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Abstract
A frequency-domain nonlinear echo processing algorithm is proposed to improve
the audio quality during double-talk periods for hands-free voice communication
devices. To achieve acoustic echo cancellation (AEC), a real-time AEC algorithm
based on variable step-size partitioned block frequency-domain adaptive filtering
(VSS-PBFDAF) and frequency-domain nonlinear echo processing (FNLP) algo-
rithm was employed in the DSP chip of the prototype device. To avoid divergence
during double-talk periods, normalized variable step-sizes for each frequency were
introduced to adjust the convergence speed. Then, the nonlinear suppression
function of FNLP was applied to inhibit the residual nonlinear acoustic echo and
ensure the good quality of the near-end voice. The results of the experiment with
the prototype device show that the proposed algorithm achieved deeper and more
stable convergence during double-talk periods compared to the NLMS, FNLMS
and traditional PBFDAF algorithms. Less nonlinear acoustic echo in the output
was also obtained due to the use of FNLP. A speech quality assessment based on
ITU-T P.563 showed that the Sout of the proposed algorithm achieved higher
scores than that of the WebRTC algorithm. In addition, the speech output of the
proposed algorithm during the double-talk periods was clear and coherent.

Keywords Acoustic echo cancellation (AEC) . Double-talk (DT) . Frequency nonlinear
processing (FNLP) . Variable step-size partitioned block frequency-domain adaptive filtering
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1 Introduction

Acoustic echo cancellation (AEC) is the most important part influencing the performance of
hands-free voice communication systems, such as mobile phones, voice over IP (VoIP), digital
hearing aids, intelligent loudspeakers, intelligent TVs, etc. [27]. Standard AEC schemes rely
on the assumption that the echo path is modeled as a linear filter [10, 33]. However, because of
the nonlinearity of the speaker, the microphone and the reflection coefficients of obstacles,
there are often considerable residual nonlinear echoes that remain after linear AEC processing
[25]. The situation gets worse when the room impulse response (RIR) is longer than the length
of the adaptive estimated filter [23]. Some nonlinear models are introduced to reduce the
nonlinear acoustic echoes, such as Volterra filters [2, 20], spectral feature-based artificial
neural networks [29, 35], functional link adaptive filters [7, 8, 37] and kernel methods [5, 19].

For voice communication systems, acoustic echo cancellation is always studied along with
the difficulties that need to be approached without harming the near-end voice that must be
transmitted during double-talk (i.e., simultaneous far-end and near-end speech) [16]. The
quality of the near-end voice is crucial for consumer experiences [12]. The high convergence
rate of the adaptive filter is usually accompanied by a high divergence rate in the presence of
double-talk [13]. Some approaches try to detect the existence of double-talk. When the system
is considered to contain double-talk, the adaptive filter is frozen, and the system will not be
updated to avoid divergence [6]. However, because of the environmental noise, interference
and disturbing speech at the subscriber-side, double-talk is a changing and progressive process
[1]. During the time that it takes to detect double-talk, the system may have changed. To solve
the problem, some approaches estimate the probability of the presence of double-talk and then
dynamically adjust the update speed of the adaptive filter by using soft decisions [18, 31].

How to inhibit nonlinear acoustic echoes in hands-free voice communication systems
during double-talk periods has intrigued researchers over the past decades. Along with the
divergence of the adaptive linear AEC, the nonlinear acoustic echoes occur during double-talk.
As the near-end speech is mixed with the residual nonlinear echoes, the inhibition of the
nonlinear echoes reduces the quality of the near-end speech, and it sometimes leads to
truncated sentences. The method involving the use of nonlinear functions in the frequency
domain has attracted considerable interest because of its good speech quality and low
computational complexity [28]. Working in the frequency-domain, the algorithm calculates
the inhibition coefficients in different frequencies to implement an accurate adjustment [4].

