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Abstract
Gait based person identification is an important research area in the field of video surveil-
lance. The major challenges faced by gait recognition systems in real-life scenarios include
view variance, occlusion and resultant unavailability of a complete sequence containing
a gait cycle. In this work, we propose a novel robust gait recognition framework capable
of handling these challenges. We show how Gait-Energy-Images (GEIs) can be accurately
constructed from largely incomplete input silhouette sequences. This provides an immedi-
ate advantage over current literature that assumes availability of complete sequences. We
then highlight the shortcoming of most of the current view-invariant models that perform
sub-optimal transformation of probe and gallery sequences captured in different views for
comparison. We propose a model which jointly estimates and learns the optimal transfor-
mation for comparison of probe and gallery GEIs. Through extensive experiments, we show
that our proposed framework is able to outperform most state-of-the-art methods on multiple
benchmarks.

Keywords Video surveillance · Gait based person recognition · Person re-identification ·
View invariance · Missing data

1 Introduction

The task of identifying humans within and across cameras has been a major topic of interest
in the video surveillance community. In a general setting of a network of cameras, given a
sequence of observations of a target person, the aim is to identify or re-identify that person
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across cameras. This task falls under the domain of sequence-to-sequence matching. The
sequences observed across cameras tend to have huge variations due to change in view-
points, presence of occlusions, illumination and pose variations, etc.

Gait is defined as a person’s manner of walking. It is an important biometric property
since it is difficult to fake and is contact-less, which gives it advantage over other biometric
based human recognition methods like iris and finger-print recognition. Thus, gait analysis
has great significance in the field of video surveillance for the task of person identification.
When a person walks, he/she repeats the walking actions periodically. One such period
capturing all the walking actions of a person is called a gait cycle. Gait analysis models
work on a sequence of observations containing the entire gait cycle of a person. A single
gait cycle is considered a sufficiently good representation of the entire sequence containing
the gait cycle since the remaining portion in the sequence is generally just a repetition of
the information already contained in a gait cycle.

One main aspect of gait analysis is that it does not make use of chromatic appearance
of a person for identification. Most models of gait analysis make use of either the pose
information [46] extracted from the video sequence or take silhouettes [51, 53] as inputs.
In the latter case, gait analysis models make use of features like Gait Energy Image (GEI)
[15], Gait Entropy Image (GEnI) [4], Gait Flow Image (GFI) [29], Period Energy Image
(PEI) [17], etc. Out of these Gait Energy Images (GEIs) are found to be most effective in
performing robust gait recognition [23]. GEIs are obtained by averaging all the silhouettes
in an observed gait cycle of a person.

In practical scenarios, gait based systems need to handle the presence of occlusions and
noise (due to the presence of another person or object in the frame) in the captured video
sequence of a person. In such cases, the noisy/occluded frames are rendered unusable, and
hence a clean silhouette sequence containing the complete gait cycle of an individual may
not be available. Despite this being a crucial challenge in gait based identification, only a
handful of works have looked into it. Another major challenge comes from the cross-camera
scenario where such a system is deployed. In many scenarios, cameras in the network
have wide variation in viewpoints. Although this problem is well-known and present in all
cross-camera identification problems, its impact is felt worst in the gait-based identification
problems-mainly because of the absence of chromatic appearance information.

The objective of this work, therefore, is to build a robust gait based person recognition
system that works with a temporal sequence of observations/silhouettes from a given target
in each camera and is robust to the challenges associated with such problems, viz., miss-
ing data and view variability. Figure 1 gives a brief overview of our method. The major
contributions of this work are as follows:

1. First, we look at the missing data problem and propose a model which takes the incom-
plete sequence of silhouettes and constructs a GEI which can be used for the task of gait
based person identification. The aim of this module is to construct a GEI out of a smaller
subset of silhouettes, which would appear visually identical to the GEI constructed from
complete silhouette sequence.

2. In the second part of our work we aim towards making our gait-based identification
framework view-invariant. Given a pair of probe and gallery GEI in different view
angles, we propose a novel method which estimates an optimal view most suitable for
comparing these GEIs. For this we also learn a view transformation model so that the
probe and gallery GEIs can be transformed to the optimal view.
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(a)

(b)

Fig. 1 Overview of our method: a The GEI Construction Module takes the incomplete sequence of silhou-
ettes as input and generates a GEI corresponding to each silhouette which are then mean pooled to give a final
GEI for the input sequence. b The View Invariant Module uses a view classifier to predict the view angle of
probe and gallery GEI at test time. Based on view classifier’s outputs, the optimal view predictor predicts the
optimal view, to which the probe and gallery GEIs are transformed for better comparison. The optimal view
and view transformation are jointly estimated in an iterative fashion
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3. We perform extensive experiments on two popular benchmark datasets, viz., CASIA-
B [55] and OU-ISIR [23] and show that the proposed framework can outperform most
state-of-the-art methods on the task of gait-based person identification.

The rest of the paper is organized as follows. In Section 2 we will review the related work
in the field of gait based person recognition. In Section 3, we give our proposed approach to
handle the problem of missing data and view variance. Section 4 contains the experimental
details whereas the results are presented in Section 5. Finally, we conclude our work in
Section 6.

2 Related work

Gait, being an important bio-metric property of a human, is used in different branches of
research [11]. Two important areas are - Gait Analysis and Gait based recognition. Gait
analysis is a field where human motion is studied and important parameters that characterize
human gait events are determined. One such area is bio-mechanical analysis of gait [42] that
is used in health diagnostics and performance analysis in sports. This includes modelling the
human gait cycle [39, 44]. In [41], Patil et al. use Extreme Machine Learning (ELM) [22]
for clinical gait analysis. Gait of a person is periodic and can be divided into 8 sub phases
[41]. A gait cycle last for about 1–1.12 seconds [43]. Several of the gait analysis systems
use sensors like Inertial Measurement Units (IMUs) including accelerometers, gyrosensors,
force sensors, strain gauges, inclinometers, goniometers, etc. Apart from these, vision based
gait analysis systems have also shown to give good results. González et al. [13] and Kyrarini
et al. [28] provide a comparative study of vision based gait analysis systems and wearable
sensors based systems. While vision based systems give acceptable results but the error
rate is slightly higher than IMU based methods. However, vision based systems have the
advantage of being relatively cheaper, easier to monitor and contact-less. Most of the sensors
based analysis requires good quality data in sufficient quantity captured using different
types of sensors.

