
https://doi.org/10.1007/s11042-020-10082-6

A survey of pre-processing techniques to improve
short-text quality: a case study on hate speech
detection on twitter

Usman Naseem1 · Imran Razzak2 ·Peter W. Eklund2

Received: 28 April 2020 / Revised: 17 August 2020 / Accepted: 13 October 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Pre-processing plays an essential role in disambiguating the meaning of short-texts, not
only in applications that classify short-texts but also for clustering and anomaly detection.
Pre-processing can have a considerable impact on overall system performance; however, it
is less explored in the literature in comparison to feature extraction and classification. This
paper analyzes twelve different pre-processing techniques on three pre-classified Twitter
datasets on hate speech and observes their impact on the classification tasks they support. It
also proposes a systematic approach to text pre-processing to apply different pre-processing
techniques in order to retain features without information loss. In this paper, two different
word-level feature extraction models are used, and the performance of the proposed package
is compared with state-of-the-art methods. To validate gains in performance, both tradi-
tional and deep learning classifiers are used. The experimental results suggest that some
pre-processing techniques impact negatively on performance, and these are identified, along
with the best performing combination of pre-processing techniques.

Keywords Natural language processing · Text pre-processing · Tweet classification ·
Machine learning

1 Introduction

Social media platforms play a more important role in global events than ever before. Anal-
ysis of information shared on social media platforms, especially Twitter, has become a

� Usman Naseem
usman.naseem@sydney.edu.au

Imran Razzak
imran.razzak@deakin.edu.au

Peter W. Eklund
peter.eklund@deakin.edu.au

1 University of Sydney, Sydney, Australia
2 Deakin University, Geelong, Australia

Published online: 4 November 2020

Multimedia Tools and Applications (2021) 80:35239–35266

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-10082-6&domain=pdf
mailto: usman.naseem@sydney.edu.au
mailto: imran.razzak@deakin.edu.au
mailto: peter.eklund@deakin.edu.au

significant focus for researchers in recent years. Millions of Twitter users share their opinion
and views on various topics: political debate, the stock market, products, companies and so
on. These opinions and views can be used to improve services, develop marketing strategies,
to observe user behaviours, to anticipate emerging trends and even to identify important
events [33]. Aberrant behaviour also needs to be tracked, monitored and eliminated and in
this paper, the classification of “hate speech”1 is the focus of attention.

Twitter messages are restricted to 140 characters, so the language used on Twitter is
normalised to this limitation, i.e. unstructured, and at times very informal. Although many
different pre-processing techniques have been applied to text classification tasks, the impact
of pre-processing techniques alone, the different combinations of pre-processors, and the
sequence in which they are applied, has not been systematically studied. In this article, a
study of different pre-processing techniques is presented, and the results are insights into
the understanding of the appropriate selection and application of pre-processing on Twitter
data.

Pre-processing tweets is the process of transforming them for further tasks such as event
identification, fake information detection, sentiment valance etc. Generally, people follow
their own informal language rules on social media. As such, every Twitter user writes in
their own style; abbreviations, non-standard punctuation and incorrect spellings are used.
Tweets contain emoticons and emojis to express nuance, sentiment and opinions. Tweets
often contain slang and acronyms, and they embed URLs, hashtags and user mentions.
These language imperfections introduce noise that can degrade automated classification
performance. According to a study conducted by Fayyad et. al. [9], noise in Twitter datasets
may rise to as much as 40%, and this can impact significantly on classification perfor-
mance. This being the case, one of the major challenges in dealing with noise, and the
absence of structure in tweets, is by applying appropriate text pre-processing techniques in
such a way that pre-processing does not deteriorate, but rather enhances classification per-
formance. The objective is to study and understand the effects of pre-processing techniques
on classification tasks and propose a method that improves otherwise low-fidelity text to
improve classification performance by applying the most suitable pre-processing steps in a
systematic way. This research contributes to the practice of text analytics by quantifying:
(1) the effectiveness of improving the quality of text via pre-processing systematically; (2)
the extent to which performance is impacted negatively when an inappropriate combina-
tion of pre-processing techniques is selected; (3) a methodology for measuring the impact
of pre-processing techniques. This research focuses on proposing methods to improve the
low-quality text, which helps to learn better features for the text classification task. In short,
the aim of this study is when given a tweet:
@UnitedAirlines Cooool I’m :) with servc!

You ROCKED #urgr8 http://ow.ly.Vlbf0
with unique but typical tweet characteristics: an unstructured and informal nature that repre-
sents at face value a low-fidelity text as input to the classifier, namely a sequence of tokens
tx = (t1, t2, ...tk), where x denotes the number of a tweet and k represents the number of
tokens in a tweet to be classified as label y from a set of fixed labels y1, y2, ...yk at output.
Whereas at the input to the learning algorithm is a set of training data, n hand-labeled tweets
(T1, y1),, (Tn, yn) that yields a learned classifier f (T) that predicts the label (class) y

of a previously unseen tweet. In the example provided the classification task might be to

1Hate speech is defined by Cambridge Dictionary as “public speech that expresses hate or encourages
violence towards a person or group based on something such as race, religion, sex, or sexual orientation”.

Multimedia Tools and Applications (2021) 80:35239–3526635240

determine whether the tweet above represents positive, neutral or negative sentiment about
United Airlines.

With the aim of improving the quality of low-fidelity tweets, we first examine the
impact of both common and advanced pre-processing techniques and explore techniques
that perform well, and which degrade classification results. Then a systematic combina-
tion of different pre-processing techniques is presented which replaces emoticons with their
associated meanings, replaces abbreviations and slang, corrects spelling, imposes word seg-
mentation on hashtag text, and expands contractions in order to utilize the otherwise hidden
features in the raw unstructured tweet.

The main aim of this paper is to analyze different pre-processing both singularly and
in combination. We follow earlier studies [26, 29], conducted along with recent methods
that have not been explored much by researchers, such as sentiment-aware tokenization
(i.e. replacing emoticons with the words they symbolise), acronym expansion and slang
substitution with words that convey sentiment, spelling correction, word segmentation of
text within hashtags and negations with appositive words. These pre-processors are analyzed
for their impact on the selection of feature and automated classification results. The study
leads to an intelligent tweet processor (a systematic method of applying pre-processing
techniques without useful information loss, which in turn assists to achieve better automated
classification. Proposed method; (i) removing noise and normalizing low-quality tweets, (ii)
replace abbreviations and acronyms with actual words, (iii) replace emoticons and emojis
with their associated meanings, (iv) spell correct and perform word segmentation on strings
used in hashtags etc. We have selected N -grams and word embeddings (Word2Vec [40] and
GloVe [31]) for word representation methods and classification, both traditional and deep
learning classifiers are used to this end. In order to generalize the performance, we have
performed a comprehensive study through 10-fold validation on three benchmark Twitter
datasets that deal with labelled examples of hate speech and abusive language [7, 11, 13].

