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Abstract
Nowadays, automatic speech emotion recognition has numerous applications. One of the
important steps of these systems is the feature selection step. Because it is not known which
acoustic features of person’s speech are related to speech emotion, much effort has been
made to introduce several acoustic features. However, since employing all of these features
will lower the learning efficiency of classifiers, it is necessary to select some features.
Moreover, when there are several speakers, choosing speaker-independent features is
required. For this reason, the present paper attempts to select features which are not only
related to the emotion of speech, but are also speaker-independent. For this purpose, the
current study proposes a multi-task approach which selects the proper speaker-independent
features for each pair of classes. The selected features are then given to the classifier. Finally,
the outputs of the classifiers are appropriately combined to achieve an output of a multi-class
problem. Simulation results reveal that the proposed approach outperforms other methods
and offers higher efficiency in terms of detection accuracy and runtime.

Keywords Speech emotion recognition .Multi-task feature selection . Speaker independent
features

1 Introduction

In the formation of an individual’s emotions, there is a set of emotions, such as happiness,
sadness, anger, disgust, boredom, surprise, fear, and neutrality. Emotions play a prominent role
in human communications. They are critical for exhibiting behavior under different conditions.
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On one hand, emotions cause psychological changes, which form in the brain and manifest
themselves in human reactions. In addition, emotions increase or decrease the physiological
stimuli of the body and positively or negatively impact behavior and thoughts. Moreover, the
emotion of speech depends on the speaker’s language and culture, gender, age, speech content,
and other factors [12, 20].

Speech emotion recognition offers numerous applications in human-machine communica-
tion systems. For example, there are different applications in the field of education, computer
games, medicine, customer communication systems, telephone centers, and mobile commu-
nications [5, 31, 32, 44, 45]. Nevertheless, automatic speech emotion recognition requires an
acoustic feature extraction. Since there is no information about which features are related to a
speaker’s emotions, many researchers have proposed several features. Unfortunately,
employing all of these may pose two basic challenges. The first one is the low number of
training samples and large number of features, which lead to data overfitting and a possible
reduction in system efficiency. The second challenge is the increase in the algorithm runtime.
As a consequence, it is necessary to select features which are related to emotion classes and
which are also speaker-independent [42].

Despite the challenges mentioned, there are several methods for selecting features. One
method is multi-task approach, which is the main focus of the present paper. A few studies
have investigated the selection of speaker-independent features through a multi-task approach.
For instance, multi-task learning is only employed in [50, 51] for learning a shared subspace
for singing and speaking. In this regard, different tasks are separated in terms of male-female
and speech-song. As a result, the selected features are not speaker-independent.

The main aim of the current paper is finding speaker-independent features. For this purpose,
a multi-task objective function is considered by which common features among all speakers
are obtained for each pair of emotion classes. Then, through a training of binary classifiers and
a proper combination of their output, the predicted label is obtained.

In the present paper, Section 2 presents the related work. Section 3 explains some related
preliminaries. Section 4 introduces the proposed method in detail. Section 5 discusses the
experiments and analyzes the results. Finally, Section 6 provides the conclusion.

2 Related work

Speech emotion recognition systems are generally divided into two categories: speaker-
dependent and speaker-independent. Numerous methods have been proposed to meet the
challenges posed in both groups. Such methods attempt to improve efficiency by reducing
the number of features. For example, speaker-dependent systems rely on a limited number of
speakers and so may face low efficiency when new speakers are introduced. In these systems,
various feature selection and dimensionality reduction methods have been used to overcome
the high number of features. Some of these methods will be introduced in the following. The
Locality Preserving Projections (LPP) [53], Diffusion Map (DM) [40], Isomap [49], and
Kernel PCA [4, 16, 39] methods have been employed to reduce the dimensionality of the
feature matrix.

Some works utilized correlation-based methods. For instance, [29] employs canonical
correlation to compute the correlation between two groups of features and this results in the
selection of features with the highest correlation. Moreover, canonical correlation and kernel
methods are utilized for feature selection in two groups of voice and video [13, 15, 33]. In
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addition, [19] employs the correlation between features and class labels for feature selection.
There are also unsupervised methods, such as Multi-Cluster Feature Selection (MCFS) [7],
which are based on data clustering. In addition to the clustering method, evolutionary
approaches, such as Particle Swarm Optimization (PSO) and Biogeography-based Optimiza-
tion (BBO), are employed for feature selection in [41, 46–48].