In gait based recognition, the human gait is studied to find distinctive features of a person
to uniquely identify him/her from others. Our work falls in the domain of gait based recogni-
tion. Most of the gait recognition methods can be classified into two categories: model based
methods [6–9] and appearance based methods [12, 26, 27, 31]. Model based methods model
the underlying structure of the human body whereas appearance based methods try to extract
gait features from gait cycles. Our work falls under the latter category. In many situations,
it is difficult to precisely model the human body structure from videos captured under chal-
lenging real-life conditions. This gives appearance based methods an advantage over model
based methods as they are capable of performing on such challenging videos/observations.
The commonly used features in appearance based methods are Gait Energy Image (GEI)
[15], Gait Entropy Image (GEnI) [4], Gait Flow Image (GFI) [29], Chrono-Gait Image
(CGI) [50], etc. Gait Energy Image (GEI) is formed by averaging the size-normalized and
centre aligned silhouettes of a gait cycle of person. Gait Entropy Image (GEnI) is formed
by calculating Shannon entropy for each pixel in the silhouettes of a sequence. Gait Flow
Images (GFIs) are formed by determining the optical flow field from silhouettes of a gait
cycle. Chrono-Gait Images (CGIs) encode the temporal information among the silhouettes
of a gait cycle using a colour mapping. GEIs are found to be most effective for the task of
person identification based on gait [23].
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Most of the works done in the field of gait recognition assume the availability of sil-
houette sequence containing complete gait cycle. However, in real world scenarios it is
very rare to get a complete sequence and hence this becomes a major limitation of the
current literature in this field. To the best of our knowledge, the only work that tries to
address this problem is by Babaee et al. [2]. They propose a fully convolutional network,
named ITCNet(Incomplete to Complete GEI network) which transforms a GEI obtained
from incomplete silhouette sequence(incomplete GEI) to a complete GEI. ITCNet performs
this transformation in a progressive manner - an initial incomplete GEI is transformed to a
partially complete GEI which is finally transformed to complete GEI. In [40], Ortells et al.
propose a robust approach for gait recognition on noisy and occluded silhouettes. ITCNet
and our model handles incomplete silhouette sequences obtained after removing noisy and
occluded silhouettes from the sequence. We compare and contrast our model with ITCNet
and discuss the reasons behind better performance of our model in Section 3.1.

Since viewpoint change is a major challenge in gait recognition, recent works focus on
developing view invariant models. These works take one of the following three approaches:
(1) creating a 3-D model of the human body [33] and obtain 2-D projections in different
views [1, 34, 49, 56] (2) using view invariant features for gait recognition [12, 27], (3) learn-
ing cross view projectors [26, 36]. In Fig. 2, we provide a visual taxonomy of the approaches
of gait based methods. In [35], Lua and Tjahjadi constructed a robust 3D representation
of human body for abnormal gait behaviour recognition. The View Transformation Model
(VTM) [5] is commonly used and is capable of transforming gait features from one view
to another. Singular Value Decomposition (SVD) is used to compute the projection matrix
and view-invariant features from a GEI. However, VTM can only transform from a specific
angle to another and relies heavily on the performance of view angle estimator. In [25],
Kusakunniran et al. formulate the problem of view invariant gait recognition as a regression
problem and create a View Transformation Model using support vector regression. They
overcome the problem of over-fitting in the original VTM by using truncated SVD and
focus on local regions of interest as opposed to global features.

In [20], Hossain et al. propose to divide the human body into 8 sections with 4 over-
lapping ones and then extract features from sections which are more robust to clothing
variations. In [45], Shiraga et al. proposed a CNN based gait recognition model, GEINet
and produced the then state-of-the-art results. In [54], Yu et al. use stacked auto-encoders to

Fig. 2 Visual taxonomy of the gait based approaches. Gait based research can be broadly classified into two
areas - Gait Analysis and Gait based Recognition. While gait analysis involves studying and modelling the
human motion, gait based recognition focuses on finding distinctive features to uniquely identify a person
based on his/her gait
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generate view invariant gait features in a progressive manner. They transform GEIs in any
given view angle, and under any given clothing and carrying condition to a GEI in normal
(90◦) view and normal carrying and clothing conditions. The advantage of their method over
VTM is that they use a single model to extract invariant gait features robust to view, cloth-
ing and carrying condition. In [37], Marı́n-Jiménez et al. showed that gait recognition under
a multi-task learning set-up gave similar or superior performance to that under single-task
learning set-ups. In [53], Yu, Shiqi, et al. propose a method named GaitGAN where they
tackle the challenges of view variance, clothing changes and carrying condition variations
using a single model. GaitGAN transforms GEI obtained from any given view angle(from
0◦ to 180◦) and under any given clothing(i.e. with or without coat) and carrying condition
(i.e. with or without bag) to a GEI with a view angle of 90◦ under normal clothing and carry-
ing condition(i.e without a bag or coat). GaitGAN uses two discriminator networks for this
purpose: one which ensures that the generator generates realistic GEI and the other which
ensures that the generated GEI retains the human identification information.

In [52], Xing et al. propose a novel reformulation of Canonical Correlation Analy-
sis(CCA), named Complete CCA which provides a stable and efficient alternative to CCA
for solving the gait recognition problem. In [21], Hu et al. seek a unitary projection to
project original gait features extracted from any view into a low dimensional feature space
while improving the discriminative power for identification. Their method is named View-
invariant Discriminative Projection (ViDP). The advantage of ViDP is that it can perform
multi-view gait recognition without finding out the view in which the query sequence was
captured. In [17], He et al. propose a multi-task GAN model which learns view-specific
feature to perform gait recognition. Their model learns a view transformation layer which
performs view transformation in a low-dimensional latent space. They also propose a new
multi-channel gait template, called Period Energy Image (PEI). PEIs combine the benefits
of using GEIs and CGIs into a single gait template. However, PEIs are not suitable to use
when we do not have the complete sequence available since formation of good quality PEIs
require sufficiently large number of silhouettes. This gives GEIs an upper hand in practical
cases. In [10] Chao et al. propose to use silhouette sequence as a set rather than a sequence
and achieve state-of-the-art performance. However, they propose a very heavy network with
large number of parameters when compared to our much simpler network.

