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Abstract
With the rapid development of artificial intelligence technologies, various generative models
can synthesize fake face images with photo-realistic effects. Glow, a generative flow using
invertible 1×1 convolution, is a state-of-the-art technique for efficient synthesis of face
images with high resolution and fidelity. However, facial forgeries bring serious challenges
to morality, ethics and public confidence. Especially, facial forgeries might change the
semantic content conveyed by a face image. A Convolutional Neural Network (CNN) based
model, namely SCnet, is proposed to expose the Glow-based facial forgery. Specifically,
an image sharpening operator is embedded in the convolutional layer as the pre-processing
layer of the network to highlight the traces left by Glow. Then, SCnet is specifically
designed to automatically learn high-level forensics features from pre-processing results.
Moreover, a fake face dataset is built by exploiting the CelebA face image dataset and the
Glow-based forgery technique. A series of experiments are conducted to prove the effec-
tiveness of the proposed approach. Experimental results show that the proposed approach
achieves a classification accuracy up to 95.92% under various post-processing operations.

Keywords Convolutional neural networks · Fake face datasets · Facial forgery · Passive
image forensics

1 Introduction

1.1 Face Forgery

Face images contain rich and intuitive personal identity information such as gender, race,
emotion, age and health status. As a widely-accepted biological modality, face image has
been used in many applications such as automatic border control and online payment by
face-scanning. However, face images have vulnerability and weak privacy, which implies
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that they are easy to be tampered and forged [2]. There are many specifically-designed face
image editing tools such as PicTreat, FaceYou, FaceSwap and FaceForge. Especially, with
the rapid development of Artificial Intelligence (AI) technologies, many generative models
including Generative Adversarial Networks (GANs) [13], Generative FlowModels [19] and
Variational Autoencoders (VAEs) [20] were presented in past years to generate fake face
images. They achieve much better visual qualities than the classical Computer Graphics
(CG) based methods such as Face2Face [37]. Figure 1 shows the most recent progresses
in generating fake face images. These techniques promote the development of industrial
applications such as film production, affective interaction, and virtual/augmented reality.
However, they might also be used for malicious purposes. In June 2019, the Associated
Press reported that spy used AI to create fake LinkedIn photo to fool targets via Phantom
LinkedIn Profile [12]. Katie Jones, whose photo is believed by AI experts to be almost
certainly created by GAN, does not exist. Apparently, this brings serious crisis to social
security and public confidence. U.S. lawmakers held their first hearing devoted primarily to
the threat of artificially generated imagery.

Face image tampering can be divided into two categories: face identity tampering (FIT)
and face expression tampering (FET) [33]. FIT refers to face replacement via FaceSwap
[21], or generating fake face images of entirely imaginary people [16, 18]. FET refers to
generating face images with specific expressions [9], or transferring facial expression from
the source actor to the target [37]. Face2Face animated the facial expressions of the target
video by a source actor and re-rendered the manipulated video in a photo-realistic fashion
[37]. In recent years, a few generative models, which include ExprGAN [9], StarGAN [6],
GANimation [31] and NeuralTextures [36], were proposed for photo-realistic FET. Besides,
Glow [19], which is a common DeepFake forgery, was also proposed by extending existing
NICE [8] and RealNVP [10] flows. By exact latent-variable inference and efficient tex-
ture synthesis, Glow synthesizes hyper-realistic faces images, in which facial expression
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Fig. 1 Research progress in generating fake face images. In the facial identity tampering, from left to right,
the spatial resolutions of fake face images are 64×64, 128×128 and 1024×1024, respectively. In the facial
expression tampering, we show the expression images generated by different forgery methods
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is intensity-adjustable. Facial expression is a high-level facial attribute, which is also an
important form of non-verbal communication. We can perceive true emotions from facial
expressions existed in face images. If facial expressions, especially those of politicians or
public figures, are maliciously tampered, it might bring serious public opinions. There-
fore, at the era of face-scanning everywhere and the beginning of AI to “lie”, fake facial
expression detection is becoming an urgent issue to be solved in the community of image
forensics.

1.2 Fake face detection

Image blind detection is to identify the authenticity of digital images without the reference
of the original image or any pre-embedded information [24]. In the community of fake face
image detection, blind detection is to expose fake face images.