In this paper, a variable step-size partitioned block frequency-domain adaptive filtering (VSS-
PBFDAF) scheme is proposed to eliminate the acoustic echoes for hands-free voice communication
devices. To decrease the divergence during double-talk, a set of varying step-sizes for different
frequencies is introduced to adjust the convergence speed according to the extent of the double-talk.
Then, frequency-domain nonlinear echo processing (FNLP) is applied to inhibit the residual
nonlinear echoes and ensure the quality of the near-end voice. According to the relevance and
correlations between the received-side input (Rin, coming from far-end) and the subscriber-side
input (Sin, consisting of the near-end speech and echoes) in the frequency-domain, the suppression
function inhibits the residual nonlinear echoes by using a set of coefficients for each frequency. The
synthesized output signals have good speech quality and satisfactory nonlinear echo inhibition. We
applied the proposed algorithm in a prototype device based on a DSP platform. The simulation and
experimental results have verified the effectiveness of the proposed algorithm. Compared with the
NLMS, FNLMS and traditional PBFDAF algorithms [9], deeper and more stable convergence was
obtained by the proposed algorithm. The speech quality assessment for the Sout based on ITU-T
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P.563 showed that good scores were obtained by the proposed algorithm, and coherent speech was
output during the double-talk periods.

2 Related works

In this section, we highlight the related works in adaptive acoustic echo cancellation algo-
rithms and their developmental achievments.

2.1 Adaptive linear AEC

Mainly in the last decades, several methods have been developed to cope with the
problem of acoustic feedback cancellation. LMS based algorithm [34] presented firstly
by B. Widrow and M. E. Hoff has a complexity that is linear in the filter length, but
it suffers from a rather slow convergence for signals with a colored spectrum such as
speech [24]. Block-LMS decreases the complexity by segment the stream and update
the filter every block iteratively [22]. The frequency-domain adaptive filter (FDAF)
was introduced by J. Shynk, which is a direct translation of block-LMS to the
frequency domain [30]. With the increase of the filter length of FDAF, the compu-
tational complexity and the time delay of the algorithm grow rapidly. Koen Eneman
and Marc Moonen proposed iterated partitioned block frequency-domain adaptive filter
(IPBFDAF) to decrease the latency while keeping the long length of the adaptive
filter. The partitioned block frequency–domain row action projection (PBFDRAP),
which is the fast version of PBFDAF, leads to reduced algorithmic complexity and
is widely used in commercial echo cancellers nowadays [9].

2.2 Nonlinear AEC

One of the limitations of linear adaptive echo cancellers is nonlinearities which are
generated mainly in the loudspeaker and the nonlinear echo path. The traditional
linear AEC algorithm is difficult to eliminate this nonlinearity, so some scholars
began to study the AEC algorithm based on nonlinear model. Pao [14, 26] proposed
a functional links method, which is one of the powerful methods of modeling
nonlinearity. Guerin and Faucon [14] developed a nonlinear module based on poly-
nomial Volterra filters. The algorithm presents a very promising way of modeling a
large range of nonlinearity. For real-time applications, the nonlinear acoustic echo
suppression algorithm based on spectral correction has been widely concerned by
researchers with the advantages of low computational complexity and fast conver-
gence characteristics [11]. Working in the frequency-domain, the algorithm calculates
the inhibition coefficients in different frequencies to implement an accurate adjustment
of nonlinear echo cancellation.

2.3 AEC based on neural network (NN)

In recent years, with the development of deep learning technology, AEC algorithm based on
NN has gradually become a research hotspot. Mehdi Bekrani [3] proposed a linear single-layer
feedforward neural network to efficiently decorrelate the tap-input vectors, which can achieve
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a high rate of misalignment convergence without significantly degrading the quality. Hao
Zhang [36] trained a recurrent neural network with bidirectional long short-term memory
(BLSTM) to separate and suppress the far-end signal, hence removing the echo. Qinhui Lei
[21] proposed a deep NN-based regression approach that directly estimates the amplitude
spectrum of the near-end target signal from features extracted from the mixtures of near-end
and far-end signals. Halimeh and Huemmer [15] used the principle of transfer learning to train
a neural network that approximates the nonlinear function. Based on a large number of
training, the above algorithm can obtain better performance than the traditional algorithm.
However, such algorithms still need further research. First, these algorithms often need a lot of
training data. Therefore, the validity of the data is very important. Second, the high compu-
tational complexity of the neural network makes it difficult to be implemented on low-power
acoustic devices.