The current state-of-the-art methods handle the problem of view variance by trans-
forming the probe sequence features to gallery view or to some pre-determined fixed
view. However, such transformations are sub-optimal. In [38], Daigo et al. show that
better accuracies can be achieved by considering an intermediate angle for transform-
ing the probe and gallery gait features to that angle. However, in their work they do
not propose any method to determine the intermediate angle. In this work, we propose
a novel method to learn an optimal view for better comparison of probe and gallery
observations.

3 Proposed approach

We present the proposed framework in two parts. First, we describe the model for GEI
construction from incomplete silhouette sequences. Subsequently, we present our novel gait
identification framework and show how the GEIs can be used for identification under large
viewpoint variation.
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3.1 Handlingmissing data

In this section, we propose our model to handle the problem of missing data. While captur-
ing the video of a person, the silhouette sequence may often contain noisy frames because of
partial/full occlusion. GEI constructed from such a sequence including these noisy silhou-
ettes would lead towards a representation of poor quality. In such cases, the workaround is
to discard the noisy silhouettes and estimate GEI from the remaining ones in the gait cycle.
However, a GEI formed on such an incomplete subset often does not contain the information
necessary for distinguishing individual’s identity. To overcome this problem we propose a
model which takes incomplete sequence of silhouettes as input and estimates corresponding
GEI representative of all the silhouettes across the complete gait cycle (if it were available)
and hence is suitable to perform the identification task. The number of available silhouettes
in a sequence may vary and the worst case scenario is when we only have access to one sil-
houette in the complete gait cycle. Therefore, we propose a model, called Single Silhouette
GEI Generator, that generates a GEI corresponding to each of the available silhouettes in
the input sequence. These GEIs are then combined in ways described below to obtain the
final GEI representative of the input sequence.

3.1.1 Network architecture

The architecture of Single Silhouette GEI Generator network is shown in Fig. 3. It takes
each silhouette in a single input sequence as input and outputs a corresponding interme-
diate GEI. This intermediate GEI is a representation of the information contained in the
entire gait cycle (if it was available). Finally, all these intermediate GEIs constructed from
the silhouettes of the single incomplete sequence are average pooled along time to yield
the final GEI corresponding to the entire silhouette sequence. We train the network using
mean square error loss calculated between each pixel of the ground truth GEI and the GEI
generated by our network as shown in (1) and (2). C represents the Single Silhouette GEI
generator model, xsil is one silhouette in the available sequence of length l (l may be less
than a gait cycle) of a subject, C(xsil) represents the GEI generated from xsil and xGEI is
the ground truth GEI. E is the expectation. GEIf inal is the final GEI and x

(i)
sil represents the

ith silhouette in the sequence.

min
C

LMSE = E‖C(xsil) − xGEI‖2 (1)

GEIf inal = 1

l

l∑

i=1

C(x
(i)
sil ) (2)

An important aspect of our network is the use of skip connections [32]. The skip connec-
tions [32] allow the passage of appearance information from a shallow, fine layer to a deep,
coarse layer where it is combined with the semantic information to produce better results.
However, our model is structurally very different from [32]. Also, we use the network in
Fig. 3 only to generate intermediate GEIs from silhouettes. The final GEI used for identifi-
cation are only obtained after averaging all the intermediate GEIs. Another advantage of our
model is that it is independent of the order in which the silhouettes appear in the sequence
since we are averaging the intermediate GEIs generated from silhouettes to obtain the final
GEI in the end. This allows our model to be independent of the temporal occurrence of the
silhouettes in the sequence.
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Fig. 3 Architecture of the Single Silhouette GEI Generator. The network takes a single size-normalized
silhouette, of dimension 64×64, as input and generates an intermediate GEI corresponding to that particular
silhouette. The same is done for each silhouette in the input sequence. Finally, all the generated intermediate
GEIs are averaged together to give a single GEI representative of the entire input sequence of silhouettes
(refer Fig. 1a). The dimensions over each block represents the dimensions of the corresponding output feature
maps (for eg. HxWxC represents a feature map with height = H, width = W and number of channels = C). In
the figure, the left half represents a series of convolution and pooling layers whereas the right half represents
a series of de-convolution layers. In the bottom most layer of the figure, convolution operation is applied
without changing the dimensions of the feature map using appropriate padding. Note that both silhouette and
GEI are single channel images

The only other work looking into GEI reconstruction from few silhouettes is the ITCNet
[2]. Hence, here we wanted to differentiate our model from that proposed in [2]. In fact, our
network differs from ITCNet [2] in various aspects. ITCNet [2] builds a complete GEI from
an incomplete GEI. The input to their network in an incomplete GEI formed by averag-
ing a continuous silhouette sequence starting from a randomly selected silhouette from the
complete sequence. Their network constructs complete GEI in a progressive manner. We
construct a GEI in an end-to-end manner i.e. the input to our network is a single silhouette
and the output is a GEI. After the GEIs from each of the silhouettes have been generated,
we average out all these GEIs to get our final GEI. This allows us to preserve the most dis-
tinctive features of a person, which should be common across all generated GEIs, in the
final GEI. The GEIs generated by a single silhouette may contain some noise/error. How-
ever, as these GEIs are averaged the contribution of error/noise reduces and the distinctive
features of a person which are common across all the generated GEIs dominate the final
representation i.e final GEI. Additionally, this approach allows us to work on discontinuous
silhouette sequences since we are averaging in the end which does not depend on the order
in which the GEIs are pooled. Another aspects that differentiates our network from ITCNet

Multimedia Tools and Applications (2021) 80: –101661014110148



[2] is that we use skip connections. This allows us to preserve the distinctive features of a
person across the network and generate GEIs in an end-to-end manner. These aspects of our
network enable it to perform better than ITCNet [2] (refer Section 5.1).

3.1.2 GEI pooling approaches beyond average pooling

Apart from the fore-mentioned method, we also tried some other approaches to obtain the
final GEI from the intermediate GEIs, which gave good results when the number of available
silhouettes is 10 or above, but performed poorly when the number of available silhouettes
is in the range 1 to 10. The limitation of these methods is that we need to fix the length
of the input silhouettes sequence and when the sequence is of smaller length we repeat a
few silhouettes. However, the intuition and motivation behind these approaches is worth
mentioning.

Weighted Pooling One of the approach was to do weighted pooling of the intermediate
constructed GEIs, instead of simple averaging, to form the final GEI. The weights given
to the intermediate GEIs while forming the final GEI can be learned by the network. The
intuition behind this approach was that GEIs formed from silhouettes where legs and hands
of a person are clearly visible should contribute more towards final GEI as compared to
GEIs formed from silhouettes where one leg/hand is behind the other leg/body. The weights
are learned using the adaptive pooling technique mentioned in [24].

