasing the number ¢ of re-ranked images from 250 to 10k. This new configuration
allowed to obtain better accuracy than the previous one for all the tested methods. How-
ever, while other methods (e.g., PP-index) also suffer for a more-the-linear increase in the
retrieval time, our Bol adaptive multi-probe LSH reached the best result (86.09%) in 16
msec for query. The ratio values, for ¢ = 250, confirm that the proposed approach is faster
than the other ones, except LOPQ, that obtains an horrible retrieval performance. When
& = 10k, our method is faster than the others.

4.5 Results on SIFTTM and GIST1M datasets

As mentioned in Section 4.2, in the case of SIFT1IM and GIST1M datasets, the standard
evaluation metrics is the Recall@R. Table 11 reports the comparison with other methods
for SIFT1M at different values of R: 1, 10 and 100.

Table 11 Results in terms of Recall@R, average retrieval time and ratio on SIFTIM. * indicates our re-
implementation

Method € R=1 R=10 R=100 Avg retrieval time Ratio
PP-index* [7] 500 94.32% 94.98% 94.98% 16999 msec 0.05
LOPQ [17] 500 19.93% 44.80% 52.92% 3 msec 333.33
FLANN [29] 500 5447% 54.83% 54.83% 16 msec 62.50
Bol adaptive multi-probe LSH 500 98.36% 99.19% 99.19% 18 msec 55.55
LOPQ [17] 10k 36.34% 80.11% 96.18% 104 msec 9.61
FLANN [29] 10k 95.06% 95.86% 95.86% 31 msec 32.20
Bol adaptive multi-probe LSH 10k 99.20% 100.00% 100.00% 25 msec 40

@ Springer

23152 Multimedia Tools and Applications (2021) 80:23135-23156

Table 12 Results in terms of Recall @R, average retrieval time and ratio on GISTIM. * indicates our re-
implementation

Method € R=1 R=10 R=100 Avg retrieval time ~ Ratio
PP-index* [7] 500 54.80% 55.30% 55.30% 17909 msec 0.05
LOPQ [17] 500 7.00% 18.50% 27.80% 17 msec 58.82
FLANN [29] 500 28.30% 28.60% 28.60% 1262 msec 0.79
Bol adaptive multi-probe LSH 500 79.80% 80.80% 80.80% 60 msec 16.66
LOPQ [17] 10k 9.60% 28.50% 58.50% 360 msec 2.77
FLANN [29] 10k 75.90% 76.50% 76.50% 1352 msec 0.73
Bol adaptive multi-probe LSH 10k 92.40% 93.40% 93.40% 108 msec 9.25

PP-index [7] achieved a recall equals to 94.32% with R = 1 and almost 95% with R=10
and R=100, but at the cost of a high retrieval time (about 17 sec for a single query). LOPQ
confirmed to be very fast (only 3 msec for a query), but the the retrieval accuracy is very
poor (recall of 19.93% when R = 1). FLANN obtained better results than LOPQ, but always
a way lower than PP-index. Finally, the proposed Bol adaptive multi-probe LSH reached a
recall of 98.36% at R = 1 in only 18 msec. This excellent trade-off between accuracy and
efficiency is even better when ¢ is set to 10k. In particular, the proposed solution achieved
arecall equal to 99.20% on R = 1, in only 25 msec.

Results are even better when applied to GISTIM dataset (Table 12). In this case, the
number of hash tables L is set to 100 and the number of buckets for hash table § is set to 16.
Notably, the proposed method achieved, for both the values of ¢, higher accuracy and lower
retrieval time then the competing methods. In this case, moreover, the differences with other
methods are even more large.

5 Conclusions

This paper presented a new multi-index scheme applied to the resolution of the large-scale
Content-Based Image Retrieval problem using Approximate Nearest Neighbor (ANN) tech-
niques. The proposed Bol adaptive multi-probe LSH follows a Bag-of-Words paradigm to
build an indexed hash-based representation of database image descriptors which can be
used for efficiently find the nearest neighbors of a query image. Experiments have been
conducted on several public datasets, in some cases with a large number of samples. The
proposed solution resulted to be very promising in terms of trade off between accuracy
and retrieval time. It is also worth mentioning that the proposed approach is based on LSH
as multi-probe hashing function, but can be also combined with other hashing/projection
functions, making the approach extendible to other fields, such as information retrieval.