3 Double-talk robust acoustic echo cancellation scheme

3.1 A. Modeling

Figure 1 shows the diagram of the acoustic echo cancellation scheme for hands-free voice commu-
nication devices based on variable step-size partitioned block frequency-domain adaptive filtering
(VSS-PBFDAF) and frequency-domain nonlinear processing (FNLP) considering double-talk (DT).

1) x(n) andX(n) : x(n) is the referenced signal from the received-side (which is also represented
as Rin). It is segmented into L-length blocks. Parameter n is the block time index. X(n) is
the FFT spectrum of each block x(n).

2) y(n) and Y(n) : y(n) is the estimated linear echo signal of a block and Y(n) is the FFT
spectrum of y(n).

3) d(n) and D(n): d(n)is the microphone signal from the subscriber-side (which is also
represented as Sin) and D(n) is the FFT spectrum of d(n).

4) μ(n) is the variable step-size vector that is calculated for partitioned block frequency-
domain adaptive filtering (PBFDAF) by using the double-talk soft decision.

5) e(n) and E(n) :e(n) is the residual signal that is obtained by subtracting d(n) from y(n), which
is one of the inputs of frequency-domain nonlinear processing (FNLP).E(n) is the FFT
spectrum of e(n).

6) s(n) : It is the signal after FNLP, which is the output of the system.

3.2 VSS-PBFDAF algorithm considering double-talk

For the partitioned block frequency-domain adaptive filter, suppose that the estimated time-
domain filter coefficient of a block is

bw nð Þ
p ¼

bw nð Þ
pP½ �

⋮bw nð Þ
pþ 1ð ÞP−1½ �

2664
3775
P�1

; p ¼ 0; 1; ⋯;
N
P
−1 ð1Þ
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where n is the index of the blocks and depicts the n-th iteration of bwp. N is the whole length of

the filter. P is the length of a block bwp. Then, N
P is the number of blocks. To simplify the

algorithm, it is assumed that P is set to be equal to L (the length of segments x(n), d(n) and y(n)).
By using (1), the frequency-domain filter coefficient of a block is given by

cW nð Þ
p ¼ FFT bw nð Þ

p
0M−P

" #
M�1

ð2Þ

Where M is the number of points of the FFT. Correspondingly, the frequency-domain
referenced signal can be written as follows:

X nð Þ
p ¼ diag FFT

x nþ 1ð ÞL−pP−M þ 1½ �
⋮

x nþ 1ð ÞL−pP½ �

24 358<:
9=;

M�M

; p ¼ 0; 1; ⋯;
N
P
−1 ð3Þ

The estimated echo signal by nð Þ
p is calculated by the following steps: 1) summing the results of

filtering X nð Þ
p by cW nð Þ

p , and 2) extracting the latest L points to avoid the effect of the overlap-

save method.

by nð Þ
¼ 0M−L 0

0 IL

� �
IFFT ∑

N=P−1

p¼0
X nð Þ

p
bW nð Þ

p

" #
ð4Þ

Then, the residual signal is

e nð Þ ¼ d nð Þ−by nð Þ
ð5Þ

Fig. 1 Block diagram of the frequency-domain nonlinear echo processing algorithm
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E nð Þ ¼ FFT
0M−P
e nð Þ

� �
M�1

ð6Þ

Then, a variable step size scheme is proposed to adjust the speed of the adaptive update
process considering double-talk.

cW nþ1ð Þ
p ¼ cW nð Þ

p þ FFT Φ nð Þ
p

h i
; p ¼ 0; 1; ⋯;

N
P
−1 ð7Þ

Φ nð Þ
p ¼ IL 0

0 0M−L

� �
IFFT ∏ nð Þ

p X nð Þ*
p E nð Þ

h i
ð8Þ

∏ nð Þ
p ¼ diag μ nð Þ

pi

h i
¼

μ nð Þ
p0 0 0 0

0 μ nð Þ
p1 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ μ nð Þ

p M−1ð Þ

26664
37775 ð9Þ

where ‘*’ indicates the conjugate of a complex vector. μ nð Þ
pi , i ¼ 0; 1; ⋯; M−1 are

variable step sizes that vary with the adjusted factor λ nð Þ
pi .