Because there are numerous speakers in most speech emotion systems, the speaker-
independent system is vital [42]. The main aim of some works is to meet this challenge by
attempting to train systems which are suitably efficient for a new speaker. Research in speaker-
independent feature selection can be generally categorized into five groups. Table 1 presents a
summary of works on speaker-independent feature selection.

The first group utilizes baseline feature selection methods [21, 26, 42]. The second group
proposes a cost function for feature selection and employs evolutionary methods to solve it
[22, 24, 41]. The main drawback of the methods used by these two groups is their high
runtime. The third group utilizes the relationship between features and class labels and selects
features which have the highest correlation with class labels. For this reason, a different
correlation function is used, such as the Canonical, Spearman, and Pearson [8, 25, 36]. Also,
in [43], Mutual Information (MI) is employed to calculate the correlation between classes and
features. This method shows how many features provide information about a class.

The fourth group has a multi-task approach to feature selection. However, a small amount
of research has employed multi-task methods to find a speaker-independent sub-space [50,
51]. Such works simultaneously perform feature subspace learning and classifier training.
These methods consider four tasks: female-speech, female-song, male-speech, and male-song.
Also, four emotion classes are explored and a combination of six binary classifiers with one-
against-one strategy is used. Each trained classifier receives test data and the class of the test
data is obtained by majority voting on the output of the classifiers.

It should be noted that the methods in [50, 51] select features which are independent of
male/female or song/speaking. The present study reveals that these methods can be employed
for speaker-independent feature selection by applying some changes to multi-task systems [50,
51]. For this purpose, each speaker should be considered as a task. Moreover, only SVM
classifiers can be used in these methods and, unfortunately, this is time-consuming in high
dimensional problems. In contrast, the proposed method performs feature selection in two
separate phases: feature selection and classifier training. As a result, different classifiers can be
employed. Furthermore, with the proposed method’s low runtime, the present study suggests a
regression-based classifier output fuser.

Table 1 A summary of works on speaker-independent feature selection for emotion recognition

Category name Description Publication year

1 Baseline Forward Feature Selection Method [21, 26, 42] 2007, 2010, 2012
2 Evolutionary

algorithms
Best-First method [22], Particle Swarm Optimization [41], Genetic

Algorithm [24]
2010, 2015, 2018

3 Correlation-based Spearman Method [25], Canonical Correlation [36],
Canonical-Based Feature Selection [8], Mutual Information [43]

2018, 2016, 2018,
2017, 2018

4 Multi-task [50, 51] 2016, 2017
5 Others Gaussian Kernel Technique [17], PLDA-Based [6], Three-Phase

Feature Normalization [18]
2014, 2018, 2016
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There are also other methods which are mentioned in Table 1. For instance, [17] divides
data into n groups (the optimal value for n is obtained through different experiments). Then, a
Gaussian kernel with different values of sigma is applied to each group and common features
among each group are selected. Finally, the union of all features is obtained from the n groups.

Dang and et al. introduced speaker-related factors for each speaker [6] which employ the
probabilistic linear discriminant analysis (PLDA) technique. This technique uses emotion
factors related to each speaker and provides information about the features at each frame. In
each step, information about the features of each speaker’s whole frames is obtained. As a
result, this technique finds the feature space containing information about all speakers.

In three steps, the cascaded normalization method in [18] normalizes features which are
related to each speaker. The first step carries out normalization as presented in [34]. The
second step performs normalization in order to prevent sparsity, which is stated asf xð Þ ¼ sig
n xð Þ xj j�, where 0 � � � 1. The last step normalizes each feature vector x byL2-norm. Finally,
these three normalization steps remove the redundant features.

3 Preliminary

3.1 Multi-task feature selection

Multi-task systems are useful for feature selection as they find common features among all
tasks. As a result, the obtained space contains information about all tasks, thus improving the
efficiency of the classifier [23, 30]. Although there are a high number of features in a multi-
task system, a feature matrix must become sparse in order to achieve the desired features.
Various methods may be applied for feature matrix sparsity. Usually, L2;1-norm is utilized for
sparsity and for selecting suitable and common features among different tasks [35, 37, 38]. The
general objective function can be considered as:

WminLoss W ;X ; Yð Þ þ � k W k2;1 ð1Þ
where Loss W ;X ; Yð Þ is a smooth convex loss function as least square or logistic loss. Also,
L2;1-norm is a non-smooth function and can be calculated as:

k W k2;1¼
Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
j¼1

wð ði; jÞÞ2
vuut ¼

Xd
i¼1

k wi k2 ð2Þ

whereT is the number of tasks and d is the number of features.W 2 R
d�T is the weight matrix

in which the i-th row is denoted bywi and relates to the i-th feature and eachW column relates to
a certain task. Moreover, � is the regularization parameter which can be used to regularize the
sparsity.