The key contributions of this paper can be summarized as follows: (i) multiple
pre-processing techniques are applied on Twitter data and analysis performed on their
effect on an automated classification task, namely identifying hate speech; (ii) an Intel-
ligent Tweet Processor (ITP) method is proposed, a systematic combination of tweet
pre-processing techniques to minimise information loss; (iii) extensive experiments on
three real-world benchmark datasets are conducted that show that automated classifier
performance is considerably improved when the proposed set of preprocessing tech-
niques are adopted in correct sequence. The rest of the paper is structured as follows,
Section 2 summarizes the background and related work; Section 3 describes the method-
ology of this research. Section 4 presents the experimental results and Section 5 its
conclusions.

2 Background and related work

Text datasets contain many words and characters that do not respond well to typical methods
for feature extraction, i.e. stop-words, punctuation, incorrect spellings, slang expressions,
etc and their presence can have an adverse effect on the performance of an automated
classification task. In the discussion below, we briefly present the different pre-processing
techniques followed by literature review, where researchers analyzed the effects of vari-
ous text pre-processing techniques. Further detail on text pre-processing techniques can be
found in Saeed et al. [32].

Multimedia Tools and Applications (2021) 80:35239–35266 35241

2.1 Text pre-processingmethods

In this section, methods and techniques related to short text pre-processing are described.

Removal of noise, URLs, hashtags & user mentions Unwanted strings and Unicode, con-
sidered as a leftover from the crawling process, contribute to noise in the data. Also, almost
all tweets posted by users contains URLs that reference additional information, user men-
tions (@username) and use the hashtag symbol (#sometrendingtopic) to associate
their tweet with some particular topic, and these hashtags can also express the sentiment.
These clues give extra information, useful for human beings, but do not provide any infor-
mation to machines, and can be considered as noise which needs to be handled. Researchers
have presented different techniques to handle this extra information provided by users, such
as in the case of URLs; a study conducted by Agarwal et al. [1] replaced them with tags
whereas in another study by Khan et al. [17] removed user mentions (@username).

Word segmentation is the process of separating the phrases/content/keywords used in a
hashtag, i.e. #sometrendingtopic is segmented as three words some + trending +
topic. This step can help in understanding and classifying the content of tweets easily for
machines without any human intervention. As mentioned earlier, Twitter users use hashtags
in almost all tweets to associate tweets with some particular trending topic.

Replacing emoticons and emojis Twitter users use many different emoticons and emojis
such as :-), ;-), :-(etc, to express sentiment and opinion. So it is also important to
capture this useful information to classify tweets correctly. In a study conducted by Gim-
pel et al. [10], these expressions and emoticons were replaced with their associated word
meanings, e.g. :-) is replaced with happy and :-(with sad.

Replacing abbreviation and slang Character length limitations in Twitter restrict the use
of natural language and encourage online users to use abbreviations, short words and slang
in their posts online. An abbreviation can be a shortened or an acronym of a word, e.g. MIA
stands for missing in action or gr8 for great, ofc for of course etc. Slang is also used as an
informal way of expressing thoughts or meaning which is sometimes restricted to some par-
ticular group of people or context, and is considered as informal, e.g. attwicted means
addicted to Twitter and OMG hardly means its literal expansion oh my God but rather more
often is simply an expression of surprise or emphasis. It is therefore crucial to handle such
informal insertions in the tweets by replacing them to their actual word meaning, this results
in better automated classifier performance without information loss. In a study conducted
by Kouloumpis et al. [20] abbreviations and slang were converted into word meanings that
were then easily understood using standard text analytical tools.

Replacing elongated characters Social media users, often intentionally, use elongated
words in which they purposely write or add more characters repeatedly for emphasis, e.g.
loooovvveee, greeeeat. Thus, it is important to deal with these words and change
them to their base word so that an automated classifier does not treat them as different words
out-of-vocabulary (OOV). In our experiments, we replaced elongated words with their orig-
inal base words. Saif et al. [23] conducted a study to detect and replace elongated words
and found that replacement helps to improve the classification performance.

Multimedia Tools and Applications (2021) 80:35239–3526635242

Incorrect spelling and grammar mistakes are commonly present in tweets. Correct-
ing spelling and grammar helps reduce the same word meaning transcribed differently.
Textblob2 is one the library which can be used for this purpose. Norvig’s spell
correction3 method is also widely used to correct and normalize spelling.

Expanding Contractions Contractions are short-form words more colloquially written and
spoken than written but widely used by online users to reduce character counts. In contrac-
tion, an apostrophe is used in the place of one or more the missing letter(s). Because we
want to standardize the text for machines to process more easily, contractions and shortened
words are expanded to their original root or base words. For example, words contractions
such I’m, can’t, don’t and more complex expressions, such as she’d’ve, are the
contractions for the words I am, can not, do not and she would have respectively. In the
study conducted by Boia et al. [6], contractions were replaced with their expanded variants.
If contractions are not replaced, then the tokenization step will create tokens of the word
can’t into can and t etc.

Removing Punctuation Social media users use punctuation to express sentiment and
emotion, easily understood as such by humans, however not as useful for automated clas-
sification of short texts. For this reason, the removal of punctuation is common practice
in pre-processing text in preparation for automated classification tasks such as sentiment
analysis. However, sometimes some punctuation symbols like ! and ? denote sentiment.
Lin et al. [21] removed punctuation in their study whereas, an alternative approach replac-
ing a question mark or exclamation with suitable tags, e.g. ! can often be an expression of
surprise, and this approach is studied in Balahur [4].

Removing numbers Text corpora usually contain unwanted numerals, also useful for
human beings to understand, but often a challenge for machines to disambiguate. Zhao [14]
removed numbers completely in his study. However, useful information is often lost in this
way, for instance if we remove numbers before transforming slang and abbreviations into
word meanings. For example, words like 2moro, 4u, gr8 should be first converted to
actual words, tomorrow, for you and great, and then we can proceed with this pre-processing
step.

Folding to lower-casing This step helps avoid different variations of the same words deter-
mined by their case. This diversity of capitalization within the corpus can cause a problem
during classification and degrade performance. Folding capital letters to lower case is the
most common method to handle this issue in text data. This pre-possessing technique
projects all tokens in a corpus under the single feature space but also causes problems in
the interpretation of some words that are also common abbreviations, e.g. US. The word
US once folded to lower-case could be either a pronoun and the country name as well, so
converting to lower case can be problematic [8].

Removing stop-words Present in all texts are high frequency words non-critical, words
that do little to help in the classification task or contribute much to semantic meaning. For
this reason it is common to remove stop words before the feature selection step. Words

2https://github.com/sloria/TextBlob
3http://norvig.com/spell-correct.html

Multimedia Tools and Applications (2021) 80:35239–35266 35243

https://github.com/sloria/TextBlob
http://norvig.com/spell-correct.html

like a, the, is, and, am, are, on etc. There are different stop-word libraries
available such as NLTK4, scikit-learn5 and spaCy6.