Suppose that

μ nð Þ
pi ¼ μ0

∑
N=P−1

p¼0
X nð Þ

pi X
nð Þ*
pi

λ nð Þ
pi ; i ¼ 0; 1; ⋯; M−1 ð10Þ

where

λ nð Þ
pi ¼

Δ

E nð Þ
ij j2

�
X nð Þ

pi X
nð Þ*
pi

; E nð Þ
ij j2

�
X nð Þ

pi X
nð Þ*
pi

> Δ

1; E nð Þ
ij j2

�
X nð Þ

pi X
nð Þ*
pi

≤Δ

8>>>>>><>>>>>>:
ð11Þ

In (10) and (11), μ0 ∈ [0, 1] is a fixed step size, and 1

∑
N=P−1

p¼0
X nð Þ

pi X
nð Þ*
pi

i ¼ 0; 1; ⋯; M−1 are

normalized factors of the i-th subband. E nð Þ
ij j2

�
X nð Þ

pi X
nð Þ*
pi

depicts the relative strength of the near-

end voice compared to the referenced signal. The larger that E nð Þ
ij j2

�
X nð Þ

pi X
nð Þ*
pi

is, the higher the

probability of double-talk. When E nð Þ
ij j2

�
X nð Þ

pi X
nð Þ*
pi

is larger than the threshold Δ, the adjusted

factor λ nð Þ
pi is defined as Δ

E
nð Þ
ij j2.

X
nð Þ
pi

X
nð Þ*
pi

and the step size of the update is diminished according to
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the extent of double-talk to avoid divergence. If the signal from the far-end is silent, λ nð Þ
pi → 0

and cW nð Þ
p is frozen to avoid divergence.

3.3 Frequency domain nonlinear processing considering double talk

For the adaptive echo cancellation algorithmof hands-free voice communication devices, the

acoustic echo path is modeled as a linear filter with the coefficient cW. However, the
acoustoelectric transduction process of the microphone, the electroacoustic transformation
process of the speaker, and the reflection coefficients of the obstacles in a room are all non-
linear to some extent. Therefore, the residual echo signal is unavoidable after applying the
adaptive linear echo cancellation algorithm. How to eliminate non-linear residual echoes and
preserve near-end speech when double-talk exists is an issue of concern.

In this paper, a non-linear suppression function is constructed according to the relevance
and correlations between the referenced signal x(n), the microphone signal d(n) and the
estimated linear echo signal y(n). Then, the suppression function inhibits the residual nonlinear
echoes by using a set of coefficients for each frequency. The details are as follows.

Step 1: For the new block, calculate the frequency-domain signals E(n), X(n), D(n) and Y(n) by
using the M-points FFT transform.

Step 2: Calculate the cross power spectra in the frequency domain as

Sxd nð Þ
j ¼ X nð Þ

j D* nð Þ
j ; j ¼ 0; 1; 2;⋯;M−1 ð12Þ

Syd nð Þ
j ¼ Y nð Þ

j D* nð Þ
j ; j ¼ 0; 1; 2;⋯;M−1 ð13Þ

Sde nð Þ
j ¼ D nð Þ

j E* nð Þ
j ; j ¼ 0; 1; 2;⋯;M−1 ð14Þ

Where ‘*’ is the symbol of the conjugate and j is the frequency index.

Step 3: Calculate the cross correlations in the frequency domain.

Rxd nð Þ
j ¼ Sxd nð Þ

j ⋅Sxd* nð Þ
j

X nð Þ
j X* nð Þ

j D nð Þ
j D* nð Þ

j

; j ¼ 0; 1; 2;⋯;M−1 ð15Þ

Ryd nð Þ
j ¼ Syd nð Þ

j ⋅Syd* nð Þ
j

Y nð Þ
j Y* nð Þ

j D nð Þ
j D* nð Þ

j

; j ¼ 0; 1; 2;⋯;M−1 ð16Þ
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Rde nð Þ
j ¼ Sde nð Þ

j ⋅Sde* nð Þ
j

D nð Þ
j D* nð Þ

j E nð Þ
j E* nð Þ

j

; j ¼ 0; 1; 2;⋯;M−1 ð17Þ

For a practical application system, Rxd nð Þ
j , Ryd nð Þ

j and Rde nð Þ
j are usually smoothed by using

historical values to avoid sudden changes.