As seen, the objective function (1) contains two terms. The first term models the relation-
ship between features and labels and the second term regulates the sparsity. Since L2;1-norm
performs the regularization, based on (2), the first L2 -norm is applied to the rows of W ;

followed by the application of the L1-norm, which is common among all tasks. Consequently,
after the L2;1-norm application, if one row of theW matrix, corresponding to one feature, nears
zero, then that feature will not be selected. Finally, selected features are common among all
tasks. In this case, the value of � determines how many selected features are appropriate.
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3.2 Combination of binary classifiers

The current study deals with a multi-class problem. There are two approaches for
performing multi-class classification. The first is a multi-class method which is directly
employed. The second approach employs a number of binary classifiers and performs
multi-class classification by a combination of binary classifier outputs. It is worth
mentioning that, if the features between different pairs of classes are not the same,
then the features from each pair cannot be combined or a multi-class classifier cannot
be directly utilized. This occurs, for example, when selected features for classifying the
sadness and happiness classes differ from those features selected for classifying the fear
and sadness classes.

Implementing a multi-class classifier with binary classification requires a suitable
combination of binary classifiers. The majority voting method is the easiest combination
for this purpose. In this method, each two-class classifier reports a vote on the label of
the test data. The test data will then belong to the class receiving the highest vote.
Majority voting may have low efficiency. Another method uses the scores reported by
each two-class classifier. These scores represent the belonging degree of data to a class.
Based on the number of classifiers and classes, the estimated belonging degree of data to

class k, denoted by bk, can be calculated as:

kbk ¼ argmin

PL
j¼1 mkj

�� ��gðmkj; sjÞPL
j¼1 mkj

�� �� ð3Þ

where k 2 f1; 2; ;Kg and K denotes the number of classes, L is the number of classifiers, g
represents the binary loss function, and sj stands for the score of the j-th classifier.mkj

2 f0; 1;�1g represents whether class k is related to classifier jor not. If class k is not
related to classifier j, then mkj ¼ 0. If class k is related to the first class of classifier j,
mkj ¼ 1; otherwise, mkj ¼ �1 [1, 9, 14].

It is important to note that the methods discussed may have low efficiency if the feature
space of classifiers is not the same and if the features obtained from each pair differ from each
other. Low efficiency occurs when classifier inputs are different and their scores cannot be
combined. Hence, if classifiers have a different input space, an efficient algorithm is needed.
This algorithm should be able to combine classifier outputs and, for this reason, the present
study suggests a regression-based method.

With the assumption that there are a number of trained binary classifiers, regression
methods are appropriate for a combination of binary classifier outputs. In this regard, for the
estimation of labels, the scores generated by each trained binary classifier can be given to the
trained regressor model for estimating the label class.

To train the regressor, the outputs of the classifiers and true labels act as the training
samples. Figure 1 demonstrates the regressor training process. Based on this figure, the
features related to each pair of classes are extracted from all training data; generally,
the features related to each pair of classes can differ from those of other pairs. Then,
the trained binary classifiers receive these features and the scores obtained from each
binary classifier, as well as the sample labels, are given to the regressor as inputs.
Finally, the trained regressor model is produced, which can combine classifiers and
estimate final labels.
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4 Proposed method

The current paper addresses a multi-class problem containing K classes and solves this with
binary classifiers. Consequently, the data is considered as pair of classes and the feature
selection process should be performed separately for each pair of classes. To solve the multi-
class problem via binary classifiers, it is noteworthy that two strategies are used: one-against-
one and one-against-all. In the one-against-one strategy, two different emotions can be
perceived as a pair of classes. In the one-against-all strategy, the positive class includes one
emotion and the other class includes other emotions.

As mentioned, the proper feature space between pairs of classes may be different. For
example, the proper features for classifying the emotions of sadness and disgust may have no
relation to features related to the emotions of happiness and neutrality. Therefore, it is
necessary to separately perform the selection and training processes for each pair of classes.

Assume the dataset contains N data from T speakers. In this case, for each pair of classes,

assume that xs 2 R
ns�d is related to the data of the s-th speaker and ns is the number of data.