Existing blind detection works are mainly proposed to expose FIT. Nhu et al. [29] added
a fully connected layer to VGG-Face [30] and fine-tuned the network to detect fake face
images generated by DCGAN [32] and PGGAN [17]. Dang et al. proposed a customized
Convolutional Neural Networks (CNN), namely CGface [7], to detect fake face images
generated by PGGAN and BEGAN [5]. However, CNN tends to learn the content features
of images instead of subtle tampering traces. If the content features are suppressed before
the image is fed into the CNN model, the detection performance will be improved. Thus,
Mo et al. [28] combined the high pass filter with the CNN model to detection fake face
images generated by PGGAN, which achieves a detection accuracy up to 99.4%. Zhou
et al. [39] built a new dataset of tampered face images with two online face swapping Apps
including SwapMe.1 and FaceSwap2 Then, a two-stream network was presented for face
tampering detection by capturing tampering artifacts and local noise residuals. In addition,
Li et al. [25] proposed a novel method to focus on the blending boundary artifacts between
the altered face and the existing background image to expose the FIT. However, it is difficult
to achieve FET detection only by focusing on the boundary artifacts of human face contour.

For the forensics of FET, Rössler et al. [34] built a FaceForensics dataset with about 500K
FET images by using the CG-based Face2Face. By fine-tuning an existing CNN model, a
preliminary detection was conducted on this dataset. Afchar et al. [1] designed a compact
deep learning model, namely MesoNet, for facial video forgery detection, which achieved
detection accuracies of 98% for Deepfake videos and 95% for Face2Face videos on the
FaceForensics dataset. Figure 1 compares the final FET effects among Face2Face and five
generative models. We can observe that Glow and NeuralTextures achieves the best photo-
realistic FET results. Thus, the forensics for Glow-based or NeuralTextures-based FET will
be more challenging. In this paper, we will focus on the detection of Glow model. Unluck-
ily, there is still no work reported for the blind forensics of Glow and other generative
models based FET. The reasons behind this are two-fold: First, since tampering detection
usually falls behind image tampering, FET detection, which is a countermeasure to FET,
is an issue to be addressed in the AI era, especially when these generative models based
FET techniques are the most recent. Second, the open FaceForensics dataset is built by
only exploiting Face2Face, we are still lacking a more universal dataset, which should con-
tain fake face images by the latest generative models, for FET forensics. Actually, existing

1https://itunes.apple.com/us/app/swapme-by-faciometrics.
2https://github.com/MarekKowalski/FaceSwap.

Multimedia Tools and Applications (2021) 80:7687–7710 7689

https://itunes.apple.com/us/app/swapme-by-faciometrics
https://github.com/MarekKowalski/FaceSwap.


works for face image forgery detection are still in the stage of preliminary exploration. They
provide only binary classification about the trustworthiness of face images without consid-
ering complex conditions for practical forensics scenarios.

1.3 Our Contribution

To address the above issues, we propose a blind detection approach for the Glow-based
FET. As the latest generative model, Glow is exploited to build a fake face dataset, which
is referred to the Glow-based Fake Face (GFF) dataset, from the CelebA face image dataset
[27]. Then, a forensics model based on Sharpening operation and CNN, namely SCnet, is
designed for face forensics. The main works and contributions are summarized as follows.

– The GFF dataset, which contains 321,378 face images, is built by exploiting the Glow
model and the CelebA face image dataset. Different from the FaceForensics dataset, the
GFF dataset is based on the state-of-the-art generative model, which will be available
for researchers soon via GitHub.3

– The CNN-based SCnet model is proposed for face forensics. This is the first attempt
towards the blind detection of fake facial expression generated by advanced generative
models. Specifically, an image sharpening operator is embedded in the convolutional
layer as pre-processing layer to highlight subtle traces left by Glow, and the SCnet
model is designed to automatically learn high-level forensics features.

– We simulate more complex scenarios for face forensics as real as possible. A series
of experiments are conducted to prove the effectiveness of the proposed approach,
which is evaluated by multi-class classification tasks. Compared with Meso-4 [1], the
proposed SCnet model achieves higher detection accuracies and better generalization
capabilities.

The rest paper is organized as follows. Section 2 describes the building of the GFF
dataset; Section 3 proposes the SCnet model for face forensics; Section 4 reports experi-
mental results and analysis; Section 5 concludes this paper.