Step 4: Calculate the average values of the above cross correlations to assess the degree of
the residual echo and the near-end signal.

Rxd nð Þ ¼
∑
M−1

j¼0
Rxd nð Þ

j

M
ð18Þ

Ryd nð Þ ¼
∑
M−1

j¼0
Ryd nð Þ

j

M
ð19Þ

Rde nð Þ ¼
∑
M−1

j¼0
Rde nð Þ

j

M
ð20Þ

Normally, the larger that Rxd nð Þ and Ryd nð Þ are, the heavier the residual echo. The larger that
Rde nð Þ is, the higher the probability of the near-end source. When double-talk exists, Rxd nð Þ is
smaller than that for single far-end talk but larger than that for single near-end talk. The varied

Ryd nð Þ and Rde kð Þ also reflect the degree of double-talk.

Step 5: Define the non-linear echo suppression function as

F nð Þ
j ¼ φ nð Þ

j

γ nð Þ
j ð21Þ

where

γ nð Þ
j ¼

Wxd⋅ 1−Rxd nð Þ
� �

þWyd⋅ 1−Ryd nð Þ
� �

þWde⋅Rde nð Þ

Wxd þWyd þWde
ð22Þ

Wxd, Wyd and Wde are the weights of Rxd
nð Þ, Ryd nð Þand Rde nð Þthat satisfy

Wxd þWyd þWde ¼ 1 ð23Þ
φ nð Þ

j is determined by the cross correlation values of each frequency j.

φ nð Þ
j ¼ Rde nð Þ

j ; Rxd nð Þ < T1 and Rde nð Þ > T2

1−Rxd nð Þ
j Rxd nð Þ≥T1 or Rde nð Þ≤T2

(
ð24Þ
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T1 and T2 are thresholds between 0 and 1. When Rxd nð Þ < T 1 and Rde nð Þ > T 2, the far-end

referenced signal is very slight. The system is still silent or single near-end talk. When Rxd nð Þ

≥T1 or Rde nð Þ≤T2, there is a far-end referenced signal, which means that echoes exist. Then,

eitherφ nð Þ
j ¼ Rde kð Þ

j or φ nð Þ
j ¼ 1‐Rxd kð Þ

j is between 0 and 1. When there is not a far-end signal,

φ nð Þ
j ¼ Rde nð Þ

j ¼ 1. When there is single far-end talk, φ nð Þ
j ¼ 1‐Rxd nð Þ

j →0. When the system is

experiencing double-talk, both the far-end signal and the near-end signal exist. In addition,

φ nð Þ
j , where j = 0, 1,⋯, M − 1, varies according to the cross correlation of Rxd nð Þ, in which the

extent of double-talk is implicit.

Step 6: Calculate the frequency-domain output signal by using the residual echo signal
through the non-linear echo suppression function.

S nð Þ
j ¼ F nð Þ

j E nð Þ
j ¼ φ nð Þ

j

γ nð Þ
j E nð Þ

j ; j ¼ 0; 1;⋯;M−1 ð25Þ

At last, the time-domain output signal s(n) is calculated by using the IFFT transform of

S nð Þ ¼ S nð Þ
j ; j ¼ 0; 1;⋯;M

n o
.

4 Real-time implementation and experiment by using a prototype
device

We implemented the proposed frequency-domain nonlinear echo processing algorithm in a
prototype hands-free voice communication device and measured its performance in an actual
room by using a popular voice communication software. The algorithm was programmed by
using C language and implemented in a DSP chip. The prototype device consists of an electret
condenser microphone, an audio codec chip (that includes AD and DA modules), a DSP
mainboard, a power amplifier and a full-band loudspeaker, which is shown in Fig. 2.

4.1 Experimental environment

To compare the proposed algorithm with other acoustic echo cancellation algorithms, we
measured the room impulse response(RIR) of the room (which is almost 2.5 m wide, 4 m long
and 3 m high) using the M-series signals that were generated by a computer software, played
over a loudspeaker and recorded by a measuring microphone. The sampling rate of the signals
was fs = 16kHz. The recorded signals were deconvoluted, and the measured room impulse
response was truncated at the length of 2048 taps (corresponding to a 128 ms tail length). The
measured room and its room impulse response (RIR) are shown in Fig. 3.