Moreover, ys 2 Rns�1 is related to the data labels of the s-th speaker, where s 2 1; 2; ;Tf g.
Also, xs;j denotes the j-th data of the s-th speaker and its class label is ys;j 2 fþ1;�1g, which
represents the j-th element of ys.

Since the current paper’s main purpose is selecting common features among speakers, the
objective function is proposed as:

W ; cmin
XT
s¼1

Xns
j¼1

log 1þ exp �ys;j w
T
s xs;j þ cs

� �� �� �
þ ρ1 k W k2F þρ2 k W k2;1 ð4Þ

where W 2 R
d�T is the weight matrix, ws 2 R

d�1 represents the s-th column of W and the
weight matrix of the s-th speaker, and cs denotes the bias term of the s-th speaker. In the first
term of (4), there is a logistic regression-based classifier for each speaker and ws is the weight
vector of this classifier for the s-th speaker. Hence, if one element ofws nears zero, this implies
that the corresponding element has almost no impact on classifying the data of the s-th speaker.
The second term of (4) attempts to control the complexity of each speaker’s classifier, which is
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Fig. 1 Regression training to combine the output of the binary classifiers
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achieved by changing ρ1. As described in Section 3.1, the third term of (4) plays the role of
feature selector.

By applying the proper coefficients of ρ1 and ρ2, the current work searchesW, which thus
minimizes (4). In order to reach the optimal point, some rows of matrix W will become zero,
which means that some features will be removed. As a result, the remaining features are
common among all tasks (speakers) and can describe the class label (emotion) for any speaker.

Figure 2 provides a schematic of the training process. According to this figure, in the first
step, training data related to each pair of classes are separated. In the feature selection step, the
data of each pair of classes are given to the objective function (4) for selecting common
features among all speakers in each pair. Figure 3 illustrates the process in detail. Based on
Fig. 3, matrix W is calculated. Then, the indexes of the non-zero row of W are stored. These
index features are related to a pair of classes and are thus common among speakers. It should
be noted that the selected features for each pair of classes can differ.

For each pair of classes, the next step separately extracts the selected features from all data.
Then, the selected features are given to the binary classifiers and the trained models for each
pair of classes are obtained. Finally, to train the regressor and combine the classifier outputs,
all steps explained in Section 3.2 are taken.

According to Fig. 4, when the test data are introduced, the features obtained from each pair
of classes in the training step are extracted from the test data. Then, the set of obtained features
are given to the trained models and the generated scores from each model are combined based
on the trained regression model. As a result, the estimation of the test data label is calculated.

The objective function represented in (4) consists of two terms: the smooth term and non-

smoo t h t e rm , r e s p e c t i v e l y . The smoo t h t e rm i s F Wð Þ ¼ PT
s¼1

Pns
j¼1 log

1þ exp �ys;j w
T
s xs;j þ cs

� �� �� �
þ ρL2 k W k2F , which is a logistic regression classifier. The

non-smooth term isG Wð Þ ¼ ρ1 k W k2;1 . Consequently, minimizing F Wð Þ þ G Wð Þ has no
closed-form solution. However, several methods can solve this problem [1, 2, 28] and the
present paper utilizes the algorithm represented in [2] to do so. The codes employed for this
purpose are adopted from [52].
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5 Experiments

In this section, the current paper’s dataset is introduced. In addition, this section briefly
explains the compared methods, provides the implementation details, and finally presents
and discusses the results.

5.1 Datasets and compared methods

The current paper employs two datasets: EMO-DB1 and ENTERFACE2. Information related
to both datasets are represented in the following:

A. EMO-DB Dataset: This dataset features seven emotions: happiness (HA), anger (AN),
disgust (DI), boredom (BO), sadness (SA), fear (FE), and neutrality (NE) [3]. Also,
this dataset contains 535 voice files from 10 German speakers. The study employs all
of these emotions and voice files.

B. ENTERFACE Dataset: This dataset features six emotions: happiness (HA), anger (AN),
sadness (SA), fear (FE), disgust (DI), and surprise (SU) [27]. Additionally, this dataset
contains 1,287 video files from 43 English speakers. It should be noted that the study uses
all the emotions and voice files of each video.

In order to evaluate the proposed method and investigate its performance, the present paper
compares it with some related approaches. These methods are summarized in the following.
Section 2 provides more descriptions.