1-D Conv Pooling Since the output of Single Silhouette GEI generator is a sequence of
single channel GEIs, these GEIs can be stacked together along the channel dimension. Once
this is done, we can apply 1-D convolution [47] on this stacked pile of GEIs to get a single
final GEI. The intuition behind using this approach is the same as that of weighted pooling.

Conv-GRU We used GRU to get a better fused representation of the intermediate GEIs.
Since the dimensions of the input GEIs is large, using the standard GRU would have
increased the network parameters drastically. We, instead, used Conv-GRU [3] which is
more suitable for high dimensional image inputs. The equations of Conv-GRU, as shown
below, are exactly same as that of standard GRU, except that the point-wise multiplication
operation is replaced by convolution operation.

zl
t = σ(Wl

z ∗ xl
t + Ul

z ∗ hl
t−1) (3)

rl
t = σ(Wl

r ∗ xl
t + Ul

r ∗ hl
t−1) (4)

h̃l
t = tanh(W l ∗ xl

t + Ul ∗ (rl
t � hl

t−1)) (5)

hl
t = (1 − zl

t )h
l
t−1 + zl

t h̃
l
t (6)

Here, t represents the time-step, l represents the feature map number along the depth
dimension, σ represents the sigmoid activation function, ∗ represents convolution operation
and � represents point-wise multiplication. zl

t represents update gate and rl
t represents the

reset gate. Wl
z, U

l
z,W

l, Ul are the model parameters. hl
t represents the hidden state at time-

step t and lth feature map.

3.2 Handling view variance

In this section we propose our model to handle view variance problem in gait recognition.
This model takes GEI as input. The GEI of the same person may appear differently in differ-
ent views. To overcome this challenge, one approach is to transform the probe and gallery
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GEIs to one common view before comparing them, and in most cases, this common view
is chosen as either of the probe and gallery views. However, the transformations performed
by the current state-of-the-art methods are sub-optimal.

The current state-of-the-art models either transform all the gallery GEIs and probe/query
GEIs to view angle of 90◦ [53], or transform the probe/query GEIs to gallery view [17] and
then compare the GEIs. However, if the probe GEI has a view angle of 0◦ and the gallery
GEI has view angle of 180◦, then transforming the probe GEI from 0◦ view to 180◦ view
may not be the right choice as shown in Fig. 4a. One may argue that in such cases we can
transform both the gallery GEI and probe GEI to 90◦ view. However, consider the case
when probe and gallery GEI both have a view angle of 0◦. In such cases, transforming both
the GEIs to 90◦ view may again be a sub-optimal choice as shown in Fig. 4b. The current
state-of-the-art methods do not consider this issue.

In this work, we propose a novel method to overcome this shortcoming in current litera-
ture. Our model transforms a GEI from a source view to any target view (the target view can
be sampled from a predefined finite set of views). This model is built around a Generative
Adversarial Network (GAN) [14] framework, the details of which are described in the next
subsection.

Given the shortcoming of the existing way of selecting the target view, we also present
how to estimate the optimal view to transform the pair of GEIs, given the probe and gallery
view angles. We provide details on this “Optimal View Predictor” in Section 3.2.2. Finally,
we describe how the overall view-invariant gait-id model can be posed as a joint estimation
of the view transformation, GAN as well as the optimal view predictor model parameters.

3.2.1 Network architecture

Our initial network consists mainly of 4 main parts: (1) Encoder, (2) View Classifier, (3)
View Transformation Layer, and (4) GAN. The network details are shown in Fig. 5. The
Encoder is used to obtain a low dimensional feature representation of the input GEIs. The
View Classifier takes encoder’s output as input and predicts the view angle of the GEI.
The View Transformation Layer takes two inputs: encoder’s output and an encoded vector
representing transformation from initial view to target view. It transforms the feature repre-
sentation from the initial view to the target view. The GAN takes this transformed feature
representation and generates GEI in the target view. The encoded vector given to the View
Transformation Layer is a vector containing values 1, −1, or 0. If we want a transforma-
tion from the ith view to the j th view (j > i), then the entries from ith to j th index in the
transformation vector are set to 1 and rest are 0. −1 is used when j < i.

The loss functions are given in (7), (8) and (9). G represents generator, D represents the
discriminator, E represents the encoder and V represents the view transformation layer. v

represents the target view and u represents the initial view. xk represents GEI in view k.
G(V (E(xu), v, u))) represents the transformed GEI in view angle v from an initial GEI
xu in view angle u. Lgan is the GAN [14] loss, Lp is the pixel-wise loss and Ltotal is the
combination of Lgan and Lp . γ is trade-off parameter and is set to 0.01. E is expectation.
The view classifier is trained on cross entropy loss.

Lgan = E[log(D(xv))] + E[log(1 − D(G(V (E(xu), v, u))))] (7)

Lp = E‖G(V (E(xu), v, u)) − xv‖1 (8)

min
G,E,V

max
D

Ltotal = Lp + γLgan (9)

Multimedia Tools and Applications (2021) 80: –101661014110150



(a)

(b)

Fig. 4 Issues with current state-of-the-art view invariant gait recognition methods. a Transforming from
probe to gallery view (left) v/s Transforming to optimal view (right): In case when the probe and gallery
views are far apart, transforming probe GEI to gallery view is not the optimal choice as the appearance of the
GEI in the two views is very different and chances of erroneous transformation is high. Transforming to an
optimal angle in between the probe and gallery view is a better choice. b Transforming to a pre-fixed view
(90◦ in this case) (left) v/s Transforming to optimal view (right): In cases when the probe and gallery view
angles are not far apart, transforming to a pre-fixed view, which may be very different from the probe and
gallery views, is not an optimal choice. Transforming to a nearby angle is a better option

This network is similar to [17]. While a multi-task GAN is used in [17], we use a simple
GAN [14] to perform our task of generating GEIs. The input to their network is a multi-
channel Period Energy Image(PEI) whereas we give a single channel GEI as input.