Additionally, we measured the actual received-side signal (Rin) and the synchronized
subscriber-side signal (Sin) by placing the prototype hands-free voice communication device
on a table in the room. The diagram of the prototype system is depicted in Fig. 4.

The ADC and DAC were implemented by using a codec with a sampling rate of fs = 16kHz.
The prototype device was connected to a computer through a USB cable and the data of the
voice communication software were transferred through the USB-audio-class (UAC)
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architecture of the USB 2.0 protocol. When the prototype device was used for measuring input
signals, the algorithms were bypassed. The computer outputs the referenced audio signal x(n),
which was played by the speaker. The subscriber-side signal d(n) was recorded by the
microphone and transferred to the computer.

4.2 Experiments on acoustic echo cancellation with single far-end talk

When the subscriber-side source was silent, the microphone received only the echoes from the
speaker to the microphone through the room impulse response. The experiments with single
far-end talk were compared to the performances of several classical AEC algorithms, such as

(a) (b)

Fig. 2 The implementation of the algorithm in the prototype device. a the hardware of the prototype device,
b debugging the prototype device

(a) (b)

Fig. 3 The measured room and its room impulse response with 2048 taps. a the measured room, b the RIR of the
room
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NLMS, FNLMS and PBFDAF, using the simulated signals that were generated by the RIR, as
shown in Fig. 3.

Two types of Rin signals were simulated as the reference far-end signals. One type was a
speech signal and the other was white noise. Figure 5 shows two groups of Rin signals and the
simulated Sin signals. The sampling rate of these signals was 16 kHz. The misalignment of the
AEC algorithm is defined as

misalignment ¼ 10lg
w−bw��� ���2
wk k2 ð26Þ

where w is the actual acoustic room impulse response that is shown in Fig. 3(b) and bw is the
estimated filter coefficients vector.

Three AEC algorithms NLMS, FNLMS and traditional PBFDAF were simulated. The
filters of the NLMS and FNLMS were set to 2048 taps with μ = 0.5. For FNLMS, Rin
and Sin were segmented to blocks by using a filter length of 2048 and the coefficients of
the filters were updated by each block in the frequency domain. PBFDAF partitioned the
2048-tap filter into 16 subblocks. The time delay of the buffer preparation of PBFDAF
was then 1/16 that of FNLMS and the number of iterations in PBFDAF was 16 times that
in FNLMS.

As shown in Fig. 6, the three algorithms achieved good misalignment performance.
When a speech signal was used as the Rin, both NLMS and FNLMS achieved lower than
−30 dB misalignment. PBFDAF achieved faster and deeper convergence than NLMS and
FNLMS, but it fluctuated along with the speech amplitude. When white noise was used
as the Rin, the three algorithms achieved misalignments lower than −70 dB. PBFDAF
achieved the fastest convergence speed. Comparing the computational complexity and
time delay of the three algorithms, FNLMS and PBFDAF achieve lower computational
complexity and time delays than NLMS. Summarizing the above experiments, traditional
PBFDAF has the advantages of fast convergence, low computational complexity and
considerable convergence. Therefore, PBFDAF can be widely applied in real-time voice
communication systems. However, the performance of PBFDAF is influenced by the
fluctuation of the input waveform. When the system is experiencing double-talk, the
traditional PBFDAF algorithm might diverge.

Fig. 4 The diagram of the prototype voice communication system
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4.3 Experiments on acoustic echo cancellation during double-talk

Experiments on the acoustic echo cancellation of the proposed VSS-PBFDAF, the traditional
PBFDAF, the NLMS and the FLMS algorithms when double-talk exists were conducted to

(a) (b)

Fig. 5 The typical Rin and Sin waveforms of speech and white noise. a Rin and Sin of the speech input, b Rin
and Sin of the white noise input

(a) (b)

Fig. 6 Misalignments of NLMS, FNLMS and PBFDAF with two types of inputs
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compare the performance of these algorithms. The two groups of tested Rin and Sin signals
(one was the typical speech input and the other was white noise input) are shown in Fig. 7. The
sampling rate of these signals was 16 kHz.