Lemmatization is simiar to stemming, namely to cut down a word to its base. However,
in lemmatization inflection of words are not just chopped off, but lexical knowledge is
used to transform a word into its base form. There are many libraries available which help
achieve lemmatization. A few of the more famous ones are NLTK, gensim7, Stanford
CoreNLP8, spaCy and TextBlob9.

2.2 Related work

Text pre-processing plays a significant role in text classification tasks. Many researchers in
the past have made efforts to understand the effectiveness of different pre-processing tech-
niques, and their contribution to automated text classification tasks. Bao et al. [5] showed
the effect of pre-processing techniques on the Twitter sentiment classification task. The
Stanford Twitter sentiment dataset was used in their experiments. Uni-gram and bi-grams
features were fed to the Liblinear10 classifier for the classification of positive and negative
classes. They showed in their study that preservation of URL features, the transformation
of negation (negated words) and normalization of repeated tokens had a positive effect on
classification results, whereas lemmatization and stemming impact negatively on classifi-
cation performance. Saeed et al. [34–36] applied other pre-processing techniques, such as
duplicate tweet removal, folding to lower case, removal of special characters, tokenization
to remove white spaces, and stop-word removal and finally removal of all words consist-
ing of less than three letters. Singh and Kumari [41] showed the impact of pre-processing
on a Twitter dataset full of abbreviations, slang and acronyms for the sentiment classifica-
tion task. Their study showed the importance and significance of slang and the correction
of spelling mistakes. A Support Vector Machine (SVM) classifier was used in their study
to measure the role pre-processing played on the performance of sentiment classification.
There have been some works on the use of big data platforms in Twitter data analysis in
various application domains [2, 3, 24, 42, 43].

The importance of text pre-processing is also studied by Haddi et al. [12] on the movie
review dataset11. Their experiments show that pre-processing techniques, such as the trans-
formation of text including expansion of abbreviations and removal of stop-words, special
characters and handling of negation with the prefix ‘NOT’, i.e. unhappy becomes not
happy, along with stemming, can combined to significantly improve classification perfor-
mance. An SVM classifier was used in their experiments. The study conducted by Usal
and Serkan [46] explored the role of text pre-processing on two different languages for
sentiment classification. They employed a SVM-classifier in their studies and showed that
classification performance is improved by selecting the appropriate combination of different
pre-processing techniques, such as removal of stop-words, lower-casing text, tokenization

4https://www.nltk.org/api/nltk.html
5https://github.com/scikit-learn/scikit-learn
6https://github.com/explosion/spaCy
7https://radimrehurek.com/gensim/
8https://stanfordnlp.github.io/CoreNLP/
9https://textblob.readthedocs.io/en/dev/
10https://github.com/cjlin1/liblinear
11https://machinelearningmastery.com/prepare-movie-review-data-sentiment-analysis/

Multimedia Tools and Applications (2021) 80:35239–3526635244

https://www.nltk.org/api/nltk.html
https://github.com/scikit-learn/scikit-learn
https://github.com/explosion/spaCy
https://radimrehurek.com/gensim/
https://stanfordnlp.github.io/CoreNLP/
https://textblob.readthedocs.io/en/dev/
https://github.com/cjlin1/liblinear
https://machinelearningmastery.com/prepare-movie-review-data-sentiment-analysis/

and stemming. They concluded that researchers should choose all possible combinations
carefully because inappropriate combinations may degrade performance.

Similarly, Jianqiang and Xiaoling [15] use six different pre-processing techniques on five
Twitter datasets in their study, using four different classifiers. Their experimental results
show that expanding acronyms and negations improved sentiment classification, whereas
the removal of stop-words, special characters and URLs had a negative impact on on
sentiment classification. The role of text pre-processing to reduce the sparsity issue in Twit-
ter sentiment classification is studied by Sail et al. [37]. Experimental results show that
choosing a combination of appropriate pre-processing methods can decrease the sparsity
and enhance classification results. Agarwal et al. [1] propose novel tweet pre-processing
approaches in their studies. They replaced the URL, user mentions, repeated characters
and negated words with different tags and removed hashtags symbols. Classification results
were improved by their proposed pre-processing methods. In other studies by Saloot
et al. [38] and Yamada et al. [47] in the natural language workshop focused on noise in
user-generated text12. The noisy nature of tweets is reduced by normalizing tweets using
a maximum entropy model and entity linking. Naseem et al. also highlighted in their dif-
ferent studies the importance of improving text quality resulting in improved sentiment
classification performance results [25, 27, 28, 30].

Recently, Symeonidis et al. [44] presented the comparative analysis of different text pre-
processing techniques on two datasets for Twitter sentiment analysis classification. In their
work, they study the effect of each technique on four traditional machine learning-based
classifiers, and one neural network-based classifier with only TF-IDF [39] (unigram) as
a word representation method. Their study showed that preprocessing techniques such as
removing numbers, lemmatization and expanding contractions to base words performs bet-
ter, whereas removing punctuation does not contribute positively to classification. Their
study also presented the interactions of a limited number of different pre-processing
techniques with others and highlight the techniques which perform well when used in
combination.

Despite the fact many different methods have been presented to reduce the noisy nature
of short texts to improve classification performance, no work has been done on the com-
parison of different methods and on the recommendation of pre-processing techniques that
improve the quality of the text and enhance the performance of automated classification.
In this paper, this research gap is addressed, a comparison of different techniques and the
recommended combination of different pre-processing techniques is presented.

3 Methodology

In this section, first we present the analysis of different pre-processing techniques evaluated
to analyze the effect of pre-processing and then followed by the proposed recommended
combination of different pre-processing techniques.

3.1 Individual analysis of pre-processing techniques

In this section, we investigate the commonly used pre-processing techniques individually to
illustrate their impact on tweet text. Table 1 shows the selected pre-processing techniques

12http://noisy-text.github.io/

Multimedia Tools and Applications (2021) 80:35239–35266 35245

http://noisy-text.github.io/

Table 1 Numbers associated
with pre-processing techniques number pre-processing Technique

1 URLs, user-mentions & hashtag symbol

2 Replace Abbreviations and Slang

3 Expanding Contractions

4 Removing Numbers

5 Replace Emoticons

6 Lemmatization

7 Removing Punctuation

8 Words Segmentation

9 Lower-casing of words

10 Removing Stop-words

11 Elongated Characters

12 Incorrect Spellings

and an associated technique number. In the onward discussion, we will use both technique
name or number presented in Table 1.