2 GFF dataset generation

The CelebA dataset is a large-scale face attributes dataset with large diversities including
10,177 number of identities and more than 200K face images. Glow is a generative flow
for photo-realistic facial expression synthesis, which can change face attributes to differ-
ent expressions. It embeds a series of steps of flow into a multi-scale architecture, where
each step of flow consists of actnorm, invertible 1×1 convolution, and coupling layer. This
architecture has a depth of flow K , and number of levels L [19], see Fig. 2.

Some reference have proved that different GAN models will leave their unique manip-
ulation traces [38]. In addition, reference [14] marks various style images generated by
StarGAN as the same label for training, thus realizing the detection of StarGAN. That is, no
matter the face image is changed to any style by the same GAN model, the images of dif-
ferent styles will leave same manipulation traces belonging to the model. Therefore, we use
Glow model to generate a type of image (i.e. change the original expression into a smiling
face) to expose the Glow model by extracting unique manipulation traces. In addition, we

3https://github.com/EricGzq/GFF-Dataset.
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Fig. 2 Glow model. Each step of flow consists of an actnorm step, an invertible 1 × 1 convolution and an
affine transformation

put the smiling face image in CelebA dataset into the real face categories in GFF dataset
to prevent the forensics model from being classified according to semantic information
(smiling face and non-smiling face).

The construction of GFF dataset is shown in Fig. 3. Specifically, there are four steps to
build the GFF dataset. Firstly, face localization is conducted for the 202,599 face images
in the CelebA dataset, and those face images with failed face localization are removed.

Face Location 

Resampling: 256 × 256

The images that failed to locate are removed, and 

there are 196,079 images remaining in the dataset.

Remove Smiling Faces

1.Face detection    2.Extracting face region 3.Smile detection

CelebA dataset

The smiling face images are removed, there are 125,299 

images remaining in the dataset.

Expression Tampering

Glow Model

The original image and the manipulated image 

are in one-to-one correspondence.

Establish Dataset

Original: 196,079 images 

Manipulated: 125,299 images

A Smile Classifier Based on Haar Features

Dataset size: 202,599 images

Original face images

Fig. 3 Flowchart of building the GFF dataset
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Fig. 4 Some face images in the GFF dataset. It can be seen that the expression image generated by Glow
model does not leave any visual artifacts

Secondly, the Haar-based cascade smiling face classifier4 is used to remove smiling face
images. Thirdly, the rest face images after the above two steps are input into the Glow model
for facial manipulation. Fourthly, considering the diversity of the GFF dataset, the removed
smiling face images by the second step, which are original face images, are put back into
the GFF dataset. Thus, the GFF dataset, which contains 321,378 face images, is built for
the face forensics. Each image has 256×256 pixels. We randomly select some face images
from the GFF dataset, which are shown in Fig. 4.

Glow is the state-of-the-art generative model for facial forgery. Most face images pro-
duced by Glow have perfect visual qualities. However, Glow still lacks sufficient robustness.
There are also some face images with undesirable artifacts, which can be perceived by
human eyes. Please note that no matter whether the face images produced by Glow are desir-
able or not, there exist subtle or noticeable manipulation traces, which might be exploited
for fake face detection. Moreover, due to the sample diversity of the CelebA dataset, the
GFF dataset is also diverse. Figure 5 shows the diversity in the dataset. The forensics mod-
els are trained and tested on the GFF dataset, which is avoided from image classification in
terms of image content and expression semantics. Thus, the proposed SCnet model focuses
better on the manipulation traces left by Glow model.

3 SCnet model for FET forensics

CNN has been increasingly used in image forensic applications, which achieve superior
performances when detecting image manipulations including JPEG recompression, median
filtering, image resizing and contrast enhancement. The CNN models for image forensics
learn deep features from manipulation traces, instead of image contents. If CNN can be
forced to directly learn the manipulation traces extracted from the image instead of the
image itself, we can more effectively improve the detection performance. Thus, the design
of CNNmodels for image forensics can be roughly divided into two categories: (1) Stacking

4https://github.com/liuxiaolong19920720/Laughter-detection-python.
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Fig. 5 The diversity in the GFF dataset. In the above two types of training data, face images have various
expressions and styles, so that the detection model is classified according to subtle manipulation traces left
by Glow instead of semantic information

existing CNN modules for a specific image forensics task [29] [7]; (2) Introducing con-
strained convolution layer [3] or high-pass filter as pre-processing to enforce CNN learn
deep features from manipulation traces.