& FFS: A basic and common feature selection method [42].
& FFS + Tree: In this method, a binary tree is constructed based on the three dimensions of

emotions [21].
& MI: First, the Z-Score technique normalizes the features of each speaker [11]. Through

normalization, some of the less related features are removed. Then, the MI method
calculates the correlation between these features and its labels. Finally, the proper features
are selected [43].

& Spearman: This method first calculates the Euclidean distance and divides the features into
four groups. Then, the partial correlation between these four groups is obtained and the
Fisher method performs the dimensionality reduction [25]. In order to have the same work

1 http://emodb.bilderbar.info/docu/.
2 http://enterface.net/enterface05/main.php?frame=emotion.

Task 1: Speaker 1’s Data 

Related to Pair of Classes i

Task 2: Speaker 2’s Data 

Related to Pair of Classes i

Task T: Speaker T’s Data 

Related to Pair of Classes i

Multi-Task

Learning
Select Non-Zero

Rows

Indexes of Selected  

Features for Pair 

of Classes i

W

Fig. 3 Feature selection for i-th pair of classes

8134 Multimedia Tools and Applications (2021) 80:8127–8146

http://emodb.bilderbar.info/docu/
http://enterface.net/enterface05/main.php?frame=emotion


performed in all of the compared methods, only the Spearman feature selection step is
considered in the implementation.

& Speaker-Normalization: Three normalizations are performed [18].
& MTFS: This multi-task approach [51] selects corpus-independent features. However, the

present study modifies this method to choose speaker-independent features.

5.2 Implementation details

The current work extracts features with openSMILE3 software [10]. The “emo_large” config
in this software extracts 6,552 features from each voice file. In addition, classification is
achieved by a two-class SVM classifier employing one-against-one (OAO) and one-against-all
(OAA) strategies. Since these classifiers have some parameters, the following provides the
different intervals for parameters tuning in on all experiments:

& Denoting the sparsity of the feature matrix, parameter ρ1 in (4) is considered within {

101; 102; ; 104}. Also, parameter ρ2 in (4) is included in {104; 105; ; 109}.
& The number of selected features in each compared method is considered within {100; 150

; ; 700}.
& All experiments utilize the SVM classifiers with a linear kernel, as well as the OAO andOAA

strategies. Sixteen values are considered within f0:001; 0:003; 0:005; 0:02; 0:06; 0:08;
0:1; 0:2; ; 1g for parameter C (the penalty term).

& The Gaussian process-based regression with the fitrgp command in MATLAB software
combines the output of the binary classifiers (see Fig. 2). Parameter σ in the regression is

considered within {10�5; 10�4; ; 102; 103}.

Therefore, the one-leave-out speaker cross validation performs parameter tuning. For this
purpose, one speaker is considered for the test and so the remaining speakers perform the
feature selection between the two classes. Then, the training of the two-class classifiers takes

3 https://audeering.com/technology/opensmile.
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place, followed by combining the results from classifiers and regression training. The testing
process is performed with the speaker, who is specially selected for this task. This process
repeats by the number of speakers and, in each repetition, one speaker is considered for the
test.

It should be noted that parameter tuning for training classifiers and combiner regressors are
considered the same by the proposed approach, as well as by the compared methods. Also, in
the OAO strategy, the EMO-DB and ENTERFACE datasets contain 21 and 15 pairs of
emotions, respectively; in the OAA strategy, they contain 7 and 6 pairs of emotion classes.
All implementations are run on a PC with a Corei5 CPU with 8 GB RAM in the Windows
operating system and MATLAB software, version 2016b.

5.3 Results

After the proposed objective function (4) performs feature selection, it is observed that the
feature space between each pair of classes is not the same. For example, features obtained for
sadness and disgust have no relation with the features for happiness and neutrality. Therefore,
the current work examines different tasks to unify the feature space. First, the union of selected
features from each pair of classes is calculated so that the obtained features for all pairs of
classes are the same. Then, multi-class classifiers are employed. Despite this, all of the
obtained results from each item are not necessarily acceptable.