1. URLs, user mentions and hashtag symbols: Most tweets contain URLs, user men-
tions and hashtag symbols which users include to provide additional referential
information. This extra information is considered useful for humans, but is mostly con-
sidered as noise and not much value for text analytical tasks. In our analysis, we have
removed all URLs, user mentions and hashtag symbols. An example is given below:
Before:

This is an illustration of

#theartoftweeting

for the benefit of @scottmorrison

https://tinyurl.com/y4cm2b3q

After:

This is an illustration of the art of tweeting for the benefit of scott morrison

2. Abbreviations and slang: as mentioned earlier, character limitation forces social media
users to use different abbreviations and slang in their tweets. This is more problematic
when every user writes in his own style and uses different abbreviations. Acronyms
and phrases which sometimes are associated to some specific context, or to a group
of people. To interpret these language imperfections, it is vital to replace them with
their associated meanings, which allows a machine to understand them easily. In our
experiments we used Ekphrasis13 library to replace abbreviations and acronyms to
replace with their associated meaning. An example is given below:

Before:

Comparing banking CEOs that

don’t suck, a great article on

13https://github.com/cbaziotis/ekphrasis

Multimedia Tools and Applications (2021) 80:35239–3526635246

https://github.com/cbaziotis/ekphrasis

Bloomberg: https://tinyurl.com/y4cm2b3q

After:

Comparing banking Chief Executive Officers good ones, a great article on
Bloomberg: https://tinyurl.com/y4cm2b3q

3. Expanding Contractions: Expanding contractions can be a beneficial pre-processing
technique, especially before performing tokenization, because tokenization will make
two different tokens of a contraction like can’t into can and t, which is nonsense.
Expanding contractions preserves information because the word not is an essential
valence of the utterance to preserve for the classification task. In our analysis, we
employed pycontractions 2.0.014 Python library to expand contractions. An
example is given below:
Before:

I can’t think of a better airline

than @SingaporeAir.

Every experience is always excellent.

After:

I can not think of a better airline than@SingaporeAir. Every experience is always
excellent.

4. Removing Numbers: Numbers are important but they do not always provide infor-
mation for text classification and so it is common practice to remove numbers from
the corpus. However, removing numbers too soon may lose information. For instance,
if we remove 8 from gr8 then we lose useful information, and this can degrade
results. Removing numbers should always be sequenced after replacing abbreviations
and slang with their associated word meanings. In our analysis, we removed all the
numbers. An example is given below:

Before:

Little man did FAB - 11

out of 13hrs sleep!!

Great flight @SingaporeAir

After:

Little man did FAB - out of hrs sleep!! Great flight @SingaporeAir

5. Replace Emoticons: emoticons express opinion and sentiment on social media.
Humans can understand the emotions and sentiments behind these emoticons,
machines need to be provided with their word meanings. In order to get maximum
information in our experiments, we used the Ekphrasis library to replace emoticons
with their associated word meanings. An example is given below:

Before:

14https://pypi.org/project/pycontractions/

Multimedia Tools and Applications (2021) 80:35239–35266 35247

https://tinyurl.com/y4cm2b3q
https://pypi.org/project/pycontractions/

hey so many time changes

for UA 1534.

We going tonight or what?

Missing In Action :(

After:

hey so many time changes for UA 1534. We going tonight or what? Missing In
Action sad

6. Lemmatization: is used to replace words with their root words. In our analysis, we
used WordNet lemmatizer15 library to perform this step. An example is given below:
Before:

poorly serviced. Give

us a chance at least once.

After:

poor service. Give us a chance at least once.

7. Removing punctuation: one classic and common pre-processing technique in text
classification is to remove punctuation. Punctuation is useful for humans to understand
opinion and sentiments, but for machines, it does not add much to classification per-
formance. So in our study, we removed all punctuation. An example is given below:
Before:

Thank you #unitedairlines for

the free gift for

our son at #childrensmercy

hospital in KC!.

After:

Thank you #unitedairlines for the free gift for our son at #childrensmercy
hospital in KC

8. Word Segmentation: as previously mentioned, character length limitations on tweets
encourage users to write in an unstructured and informal way. Social media users also
run together words in their hashtag messages to express sentiment, these concatenated
strings are readable and easily understood by humans but require some attention to
be machine readable. In our study, we separate the remaining content/phrases after
removing the hashtag symbol. An example is given below:

Before:

#goodvibes United Airlines

Flies Children With

Serious Illnesses

15https://pythonprogramming.net/lemmatizing-nltk-tutorial/

Multimedia Tools and Applications (2021) 80:35239–3526635248

https://pythonprogramming.net/lemmatizing-nltk-tutorial/

To Santa’s North Pole

After:

good vibes United Airlines Flies Children With Serious Illnesses To Santa’s
North Pole

9. Lower-casing of words: case-folding of all words is also a common pre-processing
technique. It helps to decrease dimensionality and also helps match words with the
same meaning in the corpus. An example is given below:

Before:

Got to the airport early.

How do I see if I can

change flights

After:

Got to the airport early. how do i see if i can change flights

10. Removing Stop words: many frequently used words in natural language such as arti-
cles and prepositions introduce nuance to language but do not always contribute text
classification. For instance, words like the, a, am, are, on, at etc. Remov-
ing stop words is common practice in pre-processing in text classification tasks. In our
analysis we used NLTK stop-word library16 to remove all stop words in the corpus. An
example is given below:

Before:

I thought Comcast was bad,

until I saw the bad side

of United Airlines

After:

I thought Comcast bad, saw bad side United Airlines

11. Elongated Characters: in order to avoid the learner treating elongated words differ-
ently from their base words, characters that are repeated three times consecutively are
reduced to a single character, this idea is borrowed from Kiritchenko et al. [19]. An
example is given below:

Before:

Gooood for you, @united.

United Airlines

brings back free snacks

After:

16https://gist.github.com/sebleier/554280

Multimedia Tools and Applications (2021) 80:35239–35266 35249

https://gist.github.com/sebleier/554280

Good for you, @united. United Airlines brings back free snacks

12. Incorrect Spelling: is common in social media posts and messages. Sometimes users
intentionally use incorrect spelling as a form of stylization, e.g. hav for have. We also
study the effect of correcting spelling mistakes in this analysis. We use Norvig’s spell
corrector17 in this study. An example is given below:

Before:

Experiencing @cathaypacific’s

First lounge in

HKG for first tym.

Nice dining experienc

After:

Experiencing @cathaypacific’s First lounge in HKG for first time. Nice dining
experience

3.2 Recommended combination of pre-processing techniques

Following the presentation of each of the pre-processing techniques above, we now rec-
ommend systematic combinations of pre-processing techniques. The motivation behind
this activity is to improve the quality of the text, finding a combination and sequence
of pre-processing techniques that perform best when compared to others on a given text
classification task for which there is classification ground-truth.

Researchers usually apply four to five common data pre-processing techniques before
executing a feature extraction step. However, when text quality is poor, and especially in
the case of Twitter, more pre-processing techniques may need to be applied to sufficiently
normalize and improve the quality of the original text so that it is fit for purpose. Replac-
ing and normalizing spelling mistakes, contractions, abbreviations and emoticons with their
actual base words are useful steps to take in automated text analysis. Selecting an appropri-
ate sequence with the right combination of pre-processing techniques is essential to improve
text quality, and to improve the resulting performance of the text classifier. Also, not all
techniques perform well when combined with others; even where they perform well when
used standalone, some combinations of pre-processing techniques do not interact well.