Most prior face forensics works are designed by stacking traditional CNN modules.
These efforts do not specifically restrict CNN to learn manipulation traces directly. In this
paper, a CNN model with image sharpening as pre-processing, which is referred to as the
SCnet model, is proposed for the detection of the Glow model. By automatically learn-
ing high-level forensics features, the SCnet model can robustly detect fake face images
with various post-processing operations. Figure 6 is the architecture of the proposed SCnet
model. There are three conceptual blocks, namely pre-processing block, hierarchical feature
extraction block and classification block, which are detailed as follows.
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Fig. 6 Proposed SCnet architecture. Conv: Convolutional Layer; TanH: Hyperbolic Tangent Activation
Function; ReLU: Rectified Linear Unit; FC: Fully Connected Layer
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3.1 Sharpening convolutional Layer

The artifacts left by the Glow model are usually very subtle. Before fedding training data
into a CNN model for feature learning, the manipulation traces should be highlighted via
appropriate pre-processing. Thus, the CNN model learns better features for artifacts rep-
resentation, which will improve forensics performances such as detection accuracy and
robustness.

Facial expression is represented by face image details such as wrinkles. For a face image,
wrinkles usually exist in faces due to expression changes. Since the Glow model learns
facial expressions from a vast number of face images with natural expressions, the face
images generated by it have seemingly natural details such as wrinkles. Compared with
other FET methods, Glow model presents richer expression details. If these details can be
highlighted, CNN can learn the forensics clues from it more easily. In addition, we observe
that though Glow enhances face image details for better FET, it leaves some subtle traces in
the global image, such as isolated points or lines. Motivated by the fact that high frequency
components reflect image details and abnormal pixels, image sharpening is exploited as
pre-processing to expose the artifacts by enhancing high frequency components.

There are many derivative-based operators for image sharpening. Among them, the
Roberts cross operator is a first-order edge detector. Its basic idea is to approximate the
gradient of an image through discrete differentiation, which is achieved by a pair of
2 × 2 convolution kernels Gx and Gy that differentiate diagonally adjacent pixels’ values.
Specifically, Gx and Gy are defined as follows.

Gx =
[ +1 0

0 −1

]
, Gy =

[
0 +1

−1 0

]
(1)

Please note that one kernel is simply the other rotated by 90o. The Roberts cross oper-
ator can highlight regions of high spatial frequency, which correspond to details (such
as isolated points or lines). Since facial expression details or isolated points in face
images are multi-directional, the first-order difference in either diagonal or back-diagonal
direction is sufficient to expose manipulation traces. To simplify computation, only the first-
order difference in diagonal direction is used to define the image sharpening operator for
pre-processing. That is, the convolution kernel R is given by

R =
[

0 −1
+1 0

]
(2)

To achieve the end-to-end model training, we add a convolutional layer with the kernel size
of 2 × 2 in front of the network, and fix the parameters of the convolution kernel with R

(please note that the parameters are not updated during back propagation).
Figure 7 shows the effectiveness of image sharpening as pre-processing. We depict the

RGB images and the corresponding pre-processing results in various situation. The first
column to the sixth column correspond to 6 types of images, i.e., the original image,
the manipulated image by Glow, and with further post-processing operations, respectively.
There are four kinds of post-processing operations, which are JPEG compression (JP,
QF=30), Gaussian Blur (GB, 5×5), Mean Filtering (ME, 5×5) and Median Filtering (MED,
5×5), respectively. Moreover, some representative blocks, which are marked with red boxes,
are selected from them. These blocks are enlarged to be shown in (c1)-(c6) and (f1)-(f6),
respectively. From Fig. 7, we can observe that the images with the same operations exhibit
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Fig. 7 Comparison of the pre-processing results under the different post-processing operations. The red bor-
der illustrates the RGB images with various operations. The green border illustrates the pre-processing results
corresponding to RGB images. The blue border illustrates the detailed information in the pre-processing
results. JP30: JPEG compression with the quality factor of 30; GB5: gaussian blur with a kernel size of 5×5;
ME5: mean filtering with a kernel size of 5 × 5; MED5: median filtering with a kernel size of 5 × 5

their unique texture characteristics after pre-processing. For example, the original images
after image sharpening (c1 and f1) have regular texture distribution, but the tampered images
after image sharpening (c2 and f2) contain a large number of dot and strip textures, which
also proves that Glow model will leave its manipulation traces in the global image. For the
tampered images with further JP (c3 and f3), there are plenty of blocky textures. For the
tampered images with further GB (c4 and f4) or ME (c5 and f5), they seem to be similar,
the later (c5 and f5) have more stripe textures than the former (c4 and f4). For the tam-
pered images with further MED (c6, f6), they also contain a few dot and strip textures but
their background is much simpler. Since these images show different texture features after
image sharpening, which facilitates the SCnet model to learn more discriminative features
for classification.
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3.2 SCnet model