The output signal waveforms of NLMS, FNLMS and the proposed VSS-PBFDAF with
Δ = 1, 0.3 and 0.1 are shown in Fig. 8. Figures 8(a), (c), (e), (g), and (i) are the waveforms of
the algorithms with speech as the input. On the double-talk segment, the output of NLMS has
an obvious distortion, which means a large degree of divergence. In comparison, the output of
VSS-PBFDAF with Δ = 0.1 achieved the lowest distortion. These output signals were played
and the subject assessed that Fig. 8(i) provided the clearest near-end speech during the double-
talk period. Figures 8(b), (d), (f), (h), and (j) are the waveforms of the algorithms with white
noise as the input. All the waveforms of the near-end signal during double-talk experienced
low distortion and clear audition. However, the three VSS-PBFDAF algorithms (with Δ = 1,
0.3 and 0.1) achieved faster convergence than NLMS and FNLMS.

The misalignments with speech and white noise as inputs are shown in Fig. 9. From
Fig. 9(a), the proposed VSS-PBFDAF with Δ = 1 achieved the deepest and fastest
convergence compared to the other algorithms. However, the misalignment rapidly
increases when double-talk exists. VSS-PBFDAF with Δ = 0.3 and 0.1 achieved lower
divergence than that of Δ = 1. Overall, the misalignments of VSS-PBFDAF with Δ = 1,
0.3 and 0.1 were lower than those of NLMS and FNLMS when speech was the input.
Figure 9 (b) shows the misalignments of these algorithms when white noise was the

(a) (b)

Fig. 7 Two groups of Rin and Sin during double-talk with speech and white noise input. a Rin and Sin during
DT with speech, b Rin and Sin during DT with white noise
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input. The three VSS-PBFDAF algorithms achieved faster and deeper convergence on
single far-end and double-talk than NLMS and FNLMS.

4.4 Experiments on speech quality assessment with the prototype voice
communication device

Nonlinear acoustic echo is a common problem for real-time voice communication systems.
The inhibition of nonlinear acoustic echo usually degrades the speech quality. We implement-
ed the proposed VSS-PBFDAF and FNLP algorithms in the prototype hands-free voice
communication device and measured the output speech quality in the actual room. The
diagram of the prototype device is shown in Fig. 10. Since the prototype device consists of
complete functional modules, the subscriber-side signal (with mixed acoustic echo and near-
end speech) was processed by HP (high pass), synchronization, VSS-PBFDAF, FNLP, CNG
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Fig. 8 Output waveforms of the algorithms with double talk for speech and white noise inputs
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Fig. 9 Misalignment of algorithms with double-talk for speech and white noise inputs
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(comfort noise generator), NS (noise suppression), and AGC (automatic gain control) mod-
ules, and then transferred to a PC through a USB interface. The received input from the far-end
was processed by HP (high pass), EQ (equalizer), and DRC (dynamic range compression)
modules, and then output to the speaker through a DAC and power amplifier. The Sin and
Rout signals were synchronized and sent to the proposed VSS-PBFDAF and FNLP
algorithms.

Figure 11 shows one typical measuring signal of the Sin and Sout of the system after the
HP, VSS-PBFDAF, FNLP, CNG, NS and AGC modules. For the time period from the 4-th

second to the 20-th second, the Rin was far-end speech and the near-end voice was silent, and
then the Sin was only the echo from the speaker to the microphone. In this situation of single
far-end talk, the average root mean square (RMS) power of the Sout was approximately
−63 dB, while the average RMS power of the Sin was −37 dB. The echo energy of the Sout
was 26 dB lower than that of the Sin. Because the echoes lower than −55 dB were almost
imperceptible by the consumer at the far end, the convergence performance of the system was
satisfied. For the time period from the 20-th second to the 32-th second, the far-end speech and
the near-end source simultaneously existed and the system experienced double-talk. From the
results of Fig. 11, we can see that during the double-talk period, the near-end speech passed
uninterrupted through VSS-PBFDAF and FNLP. The output signal were played and the
subject assessed that the near-end speech was fluent and undistorted.