Further, not following a specific order of pre-processing techniques can result in
information loss which ultimately degrades classification performance. Recommending a
combination of pre-processing techniques that improves the performance text classification
is not explored in previous studies. The number of possible combinations of the twelve
pre-processing techniques presented is 12!; it is a difficult (and perhaps different) research
question to exhaustively explore which combinations interact well with one another when
combined, and which simply do not make sense when used together. However, as we have
seen, at least for some pre-processing methods, there is a clear precedence relationship and
so to limit the search space, our proposed method is the result of testing different combina-
tions that interact well with other techniques and designed with the motivation of improving
the quality of the transformed tweets used to train a text classifier.

17http://norvig.com/spell-correct.html

Multimedia Tools and Applications (2021) 80:35239–3526635250

http://norvig.com/spell-correct.html

Fig. 1 A Toy Example: challenges involved in raw text

To illustrate the interactions and combinations of different pre-processing techniques to
improve the quality of the transformed tweets, we considered the tweet (toy example) given
in Fig. 1. In addition, to achieve a better quality transformed tweet, some techniques – such
as technique #1, #4, #10 and #6 – have to be applied in the same order proposed – and this
reduces the possible number of combinations of the remaining pre-processing techniques
to 8!. While all combinations are explored, only combinations with significant results are
discussed here.

As mentioned, not only is the selection of a set of pre-processing techniques important
but also their sequence must be logical. For instance, as we have seen, removing the number
8 from word gr8 before replacing it with actual work great results in information loss
(see toy example in Fig. 1), and this may be critical. Similarly, in Fig. 1 expanding contrac-
tions such as I’m, but especially negative contractions such as couldn’t or haven’t
(not present in Fig. 1) after tokenization, can impact performance. For example, the tok-
enizer breaks couldn’t into couldn and t and breaks haven’t into haven and t.
In contrast to this, if hashtag symbols are removed first followed abbreviation substitution
and finally word segmentation then #urgr8 is correctly expanded to you are great. Similar
behaviours can be observed from sequencing other techniques where interactions between
pre-processors reveal varying degrees of success. With the above-mentioned motivation in
mind, we experimented with different combinations. All variations of pre-processors are
explored; however, only those combinations that showed significant (and best) performance
are reported in Table 2.

Based on experimental results (see Section 4.3), the best performing combination is the
eighth combination presented in Table 2, graphically shown in Fig. 2. In this 12-step pre-
processing sequence, the first step removes all Unicode strings, URLs, user-mentions and
hashtag # symbols. Emoticons and emojis are then replaced with their associated word
meanings, abbreviations and acronyms are expanded, and spelling corrected at step #2, #3
and #4, respectively. At step #5 and #6, contractions are expanded and elongated characters
abbreviated respectively. In the remaining steps, all punctuation is removed, case-folding

Table 2 Different combinations of pre-processing techniques

Combination # Names Associated for future reference Techniques numbers take from Table 1

1 C1 1-2-3-4-5-6-7-8-9-10-11-12

2 C2 1-12-5-2-8-3-11-7-4-9-10-6

3 C3 1-8-5-2-11-12-3-7-4-9-10-6

4 C4 1-2-11-8-12-5-3-7-4-9-10-6

5 C5 1-8-11-12-5-2-3-7-4-9-10-6

6 C6 1-8-2-5-11-12-3-7-9-4-10-6

7 C7 1-2-5-12-3-11-7-9-8-4-10-6

8 Proposed 1-5-2-12-3-11-7-9-8-4-10-6

Multimedia Tools and Applications (2021) 80:35239–35266 35251

Fig. 2 A Recommended combination of pre-processing

occurs to lower-case, word segmentation is performed, numbers are removed as are stop-
words. As a final step lemmatization is performed. In all steps, as mentioned above, we used
the same methods and techniques we used earlier during their analysis individually.

4 Experimental analysis

In this section, the experimental settings are presented followed by the datasets used in the
analysis and finally, the results are presented and discussed.

4.1 Experiment settings

In this section, we present the word representation, classifiers and evaluation metrics used
in the analysis.

4.1.1 Words representation

Different word representation models are available to chose from. In this study we selected
one a standard legacy word representation – TF-IDF [39] – and a more contemporary
continuous word representation model – GloVe [16].

4.1.2 Classifiers

To provide a comprehensive analysis of techniques, five commonly used traditional machine
learning classifiers and two deep learning-based classifiers are used to assess the effect of
the different pre-processing techniques to the text classification task.

Traditional Machine learning classifiers Traditional machine learning-based classifiers
such as Support Vector Machines (SVM), Naive Bayes (NB) , Logistic Regression (LR),
Decision Tree (DT) and Random Forest (RF) are employed in our analysis with the TF-IDF
word representation model.

Multimedia Tools and Applications (2021) 80:35239–3526635252

Table 3 Datasets characteristics

Characteristics\ Dataset Davidson et al. Golbeck et al. Waseem et al.

Total No. of tweet 25,112 19,968 15,844

No. of classes 3 2 3

No. of Words 4,60,955 4,72,744 2,08,583

Avg No. of words 13.356 13.901 10.304

No. of Emoticons 17,650 7,940 1,057

No. of Abbreviations 4,998 1,316 612

No. of Elongated Words 4,821 2,894 1,780

Deep learning classifiers : From the deep learning-based classifiers, two commonly used
algorithms were used: (i) Convolutional Neural network (CNN) and (ii) Recurrent Neural
network (RNN) with the GloVe word representation model. In particular, we used Kim’s
implementation [18] for CNN and for RNNs, we followed the implementation of Looks
et al. [22] and their Tree-Long Short Term Memory (LSTM) and for bi-directional LSTM
(Bi-LSTM) we used models proposed by Tai et al. [45] with default parameters, as
parameter optimization was not the part of this analysis.

4.1.3 Evaluation metrics

For the evaluation of the proposed methods and comparison, we have used F1-Score metric.

4.2 Datasets

For the evaluation, the behavior of different pre-processing techniques were investigated
when applied to three different Twitter datasets, related to Twitter hate speech and abusive
language. Datasets statistics are given in Table 3 and briefly discussed below:

– Golbeck et al. Dataset Golbeck et al. [11] provided a large labeled corpus for online
harassment data from Twitter. First, a list of keywords was produced for the collec-
tion of tweets that contain harassing words; then human coders were given guidelines
to label the sentiment of the tweets. The first version of dataset contains 35,000
tweets with two classes (harassment or none). However, their current version of dataset
contains only 19,968 tweets which are categorized into two classes (harassment and
none).

– Waseem et al. Dataset Waseem et al. [13] provided a labeled dataset of 16,914 tweets
from 136,052 collected tweets over a period of two months. Tweets were manually
annotated and classified into three classes: racist, sexist, neither racist or sexist. Authors
released the list of 16,907 tweets IDs and their corresponding labels. Some of the tweets
were either deleted, or their visibility has been changed – Twitter itself has the ability to
moderate tweets and users often delete their own tweets – so only 15,844 tweets could
be found using Python’s Tweepy18 library, labeled into the three classes as described.