After the pre-processing layer, image data are fed into the hierarchical feature extraction
block, which is formed by stacking four convolutional layers, to obtain high-level forensics
features. The convolutional operation is defined as follows.

f
(n)
j =

i∑
i=1

f
(n−1)
i ∗ ω

(n)
ij + b

(n)
j (3)

where f
(n)
j is the j th feature map in the nth layer, f (n−1)

i ∗ ω
(n)
ij is the convolution between

the feature map of the ith channel in the (n − 1)th layer and the ith channel of the j th

convolutional kernel in the nth layer, and b
(n)
j is the bias term of the j th convolutional kernel

in the nth layer.
The initial coefficients of the convolutional kernels and fully connected layers are ran-

domly set. The weights are updated by alternating iteration of forward propagation and back
propagation of the input image data [22]. Stochastic Gradient Descent (SGD) is used for
training. The rules for iterative updating are

� ω
(n)
ij = ε

∂E

∂ω
(n−1)
ij

− M · �ω
(n−1)
ij + D · ε · ω

(n−1)
ij (4)

ω
(n)
ij = ω

(n−1)
ij − �ω

(n)
ij (5)

where � is the gradient, ω(n)
ij is the weight of the ith channel of the j th convolutional kernel

in the nth layer, E is the loss function, and ε is the learning rate. Moreover, we introduce
the momentum M and the decay D to accelerate model training [23].

The model needs to minimize the average loss E between the true label and the network
output to make it converge, which completes the model training [11]. The average loss E is

E = − 1

x

x∑
i=1

n∑
k=1

L
(k)
i log(y

(k)
i ) (6)

where L
(k)
i is the true label of the ith image in kth class, y(k)

i is the network output, x is the
number of training sample, and n is the number of neurons in the output layer.

Four convolutional layers with increasing number of kernels are stacked for hierarchi-
cal feature extraction. Each layer learns a new set of feature maps from the previous layer.
The size of the receptive field for the first three convolutional layers is 3×3, and the size of
the receptive field in Conv 4 is 1×1. The number of kernels for the 4 convolutional layers
is 48, 64, 128, and 256, respectively. The reason behind this is that the next convolutional
layer needs to increase the number of feature maps to fully extract features from the pre-
vious layer. The influence of the number of the convolutional kernels will be verified in
Section 4.1.2. The stride in each convolutional layer is 1, and the first three convolutional
layers will be followed by a set of hyperbolic tangent activation functions (TanH) and max
pooling functions. To reduce the dimension of feature maps and the probability of over-
fitting, the pooling function adopts an overlapping kernel with a size of 3×3 and a stride
of 2. The deep features learned by the first three convolutional layers are obtained from
learning local spatial correlation in the receptive field. The convolutional kernel of size 1×1
learns the linear combination of features located in the same location but different channels.
For the Conv 4 layer, cross-channel information integration is achieved to better represent
the relation between the previously learned feature maps. The ReLU activation function is
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used to further increase nonlinearity. The final classification module consists of 3 fully con-
nected layers. The first two fully connected layers contain 300 neurons, respectively. The
last fully connected layer contains 10 neurons, which correspond to the original image and
9 possible tampering operations.

4 Experiment results

In this section, a series of experiments are conducted on the GFF dataset to prove the
effectiveness of the proposed SCnet model under various detection conditions.

Datasets Digital images are usually compressed for storage and transmission. Moreover,
some post-processing operations including JP, GB, ME and MED might be used to hide
manipulation traces, which will mislead the judgment of the forensics model. In fact, we
can not predict which post-processing operations that the candidate image has undergone.
Thus, it is necessary to simulate some scenes that may occur in real forensics scenarios
to improve the robustness of the forensics model in complex Internet environments. Some
common post-processing operations are used to simulate the practical internet environment,
as shown in Table 1.