Table 2 Feature selection and classification in EMO-DB dataset, using OAO strategy (′ denotes minute and ′′
denotes second)

Method Efficiency ± Standard
deviation

Feature selection time for
each emotion pair

SVM classifier
learning time

Number of
features

Proposed Method 71.01 ± 10.28 2” 3’ 505
Speaker-Normalization 69.12 ± 11.94 1’:40” 3’:30” 550
MI 66.85 ± 12.59 3’:13” 3’:30” 550
Spearman 63.01 ± 10.82 13’:22” 3’:30” 550
MTFS 61.59 ± 10.98 19′* 515
FFS + Tree 61.90 ± 12.76 18’:10” 4’ 600
FFS 59.42 ± 11.44 21’:29 4’ 600

*Since MTFS jointly performs feature selection and classifier training, the reported time is related to the sum of
feature selection and classifier training times

Table 3 Feature selection and classification in ENTERFACE dataset, using OAO strategy (′ denotes minute and
′′ denotes second)

Method Efficiency ± Standard
deviation

Feature selection time for
each emotion pair

SVM classifier
learning time

Number of
features

Proposed Method 73.03 ± 07.56 5” 3’:13” 454
Speaker-Normalization 67.98 ± 10.94 2’:4” 3’:39” 550
MI 68.65 ± 12.07 5’:29” 3’:25” 500
Spearman 69.32 ± 08.76 14’:50” 3’:56” 600
MTFS 59.38 ± 08.31 21′* 530
FFS + Tree 65.38 ± 11.82 20’:58” 3’:39” 550
FFS 61.25 ± 12.40 24’:3” 3’:56” 600

*Since MTFS jointly performs feature selection and classifier training, the reported time is related to the sum of
feature selection and classifier training times
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Simple combination methods, such as score-based and majority voting, are also
examined and the results prove to be unacceptable. For this reason, the current study
does not report these. Because the feature spaces between each pair of classes are
different, such results demonstrate that an appropriate combination of classifier outputs
should be utilized to achieve a multi-class classifier via binary classifiers. As explained
in Section 3.2, the regression method is employed to combine classifiers and corre-
sponding results are reported.

Feature selection and classification experiments are conducted in two ways. In the first
feature selection experiment, the OAO strategy performs speaker-independent feature selection
for each pair of emotions. In each step of this strategy, only one pair of emotion classes (two
emotions) is considered for each speaker. In the second experiment, the OAA strategy selects
between one emotion and other emotions. In this case, those features which discriminate one
emotion from others are selected. In addition, the proposed and compared methods select a
different number of features and so the numbers f100; 150; ; 700g are considered. Finally,
those features with the highest efficiencies are reported.

In order to show that selected features are speaker-independent, the present study
chooses one speaker for the test. While the data related to the test speaker are utilized
for the test, the feature selection and training classifier procedures are performed with
the data related to the rest of the speakers. For example, in the EMO-DB dataset, which
consists of 10 speakers, nine are used for the training process; the experiments are
repeated 10 times and, in each repetition, one speaker is chosen for the test. Finally, the
average of these 10 results is reported. The ENTERFACE dataset, which contains 43
speakers, performs the same process.

Additionally, the OAO strategy calculates the intersection of the selected features among all
the experiments. In fact, these features are common among all speakers and emotions. These

Fig. 5 The recognition rates of each emotion in OAO strategy for EMO-DB dataset

Fig. 6 The recognition rates of each emotion in OAO strategy for ENTERFACE dataset
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features are then employed to classify emotions and the results are reported. The following
three sections report the results.

5.3.1 One-against-one strategy results

This experiment considers the data of one pair of emotions for each speaker. In this case, there are
KðK�1Þ

2 pairs of emotions and classifiers andK is the number of classes. Tables 2 and 3 provide the

average result ofT reparations for both datasets (T is the number of speakers). The results reveal that
the proposedmethod has a higher efficiency than the other methods.Moreover, the feature selection
time, classifier learning time, and the number of selected features in the proposed method are lower
than in the others. It should be noted that the best result is reported for each method.

In the EMO-DB dataset, the speaker-normalization method has the highest efficiency in
comparison with the other methods and is closer to the result obtained by the proposed
method. Since MTFS simultaneously performs feature selection and classifier training, it
reports the sum of the feature selection time and classifier training time. However, the results
obtained by this method are not desirable.