3.2.2 Learning an optimal view

Given a pair of probe and gallery GEIs in different view angles, we propose to learn an
optimal view which is most suited for comparing the two GEIs. In order to do this, we
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Fig. 5 View Invariant model: This model takes a GEI in a particular angle as input and transforms it to a
GEI in a target angle. The encoder generates a low dimensional representation of the input GEI. The view
transformation layer transforms the encoded representation to one in the target view. NV is the number of
different view angles in the dataset. The generator generates GEIs in the target view. The target view is given
by the optimal view predictor which takes one hot encodings (of size NV) of probe and gallery views given
by the view classifier

add another module to our network, called Optimal View Predictor which takes one-hot
encodings of the view angles of probe and gallery GEI and gives the corresponding optimal
view. After that we transform the probe and gallery GEIs to the optimal view for compar-
ison. The optimal view predictor is trained using the loss Lpred given in (10), (11) and
(12). P represents the optimal view predictor, O(v) is the one-hot encoding of view angle
v and vopt represents the optimal view given by P . xv represents GEI in view v whereas
G(V (E(xv), vopt , v)) represents the transformed GEI in view vopt . Both xv and xu are the
GEIs of the same person.

vopt = P(O(v),O(u)) (10)

d = ‖G(V (E(xv), vopt , v)) − G(V (E(xu), vopt , u))‖2 (11)

min
P

Lpred = E[d] (12)

3.2.3 Joint estimation of parameters of E , V , G , D and P

As can be seen, the set of (7), (8), (9) and (10), (11), (12) are dependent on each other. We
estimate these parameters in an iterative manner i.e. we first optimize over the parameters
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of G,V,E and D and then over the parameters of P . Hence, the (7) and (8) can be rewritten
in terms of vopt :

Lgan = E[log(D(xvopt ))] + E[log(1 − D(G(V (E(xu), vopt , u))))]
+E[log(1 − D(G(V (E(xv), vopt , v))))] (13)

Lp = E‖G(V (E(xu), vopt , u)) − xv
opt‖1 + E‖G(V (E(xv), vopt , v)) − xv

opt‖1 (14)

3.2.4 Ablation experiments

Using triplet loss to train the optimal view predictor We train the optimal view pre-
dictor using the triplet loss [18] instead of the fore-mentioned loss Lpred . The triplet
loss Ltriplet is calculated as given in (15) to (18). P represents the optimal view predic-
tor, O(v) is the one-hot encoding of view angle v and vopt represents the optimal view
given by P . xv

positive represents the positive example GEI, xv
negative represents the nega-

tive example GEI and xu
anchor represents the anchor GEI. xv

positive and xu
anchor are the GEIs

of the same person whereas xv
negative is the GEI of another person. xv

k represents GEI in
view v whereas G(V (E(xv

k ), vopt , v)) represents the transformed GEI in view vopt where
k ∈ {positive, negative, anchor}. m is the margin which is set to 1.0.

vopt = P(O(v),O(u)) (15)

d1 = E‖G(V (E(xv
positive), vopt , v)) − G(V (E(xu

anchor ), vopt , u))‖2 (16)
d2 = E‖G(V (E(xv

negative), vopt , v)) − G(V (E(xu
anchor ), vopt , u))‖2 (17)

min
P

Ltriplet = max(0, d1 − d2 + m) (18)

Thus, triplet loss [18] tries to bring the transformed GEIs in view angle vopt of the same
person closer whereas the GEI of different person is moved further away. Using triplet loss
we got competitive results but the best results (as shown in the Section 5.2.2) were obtained
using Lpred loss to train the optimal view predictor.

Using GEI information in addition to View information to predict optimal view As can
be seen in (10), we are only using the view angles of the probe and gallery GEIs to predict
the optimal view. In (19), we incorporate GEI information along with the view to predict the
optimal view. This is done by appending the output vector from the encoder to the one-hot
vector representing the view and passing the vector obtained after appending to the Optimal
View Predictor Module as shown in the following equation.

vopt = P(O(v)�E(xv
probe),O(u)�E(xu

gallery)) (19)

In (19), P represents the optimal view predictor and E represents the encoder. O(v) is the
one-hot encoding of view angle v and vopt represents the optimal view given by P . xv

probe

represents the probe GEI in view v and xu
gallery represents gallery GEI in view u. E(xv

probe)

and E(xu
gallery) represents the output of encoder for GEIs xv

probe and xu
gallery respectively.

� represents the concatenation (of vectors) operation.

4 Experiments details

4.1 Datasets

CASIA-B Yu et al. [55] dataset is a large multi-view dataset of 124 subjects. The dataset
contains sequences captured from 11 different view angles ranging from 0◦ to 180◦ with
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an interval of 18◦. The dataset has 6 sequences under normal conditions (named ‘nm-01’ to
‘nm-06’), 2 sequences of walking in a coat (named ‘cl-01’ and ‘cl-02’) and 2 sequences of
walking with a bag (named ‘bg-01’ and ‘bg-02’) for each of the subjects.

The dimension of each silhouette image is 320×240. Each sequence is 2 to 3 gait cycles
long. Out of the 124 subjects, 93 are males and 31 are females. Most of the subjects are aged
between 20 and 30 years. There are 10 silhouette sequence corresponding to each person in
a particular view −6 normal +2 with coat +2 with a bag. Since there are 11 different views,
so the total number of sequences in the dataset are 11 × 10 × 124 = 13640. We have shown
results on only the sequences under normal clothing and carrying conditions.

OU-ISIR Large Population gait dataset [23] is a large dataset containing over 4000 subjects
of different ages, ranging from 1 year to 94 years. We have used the latest version of the
dataset, Version 2, which has 4016 subjects. These subjects are captured from four differ-
ent view angles −55◦, 65◦, 75◦ and 85◦. The dataset is divided further into two subsets-
set A and set B. We have used set A which has two sequences per identity per view
angle.

The major strength of this dataset is the large number of subjects it contains as opposed
to other datasets. In addition to this, the dataset is more gender balanced with nearly equal
number of males and females, and the age range of the subjects is also much wider com-
pared to other datasets. The silhouette sequences are of much better quality since they
are manually checked. In both the datasets, the length of a gait cycle is 25–30 frames
[2].

4.2 GEI constructionmodel

For our experiments to handle the missing data, we take the first 62 subjects of the CASIA-
B [55] dataset in the training set and the remaining 62 subjects in the test set. In the test
set, sequences ‘nm-05’ and ‘nm-06’ form the probe set and the sequences ‘nm-01’–‘nm-04’
form the gallery set. For the OU-ISIR [23] gait dataset, we follow the same train-test split
as followed by ITCNet [2]. We select 3254 subjects and the randomly pick 2254 subjects in
the training set, 500 subjects in the validation set and 500 subjects in the test set and perform
5 fold cross validation. To train our model we use ADAM optimizer and the learning rate is
set to 0.8 × 10−4. The batch size while training is 120.