In the subsequent experiments, the original image is abbreviated as Raw Pic, and the fake
face image is called Glow Pic. For the Glow Pics in the GFF dataset, they are processed with
the post-processing operations and parameters summarized in Table 1. Thus, ten datasets are
obtained for our experiments. The post-processing operations in the form of A+B+C means
A the first, B the second and C the last. For example, Glow Pic + ME3 + Resizing means
the Glow Pic is performed with a 3×3 mean filtering and 50% image resizing. Table 2
summarizes the details of the dataset used in the experiment.

Experimental Setting In the experiment, we use one Nvidia GeForce GTX 1080 Ti GPU
to train the model, which is implemented via the Caffe framework [15]. All image samples
are firstly converted into the LMDB format for the use in Caffe. When converting to the
LMDB format, the images with a size of 256×256 in the GFF dataset are resized into the
size of 128×128, which is equivalent to a 50% image down-sampling.

4.1 Ablation study of the SCnet model

4.1.1 Ablation study for pre-processing layer

In this subsections, we will discuss the impacts of the pre-processing layer. For experiment,
there are about 1070k images for training, which include 170k real face images and 900k
different types of fake face images (see Table 2). When training the model, SGD is used to

Table 1 List of parameters for
post-processing Operation type Post-processing operation Parameters

Compression JPEG compression (JP) QF = 30, 60

Spatial filtering Gaussian Blurring (GB) Ksize = 3, 5

Mean Filtering (ME) Ksize = 3, 5

Median Filtering (MED) Ksize = 3, 5
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Fig. 8 Comparison of different pre-processing methods

iteratively optimize the model, where the momentum M = 0.95 and the decay D = 0.005.
The model adopts a discrete learning rate strategy, which is defined as follows.

ε = εb × γ �( I
N

)� (7)

where εb = 0.001 is the basic learning rate, γ = 0.5, �� is rounding down, N = 1000 is the
fixed step size, and I denotes current iteration. Since the batch size is 64, we train the CNN
model in each epoch for 16,731 iterations.

To evaluate the performance gains achieved by the pre-processing layer, about 153k
test images are used for experiments. It should be noted that these test images have never
appeared in the training set. The pre-processing method of SCnet model is replaced with
several operators (see Fig. 8) to compare the performance of different methods. We use the
accuracy rate commonly used in multi-classification tasks to evaluate the performance of
the model. The experimental results are summarized in Table 3. Our sharpening method
achieves an accuracy rate of 93.77%, which is more effective than both the sobel operator
(68.95%) and high-pass filter (91.03%) [28].

4.1.2 Ablation study for CNNmodel

The design of the CNNmodel has direct and decisive influence on detection accuracy. Next,
we will further conduct several experiments to discuss the impacts of the other compo-
nents of the SCnet model, which include: (1) the 1×1 convolutional layer; (2) the activation
functions; (3) the pooling layers; (4) the convolutional kernel size; (5) the number of the
convolutional kernels; (6) the stride for convolution. Specifically, the experimental setups
are as follows:

– 1×1 Convolutional Layer: Its main purpose is cross-channel interaction and informa-
tion integration. It also perform dimension increase on the number of feature map
channels [26]. To verify the effect of the 1×1 convolutional kernel in the Conv 4 layer,
it is replaced with 3×3 convolutional kernels. Comparisons are made between the 1×1
convolutional kernel and the 3×3 convolutional kernels.

– The Activation Function: The activation function is to increase the nonlinearity of the
network, so that the SCnet model can approximate any nonlinear function. In recent

Table 3 Experimental results of
different pre-processing method Pre-processing method Accuracy rate

Sobel operator 68.95%

High pass filter 91.03%

Ours 93.77%
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years, many activation functions have appeared such as ReLU, TanH and Sigmoid.
ReLU and TanH, which are two most common activation functions, are selected for
comparisons. Specifically, we design the following three schemes: (1) all activation
functions adopt ReLU; (2) all activation functions adopt TanH; (3) activation func-
tions adopt the combination of TanH and ReLU. Among them, since the model that
adopts ReLU as activation functions can not work well for training, we only provide
the statistical results of the rest two schemes.

– The Pooling Layer: This layer is introduced to remove redundant information while
keeping main features extracted from the previous layer. It also reduces the parameters
and prevents over-fitting. There are two widely-used pooling strategies: max pooling
and average pooling. For the SCnet model, we use the max pooling strategy for all the
pooling layers. Thus, it is replaced with the average pooling strategy to train the SCnet
model.