Since the number of speakers in the ENTERFACE is more than that of the EMO-DB
dataset, the ENTERFACE dataset’s feature selection time and classifier training time are

Table 4 Feature selection and classification in EMO-DB dataset, using OAA strategy (′ denotes minute and ′′
denotes second)

Method Efficiency ± Standard
deviation

Feature selection time for
each emotion pair

SVM classifier
learning time

Number of
Features

Proposed Method 73.03 ± 07.04 7” 3’ 530
Speaker-Normalization 70.129 ± 07.8 2’:7” 3’:30” 700
MI 68.45 ± 11.08 4’:50” 3’:30” 550
Spearman 65.89 ± 08.23 16’:12” 3’:30” 550
MTFS 67.91 ± 08.09 23′* 550
FFS + Tree 63.37 ± 07.35 20’:5” 4’ 650
FFS 59.27 ± 08.27 22’:34” 4’ 700

*Since MTFS jointly performs feature selection and classifier training, the reported time is related to the sum of
feature selection and classifier training times

Table 5 Feature selection and classification in ENTERFACE dataset, using OAA strategy (′ denotes minute and
′′ denotes second)

Method Efficiency ± Standard
deviation

Feature selection time for
each emotion pair

SVM classifier
learning time

Number of
features

Proposed Method 69.43 ± 08.85 15” 3’:13” 507
Speaker-Normalization 68.01 ± 10.18 3’:23” 3’:19” 700
MI 65.48 ± 11.53 7’:18” 3’:25” 550
Spearman 66.34 ± 09.12 17’:48” 3’:56” 600
MTFS 63.29 ± 09.50 27′* 543
FFS + Tree 63.34 ± 13.41 21’:5” 3’:39” 600
FFS 58.64 ± 14.07 25’:32” 3’:56” 650

*Since MTFS jointly performs feature selection and classifier training, the reported time is related to the sum of
feature selection and classifier training times
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longer. In this dataset, the Spearman method’s efficiency nears that of the proposed method,
but Spearman’s feature selection time is longer. The Spearman method spends much time
calculating partial correlation coefficients during the feature selection step.

The recognition rates of each emotion are separately presented in Figs. 5 and 6. Figure 5
illustrates the EMO-DB dataset results. Based on Fig. 5, only the MI method’s result for the
emotion of boredom is close to that of the proposed method. Figure 6 provides results obtained
by the ENTERFACE dataset. As seen, the Spearman and speaker-normalization methods
outperform the proposed method only in the emotion of happiness. According to Figs. 5 and 6,
the proposed method detects almost each emotion with the highest accuracy.

5.3.2 One-against-all strategy results

In this experiment, the positive class contains one emotion and the other class contains
other emotions. In this case, the current work will have K pairs of classes and classifiers (K =
the number of emotions). Tables 4 and 5 present the feature selection and classification results,
which are related to an average of T repetitions (T = the number of speakers in each dataset).
The results of the OAO strategy demonstrate that the proposed method has a higher efficiency
than the other methods. Similar to the OAO experiment, the proposed method’s feature
selection time, classifier learning time, and the number of selected features in the OAA
experiment are lower than in the other methods. Since MTFS simultaneously performs feature
selection and classifier training, the sum of the feature selection time and classifier training
time is reported. However, the results obtained by this method are not desirable.

Fig. 7 The recognition rates of each emotion in OAA strategy for EMO-DB dataset

Fig. 8 The recognition rates of each emotion in OAA strategy for ENTERFACE dataset
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Similar to OAO, the OAA experiment separately calculates the recognition rate for each
emotion. Figures 7 and 8 provide the results for the EMO-DB and ENTERFACE datasets. The
proposed method shows the highest efficiency for all emotions.

5.3.3 Results for sharing selected features

In previous experiments, one speaker is considered for the test and for each pair of emotions,
feature selection and classifier learning were performed with the other speakers. In the case
that each speaker is considered for a test in each repetition and the sharing of selected features
in total repetitions is calculated, then sharing selected features will be common among all
classes and all speakers.

The main aim, therefore, is investigating how much these common features describe
different emotions when a new speaker is introduced. To this end, common features are
considered and two-class SVM classifiers with the OAO strategy are trained. Tables 6 and 7
report the results. These tables indicate that the proposed method can more effectively select
features related to all emotions than is possible by the other methods. In addition, comparing
the results of Tables 6 and 7 with those of Tables 2 and 3 demonstrates that the efficiency of
the proposed method rises as the number of selected features falls. Furthermore, the average
percent of common features in all pairs of classes is reported, which indicates that the proposed
method, in the absence of one speaker, will select almost the same features.