The silhouette sequences in the CASIA-B dataset capture the entire scene in the image
where the subject (white image in black background) is only a part of the scene and may
be located at different locations in the image/silhouette. While giving input to the network,
the subject is cropped by drawing a bounding box around it and then the cropped image
is resized to dimension of 64 × 64. In case of weighted pooling, 1-D conv pooling and
Conv-GRU the length of input sequence is fixed to 30 as this is the typical length of a
gait cycle in these datasets whereas the average pooling method is independent of sequence
length.

4.3 View invariant model

In our experiments to handle view variance, we take the first 62 subjects of CASIA-B [55]
dataset in train set and the next 62 subjects in test set. In the test set, the sequences ‘nm-
05’ and ‘nm-06’ form the probe set and the sequences ‘nm-01’–‘nm-04’ form the gallery
set. The input to the view invariant model is a GEI. In the case of CASIA-B dataset, GEIs
corresponding to each sequence are provided whereas in the case of OU-ISIR dataset [23]
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we construct GEIs by averaging the silhouettes of a sequence. For OU-ISIR dataset [23],
we divide the dataset into 5 equal parts and perform 5 fold cross validation. This is done
to ensure fair comparison with other state-of-the-art methods. We use ADAM optimizer to
train the model. The learning rate while training the GAN, encoder and view transform layer
is 10−6 and while training the optimal view predictor is 10−7. The batch size while training
is 500.

As mentioned before, we perform the training of the view invariant module in multiple
phases. In the first phase, we only train the encoder, GAN and view transformation layer.
Then we train the view classifier using cross-entropy loss. In the second phase, we train the
optimal view predictor and fine-tune the entire module.

4.4 Evaluationmetric

We use Rank-1 identification accuracy(%) as our evaluation metric. During the test time,
euclidean distance is used to find the nearest example to the probe in the gallery set.

5 Results

5.1 Handlingmissing data

We compare the results of our GEI construction model with ITCNet [2] which, to the
best of our knowledge, is the only work that handles the problem of incomplete silhouette
sequences. We compare the results on both the datasets. The results are presented for the
view angle of 90◦ in case of CASIA-B [55] in Table 1 and view angle of 85◦ in case of
OU-ISIR dataset [23] in Table 2, since ITCNet [2] presents results only on these angles. As
can be seen, we are outperforming ITCNet in all cases on CASIA-B and most of the cases
on OU-ISIR. In Tables 1 and 2, the best accuracies reported (by either [2] or our proposed
model) for each of the different sequence lengths are highlighted in bold.

5.1.1 GEI pooling approaches beyond average pooling

In this section we present the results of applying pooling techniques such as weighted pool-
ing, 1-D conv pooling and Conv-GRU on the intermediate GEIs generated by the single

Table 1 Rank-1 identification
accuracy(%) of GEI construction
module on CASIA-B
dataset(view angle of 90◦)

#Silhouettes ITCNet [2] Our model

1 50.01 57.6

2 50.09 62.7

4 60.02 77.11

6 75.10 81.35

8 80.00 83.89

10 80.06 86.44

13 77.12 88.98

15 85.24 88.98

27 85.30 92.37
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Table 2 Rank-1 identification
accuracy(%) of GEI construction
module on OU-ISIR dataset(view
angle of 85◦)

#Silhouettes ITCNet [2] Our model

1 53.40 62.40

3 65.11 67.40

5 71.19 72.00

8 77.53 77.20

10 80.46 79.60

13 82.59 83.20

15 84.22 85.60

18 85.76 86.80

20 86.00 86.80

silhouette GEI generator. The results are shown for view angle of 90◦ in case of CASIA-B
dataset in Table 3.

5.1.2 Performance of GEI construction module for different view angles

In order to see the performance of average pooling method for different view angles, we
train different networks for different view angles and show the results in Table 4. In this
table, the probe and gallery sequences are captured from the same views in each case. As
can be seen in the table, our GEI reconstruction module performs well across different view
angles.

5.2 Handling view variance

In this section, we present the results of our view invariant model in Table 5, Table 6, Fig.
6 and Fig. 7. The results on CASIA-B dataset are presented in Fig. 6 and Table 6 whereas
the results on OU-ISIR dataset are presented in Fig. 7. In Fig. 6, we compare our model
with SPAE [54] and GaitGAN [53], both of which take GEIs as input. The same evaluation
protocol is followed as in these works. The training set contains the first 62 subjects and the
test set contains next 62 subjects. In Fig. 7, we compare our model’s performance on the
OU-ISIR dataset with other state of the art methods. As can be seen in Fig. 7, we exclude
the cases when the probe view and gallery view are the same.

Table 3 Performance of other
pooling methods : Rank-1
accuracy (%) on CASIA-B
dataset for view angle of 90◦

#Silhouettes Conv-GRU Weighted pooling 1-D conv pooling

1 16.81 20.17 15.12

2 26.89 28.57 32.77

4 47.9 48.74 50.42

6 61.34 66.39 63.03

8 65.55 72.27 68.91

10 78.99 74.79 77.31

13 82.35 81.51 78.15

15 84.03 84.03 82.35

20 88.24 89.91 89.07

These methods perform well
when the number of available
silhouettes are 10 or above.
However, when the number of
available silhouettes are less than
10, average pooling gives better
results
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Table 4 Rank 1 accuracy(%) of GEI construction module on different view angles