– The Convolutional Kernel Size: The size of the convolutional kernel is either 1, 3, 5 or
7. However, the 3×3 convolutional kernel is the smallest that captures well information
in a receptive field. It is claimed that using 3×3 convolutional kernel can improve the
performance of the CNN model [35]. Here, we try to use the 5×5 convolutional kernel
for the first convolutional layer, and then train the model.

– The number of the Convolutional Kernels:With the deepening of the CNN network, the
dimension of feature maps will decrease. A deeper convolutional layer extracts more
representative features. The next convolutional layer needs to increase the number of
feature maps to fully extract the features of the previous layer. For the SCnet model, the
number of the convolutional kernels determines the number of feature maps. Here, the
number of convolutional kernels in Conv 3 and Conv 4 is reduced by 50% (i.e., Conv
3=64 and Conv 4=128).

– The Stride in Convolutional Layer: The stride represents the step size of the con-
volutional kernel sliding in the horizontal and vertical directions. It determines the
dimension of feature maps. A small stride of the convolutional kernels extracts more
abundant features than a large stride. The stride of convolutional kernel in SCnet model
is set to 1, which is replaced with 2 for comparative experiments. Specifically, three
schemes are designed: (1)the stride in Conv 1 is replaced by 2; (2)the stride in Conv 1
and Conv 2 are replaced by 2; (3)the stride in Conv 1, Conv 2 and Conv 3 are replaced
by 2.

To complete the above experiments, the detection is performed on 10 types of datasets,
which are detailed in Section 4.1. Table 4 reports the average detection accuracies for the
SCnet model with different structures or parameters. Figure 9 shows the curve of detection
accuracy and iteration. From Table 4, we have the following 6 observations. First, the 1×1
convolutional kernel achieves 1.32% higher detection accuracy than the 3×3 convolutional
kernels, which benefits from the cross-channel interaction and information integration of
the 1×1 convolutional kernel. Second, when all activation functions adopt TanH, the detec-
tion accuracy is 95.35%. The combination of TanH and ReLU as the activation functions
achieves better detection accuracies, which improve about 0.54%. Third, average pooling
achieves less detection accuracy than max pooling, and the detection accuracy decreases
about 2.11%. Fourth, Compared with using 5×5 convolutional kernels in the first layer,
using 3×3 convolutional kernels improves the accuracy about 0.48%. This implies that
a bigger receptive field does not better detection accuracy, and the 3×3 convolutional
kernels are sufficient for excellent feature extraction. Fifth, when the number of the con-
volutional kernels is 64 for Conv 3 and 128 for Conv 4, the detection accuracy is 95.26%.
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Table 4 Accuracy rate for different CNN models

Models Choices Description of model changes Average

accuracy

Net 1 1×1 convolutional layer 1×1 convolutional kernel is replaced
by 3×3 convolutional kernel.

94.57%

Net 2 Activation Function All activation functions are replaced
by TanH.

95.35%

Net 3 Pooling Layer All pooling layers are replaced by
average pooling layers.

93.78%

Net 4 Kernel Size The convolutional kernel size in
Conv 1 changes from 3 to 5.

95.41%

Net 5 Kernel Quantity Convolutional kernel numbers of
Conv 3 and Conv 4 are each reduced
by 50%, i.e., Conv 3 = 64 and
Conv 4 = 128.

95.26%

Net 6 Kernel Stride The stride in Conv 1 is replaced by 2. 91.94%

Net 7 The stride in Conv 1 and Conv 2 are
replaced by 2.

89.51%

Net 8 The stride in Conv 1, Conv 2 and
Conv 3 are replaced by 2.

88.56%

SCnet The model in Fig. 6 \ 95.89%

Compared with the original SCnet model, it decreases about 0.63%. Finally, when the stride
of the first convolutional layer is set to 2, the accuracy is reduced by 3.95%. Thus, the stride
of the first convolutional layer has great impacts on final detection accuracy. The reason
behind this is that the convolutional kernels with small stride extract richer features than
the convolutional kernels with large stride. However, if the low-level features extracted by
the first convolutional layer are too sparse, it will seriously affect the feature extraction by
subsequent convolutional layers. Moreover, when the stride is set to 2 in the second convo-
lutional layer (Conv 2) and the third convolutional layer (Conv 3), the detection accuracies
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decrease as well. Thus, when designing the CNN model for image forensics, the stride of
the convolutional kernels should be set to 1 to improve detection accuracies.