Table 6 Results of common selected features using SVM with OAO strategy, for EMO-DB dataset (Results
relate to 10 repetitions)

Method Average percent of
common features in all
pairs of emotions

Number of
common
features

Efficiency ± Standard
deviation

Efficiency ± Standard
deviation (LDA)

Proposed Method 89.34% 387 73.65 ± 05.48 79.14 ± 4.30
Speaker-Normalization 81.00% 358 70.20 ± 08.30 72.10 ± 6.40
MI 65.45% 306 67.12 ± 08.20 69.70 ± 5.40
Spearman 69.50% 341 62.30 ± 07.30 65.30 ± 9.40
MTFS 69.68% 376 63.59 ± 09.45 65. 98 ± 5.60
FFS + Tree 43.00% 290 60.12 ± 10.39 62.15 ± 8.37
FFS 37.58% 281 59.10 ± 10.00 61.23 ± 9.23

Table 7 Results of common selected features and using SVM with OAO strategy, for ENTERFACE dataset
(Results relate to 43 repetitions)

Method Average percent of
common features in all
pairs of emotions

Number of
common
features

Efficiency ± Standard
deviation

Efficiency ± Standard
deviation (LDA)

Proposed Method 82.10% 349 73.65 ± 05.48 80.63 ± 4.31
Speaker-Normalization 74.59% 319 67.00 ± 08.48 70.32 ± 7.35
MI 58.39% 287 66.84 ± 09.30 68.27 ± 8.43
Spearman 61.12% 304 68.92 ± 06.21 70.39 ± 6.40
MTFS 65.87% 321 60.69 ± 06.20 63.09 ± 5.00
FFS + Tree 58.12% 265 64.71 ± 10.30 66.31 ± 8.10
FFS 42.51% 221 59.39 ± 10.11 61.85 ± 8.13
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Moreover, with the application of the Linear Discriminant Analysis (LDA) method on the
common feature space and the training of the SVM classifier, the efficiency of the proposed
method appears to considerably increase. It should be noted that if LDA is first applied to all
features and is followed by classifier training, the EMO-DB and ENTERFACE datasets
achieve an efficiency of 55.67% and 51.34%, respectively. This reveals that better mapping
to the new space and increased efficiency of the classifier occur when the number of features is
lower and more appropriate features are available.

In addition to the SVM classifier, the remainder of the experiment employs the extreme
learning machine (ELM) and decision tree classifiers for common features and reduced feature
space. The sigmoid activation function, as well as some hidden layers within 10; 20; 100f g, is
utilized for the ELM classifier. Ten father nodes are also considered for the decision tree
classifier. Tables 8 and 9 report the experiments’ results. In comparison with the other
methods, the efficiency of the proposed method is higher.

All experiments in this section demonstrate that, by considering common features between
each pair of emotions, the proposed method can select the features most related to emotions.
This will significantly improve the efficiency of each classifier. Additionally, when consider-
ing Tables 6, 7, 8 and 9 and comparing them with Tables 2, 3, 4 and 5, the present study
observed that the standard deviations obtained from the different experiments significantly
decreased. This drop is most significant in the proposed method, which points to its higher
accuracy in selecting common features.

6 Conclusion

The results of the current work demonstrate that multi-task methods are suitable for the
purpose of feature selection. The multi-task methods utilized in [50] and [51] simultaneously
perform feature selection and classifier training. In these methods, the presented objective
function contains a multi-task SVM objective function and an additional term for the classi-
fier’s sparsity of weight vector. One important issue is the rise in the number of data or features
that significantly increases the runtime order of the SVM classifier solution. As a result, these
methods are not suitable when there are a high number of features and the task is time-
consuming. Also, although the features obtained for each pair of classes differ in [50] and [51],
no proper combination is presented for them and they have low efficiencies. In contrast, the
proposed method is performed in two phases. First, feature selection is performed followed by
classification. Hence, in the proposed method, each of classifiers can be utilized. Also, the
speed of feature selection in the proposed method is very high.

Moreover, in all the methods compared in this study, there are some tuning parameters.
Consequently, to find the proper parameters for each method, trial and error must be
employed. In this case, if a method is time-consuming, then its process will be tedious.
However, with the proposed method, the speed is acceptable and suitable parameters can be
found quickly. Consequently, designing multi-class classifiers takes little time. Finally, the
proposed method presents a fast approach for selecting the speaker-independent features for
each pair of classes. In addition, every classifier can be used in the training phase and these
results can be efficiently combined. Furthermore, the experiments indicated that the obtained
common features can improve the results of all experiments. In addition, the application of
dimensionality reduction methods, such as LDA, after feature selection will considerably
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improve efficiency, especially when the proper features are selected in the feature selection
phase.
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