The ITU-T P.563 standard is a single-ended method for objective speech quality
assessment that was established by the International Telecommunication Union [32].
Compared to other speech quality assessment methods such as P.862 and P.863, it is
applicable for speech quality predictions without a separate reference signal. Therefore,
this method is recommended for nonintrusive real time speech quality assessments. The
P.563 assessment is scored by using the MOS-LQO. We compared the speech quality
scores of the Sout based on P.563 that were processed by the proposed frequency-domain
nonlinear echo processing algorithm and WebRTC (Web Real-Time Communication,
which is an open source audio and video communication framework) [17]. For the single
near-end talk situation, the far-end source was silent. The near-end source was played 1 m
and 3 m away from the microphone. For the double-talk situation, the computer played a
speech file as the far-end signal. Additionally, the near-end source was played 1 m and 3 m
away from the microphone. Table 1 shows the scores of these two algorithms that were
implemented and tested by using the prototype hands-free voice communication device in
the room that was depicted in Fig. 3.

Fig. 10 The diagram of the prototype device with the complete functional modules

Multimedia Tools and Applications (2021) 80:10777–10796 10791



From the results of Table 1, both the proposed algorithm and WebRTC achieved high
scores for single near-end talk. As the distance between the near-end source and the micro-
phone increased, the speech quality decreased. When double-talk existed, the proposed
algorithm achieved a higher P.563 score than that of WebRTC. When the near-end source
was played 1 m away from the microphone, the P.563 score of the Sout for the proposed
algorithm was 3.0. By subjective assessment, it sounded clear and coherent. In the same
situation, the score of the Sout by using WebRTC was 2.3, and the Sout sounded almost clear
but was missing some syllables. When the distance between the near-end source and the
microphone was 3 m long, the speech quality of the Sout by using the proposed algorithm
decreased from 3.0 to 2.1. The signal-to-noise ratio (SNR) degraded, but the speech was
almost fluent without any truncations. In the same situation, the speech quality of the Sout by
using WebRTC decreased from 2.3 to 1.2. There were many truncations in the output speech,
and it was difficult to understand the sentence.

4.5 Discussion

Overall, our studies established a prototype device to verify the proposed algorithm under the
situation of real-time voice communication. In linear AEC, we achieved only 4 ms latency
through a rather long adaptive filter (2048 taps) estimation, owing to the sub-block process. In
nonlinear acoustic processing, residual acoustic echoes were eliminated efficiently in single
far-end talk mode while the near-end speeches were preserved clearly in case of double-talk

Fig. 11 One typical measuring signal of the Sin and Sout of the prototype device

Table 1 P.563 scores of the Sout by using the proposed algorithm and WebRTC

Distance of the source The proposed algorithm WebRTC

Single near-end talk 1 m 4.4 4.3
3 m 3.7 3.5

Double-talk 1 m 3.0 2.3
3 m 2.1 1.2
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mode. The results suggest that the non-linear echo suppression function varies according to the
communication status and makes a good tradeoff between echo inhibition and speech quality.
Furthermore, due to the spectral correction modulated by the correlations of the current
microphone signal, the residual echo and the synchronized referenced signal per frame, the
proposed nonlinear echo processing algorithm acquires low computation complexity and is
easy to be implemented to the DSP platforms. Although there are some improvements
achieved by these studies, there are also limitations. Nonlinear echo processing algorithms
based on spectral correction only consider the direct sound and the early reflection of the
echoes and ignore the late reflection, which leads to slight speech distortion on double-talk.
Future work will be the study of low-complexity echo cancellation algorithms with high-
quality subscribed-side speech while under the double-talk situation.

5 Conclusion

Following the studies focusing on acoustic echo cancellation when double-talk exists for
hands-free voice communication devices, we evaluated a scheme based on the VSS-PBFDAF
and FNLP algorithms, which was implemented by using a practical DSP prototype device. The
experiments showed that compared with the traditional PBFDAF, NLMS and FLMS algo-
rithms, the proposed algorithm was more robust, achieved faster convergence and maintained
a clear near-end voice due to the variable step-sizes for each frequency by using frequency-
domain nonlinear echo processing. When measured by using the prototype device based on the
DSP platform, the proposed algorithm achieved higher speech quality than WebRTC, and the
output when double-talk existed was clear and coherent.
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