Figure 10 reports the relationships between training loss, testing loss and the number of
iterations. From it, we can observe that the testing loss converges to a certain value, which
does not increase with the number of iterations. Thus, the proposed SCnet model has not
the problem of over-fitting [4].

4.2 Multiple classification detection

To evaluate the performance gains achieved by the pre-processing layer, the SCnet model
are tested with the pre-processing layer (SCnet) and without the pre-processing layer (Non-
pre) for experiments. The existing Meso-4 [1] model and MISLnet [3] are also used for
making comparisons with the SCnet model. We still use the 10 types of data introduced in
Table 2 for experiments.

Tables 5 and 6 report the confusion matrix of Meso-4 andMISLnet for detection. Tables 7
and 8 report the confusion matrixes of the Non-pre model and SCnet, respectively. From
Tables 5 and 6, Meso-4 and MISLnet achieve an average detection accuracy of 73.35% and
93.39%, respectively. From Tables 7 and 8, the Non-pre model and the SCnet achieve aver-
age detection accuracies of 81.51% and 95.92%, respectively. From the confusion matrix,
it can be seen that both the MesoNet and the Non-pre model have poor performance in
some operations, such as GB3, GB5, ME3, etc. The reason behind this is that the images
after different post-processing operations are quite similar in RGB space. If the CNN model
is directly used for detection, it is very difficult to extract discriminative features from
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Fig. 10 Convergence curve of the SCnet on 1.07 million face images from the GFF dataset. Training and
testing loss are recorded after every 1000 iterations
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different types of images with only subtle differences among them. MISLnet exploits con-
strained convolution layer to suppress content features and highlight manipulation traces,
thus improving detection accuracy. However, the detection accuracy for GB5 and ME3 are
still far away from satisfaction. In the SCnet, the proposed image sharpening operation
can distinguish well the differences. Thus, the SCnet model achieves much better detection
results on GFF dataset. Especially, the pre-processing layer improves the detection capabil-
ity of the SCnet model, since it effectively highlights the manipulation traces. In addition,
we also calculate the floating point operations (FLOPs) of Meso-4, MISLnet and SCnet,
which are 4.22 × 107, 6.32 × 108, and 7.23 × 108, respectively. It can be seen that SCnet
achieves better results than MISLnet only via smaller FLOPs.

4.3 The generalization capability of the SCnet model

To test the generalization capability of the proposed SCnet model, 20K face images, which
include 10K Raw Pics and 10KGlow Pics, are selected from the GFF Dataset. Following the
post-processing operations in Table 2, 8 datasets are built based on 10KGlow Pics. Thus, the
dataset with 100K face images are used to test the generalization capability. Note that these
images have never appeared in either training set or testing set in previous experiments. The
trained SCnet model is used to detect 10 types of images, which the SCnet model has never
trained or tested before. Table 9 reports the confusion matrixes of the detection results. From
it, the proposed SCnet model has good generalization capability.

5 Conclusion

As one of the latest generative models, Glow can synthesize photo-realistic tampering
effects. Since facial expression is a high-level facial attribute and an important form of non-
verbal communication, FET can change the semantic content that a face image conveys.
Thus, FET might bring serious public opinions. In this paper, a CNN-based forensics model,
namely SCnet, was proposed for the detection of the Glow-based FET. Specifically, the
Roberts cross operator was introduced for image sharpening, which serves as pre-processing
to highlight the manipulation traces left by Glow. SCnet was designed to automatically
learn high-level features for blind forensics. In addition, a fake face dataset was built by
exploiting the CelebA face image dataset and the Glow-based FET technique. A series of
experiments were conducted to prove the effectiveness of the proposed approach. Experi-
mental results show that the proposed approach achieves detection accuracy up to 95.92%
under various post-processing conditions. Compared with Meso-4, the proposed approach
improved average accuracy about 22.57%. And compared with Non-pre model, the SCnet
improved average accuracy about 14.41%. For future work, we will further investigate other
generative models based facial forgery for more universal forensics. With the continuous
improvement of various FET techniques, it is challenging to identify various face forgery
techniques by exploiting biological inconsistencies such as head poses. However, each facial
forgery technique will leave unique fingerprints specific to its model, just as camera sen-
sor fingerprints. Learning features from fingerprint traces will be a solution to universal
forensics.
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