– Davidson et al. Dataset Davidson et al. [7] is the third labelled dataset from Twit-
ter used in this experiment. This data focuses on differentiating between hateful and

18https://github.com/tweepy/tweepy

Multimedia Tools and Applications (2021) 80:35239–35266 35253

https://github.com/tweepy/tweepy

offensive language. The dataset is manually annotated by human coders into three
classes: hateful, offensive, neither hateful or offensive. The total number of labelled
tweets given in this dataset is 25,112.

4.3 Results and discussion

In this section, we present an analysis of the different pre-processing techniques used.
Tables 4, 5 and 6 presents the results of all pre-processing techniques for three datasets.
Green & Red entries denote the highest & lowest performing techniques in each row. The
best performing techniques in each column are marked in bold. Technique number #0 repre-
sents the original unprocessed text, used as the baseline for the comparison of results in the
study. It can be seen clearly that classification performance is inconsistent, and this reflects
the varying effects of each technique on results. Below we discuss the effects of each pre-
processing technique as compared to the baseline results. For the sake of simplicity, we
discuss the techniques which managed to improve the performance ≥ 1, as compared to
baseline.

1. Removal of URLs, user mentions and hashtag symbols: This pre-processing tech-
nique increases performance on two datasets. An increase in performance observed
in the case of SVM (trigrams), LR (bigrams), CNN and BiLSTM classifiers on the
Waseem et al. dataset and SVM (unigram and bigram), LR (unigram and bigram), DT
(unigram) and all the neural network-based classifiers. No significant increase in clas-
sification performance is observed in the case of Davidson et al. The reason behind this
improvement is the number of URLs, user mentions and hashtag symbols are enormous
in these two datasets, when compared to the Golbeck et al. dataset. The best results
achieved using this pre-processing technique is 0.695 on the Davidson et al. dataset.

2. Replacing abbreviations and slang: Experimental results show that classifier per-
formance increases in all datasets when abbreviations and slang are replaced with
their associated word meaning when compared to the baseline. For the Waseem et al.,
dataset, performance increases in the case of CNN and BiLSTM. For the Golbeck et al.
dataset, increases are observed in both RNN-based classifiers whereas, and in case of
the Davidson et al. dataset, a significant increase in performance is observed in all NN-
based classifiers, and all traditional machine learning classifiers but results vary with
different features. The prime reason for this difference in performance is that the num-
ber of abbreviations and slang expressions in the Davidson et al. dataset are greater than
in the other two datasets. The best result achieved using this pre-processing technique
is 0.669 on the Davidson et al. dataset.

3. Expanding Contractions: Expanding contractions to root words also demonstrated
some improved classification performance on all three datasets. In the case of the
Waseem et al. dataset, performance increased only in the case of CNN and LSTM,
whereas for the Golbeck et al. dataset performance increased only for the LSTM clas-
sifier. Performance increased for all classifiers (with different features) on the third
dataset. The best results achieved using this pre-processing technique is 0.644 on the
Davidson et al. dataset.

4. Removing Numbers: This pre-processing technique outperforms the baseline results
on one classifier (LSTM) in the case of the Waseem et al. and Golbeck et al. datasets.
Whereas applied to the Davidson et al. dataset, it outperforms baseline in SVM-
unigram and bigram, LR-trigram, DT-unigram, RF-bigram and trigram and from

Multimedia Tools and Applications (2021) 80:35239–3526635254

Ta
bl
e
4

C
om

pa
ri
so
n
of

pr
e-
pr
oc
es
si
ng

te
ch
ni
qu
es

on
W
as
ee
m

et
al
.d
at
as
et

C
la
ss
if
ie
r/
Te
ch
ni
qu
e
N
o.

[0
]

[1
]

[2
]

[3
]

[4
]

[5
]

[6
]

[7
]

[8
]

[9
]

[1
0]

[1
1]

[1
2]