A future line of research (partially in place) is to extend our analysis to datasets with
billions of data, with the aim of maintaining low the retrieval time and the memory occu-
pancy, without affecting the accuracy. Another possible extension of this work is related to
the large-scale retrieval for mobile devices, where additional considerations must be made
regarding computational issues, as well as memory occupation.

Acknowledgements This research benefits from the HPC (High Performance Computing) facility of the
University of Parma, Italy.

@ Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23153

This is work is partially funded by Regione Emilia Romagna under the “Piano triennale alte competenze
per la ricerca, il trasferimento tecnologico e I'imprenditorialita”.

Appendix A - LSH projection algorithm

As mentioned in Section 2.3, the hash function used for projecting the vectors is the
following:

h(x) = sign(x-v) (10)

where x represents the input feature vector and v represents the projecting vector. Before
starting the calculation, it is important to generate the vector v for the projection. The values
of this vector are sampled from a Gaussian distribution A/(0, 1). The dimensions of this
list of vectors depend from the hash dimension (§), the number of hash tables (L) and
the dimension of the input vector. After that, it is possible to calculate the correct bucket
using LSH projections. Assuming to have § = 8 and L = 10, 80 LSH projections will be
generated for each image descriptor, but only 10 buckets for each image are obtained for
projecting the descriptors (one for each hash table). This is due to the fact that, for each hash
table, hash dimension (8) projections are calculated, so in the end the vectors will projected
in only L buckets. Applying more projections for each hash table (thus, increasing the hash
dimension §) allows to improve the robustness of LSH approach and reduce the possibility
of projecting different elements in close buckets because increasing the number of bits used
(8) increase the number of possible buckets for the final projection. To summarize, once
we have the projection vectors, the dot product between the input vector and the projection
vector is computed. If it is greater than zero, the bucket value (index) is increased by a
power of two.

B - Memory requirements

The memory requirements of the ANN algorithm depend from the considered number of
images. For example, if 1M images are represented by 1M descriptors of 128D (float = 4
bytes) are employed, the brute-force approach requires 0.5Gb (1M x 128 x 4). For the same
task, LSH needs only 100 Mb, because it needs to store 1M indexes for each of the L = 100
hash tables, since each index is stored using a single byte (8 bit). In addition, the proposed
Bol only requires additional 4 Mb to store 1M weights, allowing to scale better the proposed
approach on larger datasets than the brute-force approach.

References

1. Bohm C., Berchtold S, Keim DA (2001) Searching in high-dimensional spaces: Index structures for
improving the performance of multimedia databases. ACM Computing Surveys (CSUR) 33(3):322-373

2. Brandenburg FJ, GleiBner A, Hofmeier A (2013) The nearest neighbor spearman footrule distance for
bucket, interval, and partial orders. J Combinatorial Optim 26(2):310-332

3. Cao Y, Liu B, Long M, Wang J, KLiss M (2018) Hashgan: Deep learning to hash with pair conditional
wasserstein GAN. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 1287-1296

@ Springer

23154 Multimedia Tools and Applications (2021) 80:23135-23156

11.
12.

13.

15.
16.
. Kalantidis Y, Avrithis Y (2014) Locally optimized product quantization for approximate nearest neigh-
18.
19.
20.
21.
22.

23.

24.

25.
26.
217.

28.

29.

. Chen CC, Hsieh SL (2015) Using binarization and hashing for efficient SIFT matching. J Vis Commun

Image Represent 30:86-93

. DuS, Zhang W, Chen S, Wen Y (2014) Learning flexible binary code for linear projection based hashing

with random forest. In: Proceedings of the 22nd international conference on pattern recognition. IEEE,
pp 2685-2690

. Ercoli S, Bertini M, Del Bimbo A (2017) Compact hash codes for efficient visual descriptors retrieval in

large scale databases. IEEE Transactions on Multimedia 19(11):2521-2532

. Esuli A (2012) Use of permutation prefixes for efficient and scalable approximate similarity search.