N View angle

0◦ 18◦ 36◦ 54◦ 72◦ 108◦ 126◦ 144◦ 162◦ 180◦

1 49.57 41.66 38.33 45.83 49.83 50 41.67 54.16 43.33 55

2 64.7 61.66 56.66 73.33 55 66.66 55.83 60.83 64.16 65.83

4 82.35 77.5 80 80 74.16 74.16 71.66 74.16 70.83 82.5

6 84.03 85 89.16 83.33 78.33 77.5 80 81.67 79.16 86.67

8 90.75 87.5 93.33 87.5 79.16 76.67 83.33 85 79.16 91.67

10 90.75 87.5 93.33 85.83 80.83 80 85 85.83 82.5 91.67

13 94.95 89.16 97.5 87.5 84.16 82.5 87.5 90.83 87.5 94.16

15 95.95 90.83 95.83 90 85 82.5 88.33 90.83 84.16 94.16

20 95.79 93.3 97.5 94.16 86.66 84.16 89.16 90.83 89.16 95.83

30 94.95 97.5 97.5 95 87.5 87.5 89.16 91.67 92.5 95.83

N is the number of available silhouettes

In addition, we compare the results of our method with [48] on the OU-ISIR dataset in
Table 5. In [48], Takemura et al. propose four different architectures: a CNN with contrastive
loss function (i.e., named 2in in this paper), a CNN with triplet ranking loss (i.e., named 3in
in this paper), a CNN with low-level difference structure (i.e, named diff in the paper) and
a CNN with both low and high level difference structure (i.e., named 2diff in the paper).
We get better results than them when compared to single network architectures proposed in
their work. Only when multiple networks proposed in [48] are combined together, they get
a better performance than our method. As stated in their work, their 2in and 3in were better
than diff and 2diff for cases with large angular differences, and the opposite result was
obtained for cases with small angular differences. However, we propose a single network
architecture to handle all these cases and this gives us an advantage over them. Also, our

Table 5 Comparison of rank-1 accuracies(%) of our model with [48] on OU-ISIR dataset

Angular difference

0 10 20 30 mean

2in 97.9 97.6 95.6 92.0 96.5

3in 98.5 98.2 96.4 92.3 97.1

diff 98.7 98.5 97.2 94.7 97.7

2diff 99.1 99.0 98.0 95.1 98.3

2in+diff 99.3 99.2 98.6 96.9 98.8

3in+2diff 99.2 99.2 98.6 97.0 98.8

Ours 98.8 98.7 98.12 96.73 98.32

The results in the last column are the average across all probe and gallery view angles. Our method performs
better than the individual networks proposed in [48]. Only when multiple networks proposed in [48] are
combined together, they get a better performance than our method. Also, as stated in their work, their 2in
and 3in were better than diff and 2diff for cases with large angular differences, and the opposite result was
obtained for cases with small angular differences. However, we propose a single network architecture to
handle all these cases and this gives us an advantage over them
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Fig. 6 Comparison of rank 1 accuracy(%) of our view invariant module with other GEI based models, SPAE
[54] and GaitGAN [53], on CASIA-B dataset. The x-axis represents the probe view angle whereas the y-axis
represents the average rank-1 accuracy across all gallery view angles

proposed network does not require combining two different network and works as a single
end-to-end network

In Table 6, we compare our model’s performance with other view invariant models that
take different gait features other than GEIs as input such as Period Energy Images [17] or
Mixture of GEIs [51] or silhouettes [10]. We observe that we perform better than most of
the state-of-the art methods except [17] and [51] on CASIA-B dataset. However, our model
performs better than them on the OU-ISIR dataset. We believe that using better features
like PEIs [17] and mixture of GEIs [51] helps in improving the model performance. How-
ever, such features demand the availability of complete data which may not be possible in
practical scenarios. For the results presented in Table 6, the model was trained with first 74
subjects in the train set and tested on the remaining 50 subjects of the CASIA-B dataset. This
was done to ensure that the same protocol is followed as other works presented in Table 6.

5.2.1 Improvement using optimal view predictor

Figure 8 shows the advantage of using Optimal View Predictor on our initial model
described in Section 3.2.1. We compare the results obtained by transforming from probe
view to gallery view with the results obtained by using the Optimal View Predictor to obtain
optimal view to transform the GEIs. We apply our method to [17], using GEIs as input,
to show the effectiveness of transforming to an optimal view, and get an improvement in
average rank-1 accuracy from 70.1% to 71.28% as shown in Table 7.

5.2.2 Ablation studies

In this section, we present results obtained by performing ablation on loss function and
input to optimal view predictor. In the first first experiment, we use Ltriplet loss defined in
(15)–(18) to train the optimal view predictor instead of the Lpred loss defined in (10)–(12).
Apart from this we also perform an experiment where we give the encoder’s output to the
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Fig. 7 Comparison of rank 1 accuracy(%) of our view invariant module with other state-of-the-art models,
MGAN [17] and CNN [51], on OU-ISIR dataset. The OU-ISIR dataset contains sequences captured only in
4 different view angles as shown in the figure. We do not consider the cases when probe view and gallery
view are the same

optimal view predictor along with the view angle information for each GEI. The results of
these experiments are presented in Table 8.

5.3 An end-to-end pipeline towards gait based recognition on RGB input sequence

Our method, which comprises of the GEI Construction Module and the View Invariant Mod-
ule, takes silhouette sequence as inputs. In order to show the real-world usability of the
proposed gait-based identification framework, we perform an end-to-end experiment. For
this experiment, we assume that only RGB image sequences/videos are available as inputs

Table 6 Comparison of rank-1 accuracies(%) of our model with other state-of-the-art models which use
different gait features other than GEIs

54◦ 90◦ 126◦ Mean

C3A [52] 75.7 63.7 74.8 71.4

ViDP [21] 64.2 60.4 65 63.2

VTMSVR [25] 55 46 54 51

MGAN [17] 84.2 72.3 83 79.8

CNN [51] 94.6 88.3 93.8 92.2

GaitSet [10] 96.9 91.7 97.8 95.46

Ours 79.3 68.9 78.2 75.46

Results are shown for probe view angles 54◦, 90◦, 126◦, excluding identical view cases (i.e. for each probe
view angle, an average of rank-1 accuracies are taken over all the gallery views except those views which are
same as the probe view). All the models of this table are trained on the first 74 subjects of CASIA-B dataset

Multimedia Tools and Applications (2021) 80: –1016610141 10159



Fig. 8 Improvement in Rank-1 accuracy on using the Optimal View Predictor instead of probe to gallery
view transformation on CASIA-B dataset

to the framework instead of the silhouette sequence. Now, as a first step in the end-to-end
pipeline, we employed a Mask R-CNN [16] network, pre-trained on COCO dataset [30], to
extract silhouette sequence from the RGB video. The reason we extract silhouettes from the
input RGB images is because the gait-based methods, unlike person re-identification tech-
niques, are not designed to use any chromatic appearance information contained in the RGB
images/videos. Due to unavailability of RGB video gait dataset, we have used a subset of
publicly available person re-identification RGB dataset, PRID-2011 [19] in this experiment.