S
V
M

tf
id
f-
un
i

0.
55
4

0.
54

0
0.
55

4
0.
55
3

0.
55
4

0.
55
5

0.
55

9
0.
55
4

0.
55

4
0.
55
9

0.
55

6
0.
55
5

0.
55
4

tf
id
f-
B
i

0.
52
7

0.
52

6
0.
52
6

0.
51
8

0.
52
3

0.
52
5

0.
52

9
0.
48
6

0.
52

6
0.
52
6

0.
51

0
0.
52
6

0.
52
6

tf
-i
df
T
ri

0.
50
0

0.
51

0
0.
49
9

0.
50

1
0.
50
0

0.
50
1

0.
50
0

0.
44

1
0.
49
9

0.
50
5

0.
48

0
0.
50
1

0.
49
9

N
B

tf
id
f-
un
i

0.
50
8

0.
48

1
0.
50
8

0.
50

6
0.
50
8

0.
50
8

0.
50
5

0.
51
1

0.
50
8

0.
50
9

0.
51

8
0.
50
7

0.
50

8

tf
id
f-
B
i

0.
48
7

0.
48

3
0.
48
7

0.
48

7
0.
48
7

0.
48

7
0.
48
7

0.
47

6
0.
48
7

0.
49
4

0.
49

1
0.
48
7

0.
48

7

tf
-i
df
T
ri

0.
47
4

0.
48

2
0.
47
4

0.
47

6
0.
47
4

0.
47
2

0.
47
7

0.
44

4
0.
47
4

0.
48
1

0.
45

0
0.
47
3

0.
47
4

L
R

tf
id
f-
un
i

0.
54

1
0.
53
6

0.
54
1

0.
54
3

0.
54
3

0.
54
2

0.
54
4

0.
53
7

0.
54
1

0.
54
6

0.
54

2
0.
54
2

0.
54

1

tf
id
f-
B
i

0.
50
8

0.
51

7
0.
50
8

0.
50
8

0.
50
8

0.
50
8

0.
51

0
0.
47
3

0.
50

8
0.
51
8

0.
51

2
0.
50
9

0.
50

8

tf
-i
df
T
ri

0.
49
0

0.
49

5
0.
49
0

0.
49
4

0.
49
1

0.
49
0

0.
48

9
0.
44
7

0.
49

0
0.
49
7

0.
47

5
0.
49
0

0.
49

0

D
T

tf
id
f-
un
i

0.
52
3

0.
50

6
0.
51
7

0.
51

9
0.
52
0

0.
52
3

0.
51
5

0.
51
8

0.
52
3

0.
52
4

0.
50

9
0.
52
2

0.
51

9

tf
id
f-
B
i

0.
49
7

0.
49

4
0.
48
9

0.
49
3

0.
50
1

0.
49
7

0.
49

4
0.
47
0

0.
49

5
0.
50
3

0.
48

5
0.
50
1

0.
49

5

tf
-i
df
T
ri

0.
47
8

0.
47

1
0.
47
6

0.
48
0

0.
47
9

0.
47
6

0.
48

4
0.
44
4

0.
47

6
0.
48
8

0.
45

8
0.
47
8

0.
47

6

R
F

tf
id
f-
un
i

0.
52
5

0.
51

3
0.
52
5

0.
52

5
0.
52
7

0.
52
9

0.
52
8

0.
52
9

0.
52
8

0.
53
2

0.
53

0
0.
52
2

0.
52

6

tf
id
f-
B
i

0.
51
7

0.
51
0

0.
51

2
0.
52
1

0.
51
7

0.
51
6

0.
52

3
0.
48
6

0.
51

5
0.
52
2

0.
50

9
0.
51
8

0.
51

9

tf
-i
df
T
ri

0.
50
0

0.
49
8

0.
50
0

0.
49

6
0.
50
3

0.
50
1

0.
49
6

0.
44

5
0.
49
7

0.
51
0

0.
47

4
0.
50
2

0.
49

8

C
N
N

G
lo
V
e

0.
53
5

0.
54

7
0.
54

5
0.
55
0

0.
54

4
0.
54
1

0.
54

8
0.
51
7

0.
53

5
0.
54
5

0.
53

4
0.
54
7

0.
54
6

L
ST

M
G
lo
V
e

0.
52
9

0.
53
6

0.
53
2

0.
54
0

0.
54
1

0.
53
0

0.
53
1

0.
51
6

0.
53
9

0.
53
8

0.
53

2
0.
53
8

0.
53
6

B
iL
ST

M
G
lo
V
e

0.
53
1

0.
54
5

0.
54
3

0.
53
4

0.
52
4

0.
53
4

0.
53
3

0.
51
6

0.
54
7

0.
52
9

0.
54
3

0.
53
5

0.
54

1

Multimedia Tools and Applications (2021) 80:35239–35266 35255

Ta
bl
e
5

C
om

pa
ri
so
n
of

pr
e-
pr
oc
es
si
ng

te
ch
ni
qu
es

on
G
ol
be
ck

et
al
.d
at
as
et

C
la
ss
if
ie
r/
Te
ch
ni
qu
e
N
o.

[0
]

[1
]

[2
]

[3
]

[4
]

[5
]

[6
]

[7
]

[8
]

[9
]

[1
0]

[1
1]

[1
2]

S
V
M

tf
id
f-
un
i

0.
58

3
0.
58
3

0.
58
3

0.
58
8

0.
58
7

0.
58
4

0.
58
3

0.
58

7
0.
58
3

0.
58
1

0.
58

7
0.
58
3

0.
58
3

tf
id
f-
B
i

0.
58
0

0.
57
6

0.
57

8
0.
57
7

0.
57
6

0.
57
6

0.
58

1
0.
56
4

0.
57

8
0.
57
4

0.
56
5

0.
58
0

0.
57
8

tf
-i
df
T
ri

0.
55
8

0.
56
3

0.
55
7

0.
55

9
0.
55
7

0.
55
7

0.
56
3

0.
55
3

0.
55
7

0.
56
6

0.
54
3

0.
55
7

0.
55
7

N
B

tf
id
f-
un
i

0.
47
9

0.
48
0

0.
48
0

0.
48
0

0.
48
0

0.
48
2

0.
47
8

0.
48
2

0.
48
0

0.
47
6

0.
48
7

0.
48
0

0.
48
0

tf
id
f-
B
i

0.
49
4

0.
48

0
0.
49
5

0.
49
6

0.
49

6
0.
49
6

0.
49

3
0.
50
0

0.
49

5
0.
48
5

0.
51

1
0.
49
4

0.
49
5

tf
-i
df
T
ri

0.
50
4

0.
49
9

0.
50
5

0.
50

6
0.
50
6

0.
50

4
0.
51
0

0.
49
1

0.
50

5
0.
50
8

0.
49
4

0.
50
5

0.
50
5

L
R

tf
id
f-
un
i

0.
60
4

0.
60
5

0.
60
5

0.
60
6

0.
60
8

0.
60
6

0.
60

9
0.
60
2

0.
60

5
0.
60
7

0.
60
3

0.
60
6

0.
60
5

tf
id
f-
B
i

0.
59
2

0.
58
7

0.
59

1
0.
59
0

0.
59
1

0.
59

8
0.
59
0

0.
58
1

0.
59

1
0.
59
0

0.
58
5

0.
59
2

0.
59
1

tf
-i
df
T
ri

0.
57
4

0.
57
3

0.
57
4

0.
57

0
0.
57
4

0.
57
5

0.
57

8
0.
55
6

0.
57

4
0.
57
0

0.
56
1

0.
57
4

0.
57

4

D
T

tf
id
f-
un
i

0.
57
1

0.
57
1

0.
57
1

0.
56
9

0.
56
9

0.
56
7

0.
57
4

0.
56
7

0.
57
5

0.
57
0

0.
56
8

0.
56
8

0.
58
0

tf
id
f-
B
i

0.
55
9

0.
55
4

0.
54

8
0.
54
1

0.
55
7

0.
56
1

0.
54
6

0.
54

7
0.
55
9

0.
56
2

0.
55
7

0.
55
8

0.
55
8

tf
-i
df
T
ri

0.
53
9

0.
52

1
0.
53
8

0.
52
8

0.
53
5

0.
53

9
0.
54
3

0.
52

9
0.
53
8

0.
54
0

0.
52
4

0.
53
4

0.
53
5

R
F

tf
id
f-
un
i

0.
56
3

0.
55
8

0.
55

4
0.
55
8

0.
55

7
0.
56
0

0.
56
1

0.
55
4

0.
55

5
0.
56
8

0.
56

6
0.
56
3

0.
55
9

tf
id
f-
B
i

0.
55
5

0.
54

8
0.
55
3

0.
55
6

0.
56

1
0.
55
0

0.
55

7
0.
55
2

0.
55

7
0.
56
7

0.
55

1
0.
55
7

0.
55
1

tf
-i
df
T
ri

0.
53
0

0.
52
4

0.
53
3

0.
52

7
0.
53
5

0.
52
9

0.
53
7

0.
53
0

0.
52
7

0.
53
6

0.
51
0

0.
52
7

0.
53
5

C
N
N

G
lo
V
e

0.
60
3

0.
58
7

0.
59
5

0.
59
2

0.
59
1

0.
57
0

0.
59
9

0.
58
7

0.
56
5

0.
59
3

0.
58
2

0.
59
8

0.
58
0

L
ST

M
G
lo
V
e

0.
49
1

0.
47
2

0.
50
1

0.
50
3

0.
50
8

0.
54
9

0.
56
9

0.
58
3

0.
55
9

0.
57
7

0.
56
8

0.
56
8

0.
56
6

B
iL
ST

M
G
lo
V
e

0.
58
7

0.
55

3
0.
59
9

0.
56
0

0.
56
1

0.
58
9

0.
58

4
0.
55
9

0.
55
4

0.
58
0

0.
59
5

0.
56
6

0.
60

1

Multimedia Tools and Applications (2021) 80:35239–3526635256

Ta
bl
e
6

C
om

pa
ri
so
n
of

pr
e-
pr
oc
es
si
ng

te
ch
ni
qu
es

on
D
av
id

et
al
.d
at
as
et

C
la
ss
if
ie
r/
Te
ch
ni
qu
e
N
o.