Information Processing & Management 48(5):889-902

. Ge T, He K, Ke Q, Sun J (2014) Optimized product quantization. IEEE Trans Pattern Anal Mach Intell

36(4):744-155

. Gordo A, Almazan J, Revaud J, Larlus D (2016) Deep image retrieval: Learning global representations

for image search. In: European conference on computer vision. Springer, pp 241-257

. Greene D, Parnas M, Yao F (1994) Multi-index hashing for information retrieval. In: Proceedings of the

35th Annual symposium on foundations of computer science. IEEE, pp 722-731

Guo D, Li C, Wu L (2016) Parametric and nonparametric residual vector quantization optimizations for
ANN search. Neurocomputing 217:92-102

Huiskes MJ, Lew MS (2008) The MIR flickr retrieval evaluation. In: Proceedings of the 1st ACM
international conference on multimedia information retrieval. ACM, pp 39-43

Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimen-
sionality. In: Proceedings of the 30th annual ACM symposium on theory of computing. ACM,
pp 604-613

. Jégou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large

scale image search. In: European conference on computer vision. Springer, pp 304-317

Jegou H, Douze M, Schmid C (2011) Product quantization for nearest neighbor search. IEEE Trans
Pattern Anal Mach Intell 33(1):117-128

JinZ,Li C, Lin Y, Cai D (2014) Density sensitive hashing. IEEE Trans Cybern 44(8):1362-1371

bor search. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 2321-2328

Kalantidis Y, Mellina C, Osindero S (2016) Cross-dimensional weighting for aggregated deep convolu-
tional features. In: European conference on computer vision. Springer, pp 685-701

Lin J, Morere O, Petta J, Chandrasekhar V, Veillard A (2016) Tiny descriptors for image retrieval with
unsupervised triplet hashing. In: Data Compression Conference (DCC). IEEE, pp 397-406

Lin K, Yang HF, Hsiao JH, Chen CS (2015) Deep learning of binary hash codes for fast image retrieval.
In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 27-35
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91—
110

Lu X, Song L, Xie R, Yang X, Zhang W (2017) Deep hash learning for efficient image retrieval. In:
IEEE international conference on multimedia & expo workshops. IEEE, pp 579-584

Lv Q, Josephson W, Wang Z, Charikar M, Li K (2007) Multi-probe LSH: efficient indexing for high-
dimensional similarity search. In: Proceedings of the 33rd international conference on very large data
bases. VLDB Endowment, pp 950-961

Magliani F, Bidgoli NM, Prati A (2017) A location-aware embedding technique for accurate landmark
recognition. In: Proceedings of the 11th international conference on distributed smart cameras. ACM,
pp 9-14

Magliani F, Fontanini T, Prati A (2018) A dense-depth representation for VLAD descriptors in content-
based image retrieval. In: International symposium on visual computing. Springer, pp 662-671
Magliani F, Fontanini T, Prati A (2018) Efficient nearest neighbors search for large-scale landmark
recognition. Proceedings of the 13th international symposium on visual computing 11241:541-551
Magliani F, Prati A (2018) An accurate retrieval through R-MAC+ descriptors for landmark recognition.
In: Proceedings of the 12th international conference on distributed smart cameras. ACM, p 6
Mohedano E, McGuinness K, O’Connor NE, Salvador A, Marques F, Giro-i Nieto X (2016) Bags of
local convolutional features for scalable instance search. In: Proceedings of the international conference
on multimedia retrieval. ACM, pp 327-331

Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans
Pattern Anal Mach Intell 36(11):2227-2240

Springer

Multimedia Tools and Applications (2021) 80:23135-23156 23155

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

Norouzi M, Fleet DJ (2013) Cartesian k-means. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 3017-3024

Norouzi M, Punjani A, Fleet DJ (2012) Fast search in hamming space with multi-index hashing. In:
IEEE conference on computer vision and pattern recognition. IEEE, pp 3108-3115

Oliva A, Torralba A (2001) Modeling the shape of the scene: A holistic representation of the spatial
envelope. Int J Comput Vis 42(3):145-175