We show results on sequences of PRID-2011 dataset which were captured at view angle
of 90◦. Additionally, since PRID-2011 [19] is a person re-identification dataset, it con-
tains sequences that have self-occlusion (which partially covers the human body shape of a

Table 7 Improvement in Rank-1
accuracy of MGAN [17] on
using the Optimal View Predictor
instead of probe to gallery view
transformation on CASIA-B
dataset

Probe MGAN [17] MGAN

Angle Probe to gallery Optimal view (ours)

0◦ 58 63.19

18◦ 65.9 72.06

36◦ 73 77.12

54◦ 77.1 76.02

72◦ 73.1 70.38

90◦ 67.3 66.13

108◦ 69.9 73.38

126◦ 78.6 77.93

144◦ 77.9 76.09

162◦ 71.9 70.45

180◦ 58.4 61.36

Average 70.1 71.28
The models are trained on the
first 62 subjects and tested on the
remaining 62 subjects
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Table 8 Ablation Results - Rank
1 accuracies(%) obtained by
using triplet loss to train the
optimal view predictor and
concatenating encoder output to
view angle while giving input to
the optimal view predictor

Probe Using triplet loss to train Encoder output + view angle

Angle optimal view predictor as input to optimal view predictor

0◦ 58.13 56.16

18◦ 68.25 66.28

36◦ 71.77 73.75

54◦ 73.38 72.80

72◦ 69.87 68.03

90◦ 65.98 63.12

108◦ 69.65 68.91

126◦ 72.36 70.53

144◦ 73.75 71.85

162◦ 68.91 69.13

180◦ 56.67 57.69

Average 68.07 67.12

The models are trained on the
first 62 subjects of CASIA-B
dataset and tested on the
remaining 62 subjects

subject). As the re-identification methods use chromatic appearance information, they are
relatively less affected by self-occlusions. However, such observations with self-occlusions
massively degrade the performance of gait based recognition systems that do not use any
chromatic information and work with minimal input information of the human body shape.
Hence, typical gait based approaches use sequences which contain images of full human
body shape. To ensure this, we choose 32 identities from the PRID-2011 dataset, that sat-
isfy this condition. Out of the 32 identities, 8 identities were used in the train set to fine-tune
our network and the remaining 24 identities were in the test set. We performed 4-fold cross
validation on the 32 identities.

Table 9 shows the results of the GEI construction module on this dataset. It can be
observed from Table 9 that the proposed end-to-end framework achieves a very respectable
performance in terms of rank-1 accuracy even when it is applied in a more real-world sce-
nario with RGB image sequences as inputs. We present more details on the dataset creation
in the Supplementary Material provided along with the paper. This experiment thus demon-
strates the ability of our method to work in an end-to-end manner along with an off-the-shelf
gait segmentation module.

Table 9 Rank-1 identification
accuracy(%) of GEI construction
module on 32-ids subset of
PRID-2011 dataset(view angle of
90◦)

#Silhouettes Rank-1 Accuracy(%)

1 33.3

3 54.16

5 58.3

8 70.8

10 75.0

13 79.1

15 79.1

18 83.3

20 87.5
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Table 10 Performance of the combined model

Number of Silhouettes

3 8 20 40

Baseline 7.53 21.69 36.39 48.38

Combined Model 18.08 42.64 46.20 60.33

The models are trained on the first 62 subjects of the CASIA-B dataset and tested on the remaining 62
subjects. The results show that our model is robust to the challenges posed by missing data/incomplete
sequences captured in different view angles making it more suitable for practical scenarios

5.4 Combining the twomodels

In this section we combine the GEI construction module and view invariant module and
show the advantage of using the GEI construction module in cases when the number
of silhouette frame are less. The input here are incomplete probe and gallery sequences
of silhouettes which are classified into one of the possible view using a view classi-
fier. The sequences are then given to the GEI construction network for that particular
view. The GEI construction module generates probe and gallery GEIs corresponding to
the input sequence in their respective view angles. Now, the probe and gallery GEIs are
given to the view invariant module, where they are compared for the task of identifica-
tion. We compare our combined model performance in Table 10 with the baseline case
when the available silhouettes are simply averaged to create a GEI(which is the general
straight-forward method to construct a GEI). This GEI is then given to the view invariant
module.

Fig. 9 Computational time v/s Accuracy comparison for the GEI construction module. As the number of
silhouettes in the input sequence increases, the computational time and identification accuracy also increases.
However, after the length of input sequences approaches the length of gait cycle, accuracy remains almost
same. The above results are shown for CASIA-B dataset
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5.5 Computational time complexity of our model

In this section, we discuss the computational time complexity of different modules of our
model. The GEI construction module produces a GEI corresponding to each silhouette in the
input sequence, and finally combines them to form the final GEI. Therefore, the time com-
plexity of the GEI construction module is O(l) where l is the length of the input sequence
available for a particular identity/person. The view invariant model takes the GEI as an input
and compares it with the GEI representation of every other identity in the gallery set, after
transforming them to a common optimal view. However, the computational time complexity
is same of each identity and is dependent on the size of the gallery set. Therefore, the time
complexity of the view invariant module can be represented as O(D), where D is the num-
ber of identities in the gallery set. In Fig. 9, we compare computational time with accuracy
of the GEI construction module. The experiment was run on a system with Intel(R) i7-8700
CPU processor with 32 GB RAM, 1080Ti GPU.

6 Conclusion

In this work, we presented a novel and robust approach to perform the task of gait based
person recognition under real-life, practical scenarios. We presented methods to handle the
challenges posed by incomplete silhouette sequences and multi-view sequences. We, first,
looked into the incomplete sequence problem. We proposed a method which took incom-
plete silhouette sequences as input and constructed accurate GEIs, similar to the GEIs
constructed from complete gait cycle sequence (if it were available). We used a Single
Silhouette GEI Generator which generates GEIs, from single silhouettes, which are then
fused together to get a final GEI. We explored and compared different techniques to fuse
the generated GEIs. We then addressed the issue of view variance. We proposed a novel
method to jointly, estimate the optimal view for comparison of the probe and gallery obser-
vations depending on their respective initial view angles, as well as learn the transformations
between GEIs across these views. We showed the advantages of using such an optimal
transformation, both qualitatively and quantitatively. Through extensive experiments on two
gait benchmark datasets, we showed that our proposed framework outperforms most of the
state-of-the-art methods.
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