Ren G, CaiJ, Li S, Yu N, Tian Q (2014) Salable image search with reliable binary code. In: Proceedings
of the 22nd ACM international conference on multimedia. ACM, pp 769-772

Wang D, Cui P, Ou M, Zhu W (2015) Learning compact hash codes for multimodal representations
using orthogonal deep structure. IEEE Transactions on Multimedia 17(9):1404-1416

Wang J, Shen HT, Song J, Ji J (2014) Hashing for similarity search: A survey. arXiv:1408.2927

Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in neural information processing
systems, pp 1753-1760

XiaR,PanY, Lai H, Liu C, Yan S (2014) Supervised hashing for image retrieval via image representation
learning. In: AAAL vol 1, p 2

Zhou W, Lu Y, Li H, Tian Q (2012) Scalar quantization for large scale image search. In: Proceedings of
the 20th ACM international conference on multimedia. ACM, pp 169-178

Zhou W, Yang M, Li H, Wang X, Lin Y, Tian Q et al (2014) Towards codebook-free: Scalable cascaded
hashing for mobile image search. IEEE Transactions of Multimedia 16(3):601-611

Zhu H, Long M, Wang J, Cao Y (2016) Deep hashing network for efficient similarity retrieval. In: AAAI,
pp 2415-2421

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Federico Magliani graduated in Computer Engineering at the University of Parma in 2016. Where he is fol-
lowing a PhD course and he is working on Content-Based Image Retrieval, focusing on large-scale retrieval.
He worked with Bridgestone on a project called “Detection of cracks in the tires under effort”. He also visited
for 5 months the Insight Center for Data Analytics, a research lab of DCU (Dublin City University) under
the supervision of the Assistant Professor Kevin McGuinness. He worked as a reviewer for the scientific
community (WACV, BMVC).

@ Springer

http://arxiv.org/abs/1408.2927

23156 Multimedia Tools and Applications (2021) 80:23135-23156

Tomaso Fontanini graduated in Computer Engineering at the University of Parma in 2017. He then worked
on a project in collaboration with Adidas with the objective of extraction and classification of clothes and
views of clothes from Adobe Illustrator files. Since November 2017 he is a PhD student funded by Adidas in
machine learning and computer vision at University of Parma working on image generation and colorization
of clothes with neural network models like Generative Adversarial Networks.

Andrea Prati graduated in Computer Engineering at the University of Modena and Reggio Emilia in 1998.
He got his PhD in Information Engineering in 2002 from the same University. After some post-doc posi-
tions at University of Modena and Reggio Emilia, he was appointed as Assistant Professor at the Faculty of
Engineering of Reggio Emilia (University of Modena and Reggio Emilia) from 2005 to 2011, and then as
Associate Professor at the Department of Design and Planning in Complex Environments of the University
IUAV of Venice, Italy. In December 2015 he moved to the Department of Engineering and Architecture of
the University of Parma and was promoted to Full Professor in February 2019. Author of 9 book chapters, 39
papers in international referred journals (including 11 papers published in highly-ranked journals) and more
than 100 papers in proceedings of international conferences and workshops. Andrea Prati is Senior Member
of IEEE, Fellow of IAPR (“For contributions to low- and high-level algorithms for video surveillance”), and
member of GIRPR.

@ Springer

	Bag of indexes: a multi-index scheme for efficient approximate nearest neighbor search
	Abstract
	Introduction
	Related works
	Scalar quantization
	Permutation pivots
	Hashing functions
	Vector quantization
	Neural networks

	Bag of indexes
	Overview
	BoI LSH
	BoI multi-probe LSH
	BoI adaptive multi-probe LSH

	Experimental results
	Datasets
	Evaluation metrics
	Ablation analysis
	Weighting strategy
	Hash dimension and number of hash tables
	Bucket reduction strategy
	Number of top elements
	Cut-off parameter

	Results on Holidays+Flickr1M dataset
	Results on SIFT1M and GIST1M datasets

	Conclusions
	Appendix A - LSH projection algorithm
	Appendix B - Memory requirements
	References