[0
]

[1
]

[2
]

[3
]

[4
]

[5
]

[6
]

[7
]

[8
]

[9
]

[1
0]

[1
1]

[1
2]

S
V
M

tf
id
f-
un
i

0.
63

3
0.
63
3

0.
63
5

0.
63

3
0.
63
5

0.
63
5

0.
63
1

0.
62

6
0.
63
3

0.
63
7

0.
63

3
0.
63
5

0.
63

3

tf
id
f-
B
i

0.
58
3

0.
60
8

0.
59

8
0.
59
5

0.
59
5

0.
59
3

0.
61

5
0.
54
9

0.
59

1
0.
60
8

0.
55

3
0.
59
1

0.
59
1

tf
-i
df
T
ri

0.
45
4

0.
48

5
0.
47
0

0.
47

4
0.
47
5

0.
46
8

0.
47
4

0.
39

2
0.
46
8

0.
47
3

0.
40

7
0.
46
3

0.
46
8

N
B

tf
id
f-
un
i

0.
43
9

0.
44
0

0.
44
0

0.
44
0

0.
44
0

0.
44
0

0.
44
5

0.
45
0

0.
44
3

0.
45
1

0.
45

7
0.
44
2

0.
44
3

tf
id
f-
B
i

0.
41
0

0.
40

1
0.
41
0

0.
41

0
0.
40
1

0.
41

0
0.
41
2

0.
40

0
0.
40
6

0.
41
3

0.
41

0
0.
40
6

0.
40

6

tf
-i
df
T
ri

0.
36
0

0.
37
0

0.
37
0

0.
37

0
0.
36
0

0.
37
0

0.
37
3

0.
34

8
0.
36
4

0.
36
9

0.
35

1
0.
36
4

0.
36
4

L
R

tf
id
f-
un
i

0.
64
6

0.
64

0
0.
64
5

0.
64

3
0.
64

4
0.
64
2

0.
64
7

0.
63

7
0.
64
6

0.
64
8

0.
64
5

0.
64
1

0.
64
6

tf
id
f-
B
i

0.
58
0

0.
59

0
0.
58
0

0.
58
0

0.
58

0
0.
59
0

0.
59

6
0.
54
6

0.
58

0
0.
59
5

0.
55

7
0.
58
0

0.
58
0

tf
-i
df
T
ri

0.
44
0

0.
47

1
0.
45
0

0.
46

0
0.
47
0

0.
46
0

0.
46
0

0.
37

8
0.
45
8

0.
46
0

0.
40

2
0.
45
7

0.
45
8

D
T

tf
id
f-
un
i

0.
58
7

0.
59
6

0.
59
9

0.
56
1

0.
60
5

0.
56
3

0.
59
7

0.
59
6

0.
58
8

0.
60
3

0.
57
4

0.
59

1
0.
57
0

tf
id
f-
B
i

0.
49
0

0.
45

0
0.
49
0

0.
48

0
0.
48
0

0.
50
0

0.
52

3
0.
47
2

0.
49

3
0.
48
7

0.
47

9
0.
48
5

0.
48
7

tf
-i
df
T
ri

0.
37
0

0.
38
0

0.
39
0

0.
39
0

0.
38
0

0.
39
0

0.
38
6

0.
33
2

0.
38

8
0.
39
2

0.
35

1
0.
38
4

0.
38

7

R
F

tf
id
f-
un
i

0.
58
3

0.
56
0

0.
60
2

0.
58
2

0.
58
2

0.
58
4

0.
58
2

0.
60
8

0.
56
5

0.
57
7

0.
63
0

0.
53
4

0.
59

0

tf
id
f-
B
i

0.
53
0

0.
51

0
0.
52
0

0.
54

0
0.
52
0

0.
53
0

0.
53

9
0.
50
6

0.
53

9
0.
53
4

0.
52

0
0.
52
9

0.
53
2

tf
-i
df
T
ri

0.
41
0

0.
41
0

0.
42
0

0.
42
0

0.
41
0

0.
42

0
0.
42

6
0.
38
1

0.
41

7
0.
42
6

0.
36
6

0.
41
6

0.
41
9

C
N
N

G
lo
V
e

0.
61
1

0.
69

5
0.
62

7
0.
60
0

0.
64
9

0.
65
7

0.
67

1
0.
61

5
0.
71
3

0.
61
8

0.
64
2

0.
49
9

0.
69

9

L
ST

M
G
lo
V
e

0.
57
0

0.
60
2

0.
61
2

0.
56
0

0.
60
5

0.
59
8

0.
64
2

0.
59
6

0.
63

7
0.
59
4

0.
63

0
0.
46
3

0.
61

4

B
iL
ST

M
G
lo
V
e

0.
61
3

0.
68
6

0.
66

9
0.
64
4

0.
60

9
0.
68
4

0.
65

0
0.
62
2

0.
68

6
0.
59
9

0.
67
4

0.
68
8

0.
67

6

Multimedia Tools and Applications (2021) 80:35239–35266 35257

NN-based classifiers it outperforms the baseline in both CNN and LSTM classi-
fiers. The best results achieved with this pre-processing technique is 0.644 against the
Davidson et al. dataset.

5. Replace Emoticons: This pre-processing technique improves performance in only two
datasets compared to the baseline. In the case of the Golbeck et al. dataset, perfor-
mance increased in CNN-based classifier whereas, for the Davidson et al. dataset,
performance increased in almost all tested classifiers. The reason for this is that the
presence of emoticons in the Davidson et al. dataset is more common compared to the
other two datasets. The best results achieved by this pre-prcessing technique is 0.684
on the Davidson et al. dataset.

6. Lemmatization: this pre-processing technique shows significant improvement in the
Davidson et al. dataset in almost all cases. Whereas, in the Waseem et al. and Golbeck
et al. datasets, performance increased only in the case of CNN (for the former) and
LSTM (for the the later) classifiers. The best results achieved by this pre-procdssing
technique is 0.671 on the Davidson et al. dataset.

7. Removing punctuation: removing punctuation did not yield any significant results
when used alone and is able to beat the baseline results in only two datasets. LSTM
(the Golbeck et al. dataset) and LST, RF-unigram and NB-unigram in the case of the
Davidson et al. dataset. The best results achieved by this pre-processing technique is
0.637 on the Davidson et al. dataset.

8. Word Segmentation: separating the content of hashtagged strings improves baseline
results in all datasets. In the case of the Waseem et al. dataset, results improved for
RNN-based classifiers, for the Golbeck et al. dataset, only LSTM-based classifiers
were able to beat the baseline scores whereas, in the Davidson et al. dataset, all NN-
based classifiers outperformed the baseline results. Also results improved for SVM-
trigram, LR-trigram and DT-trigram classifiers. The best results achieved using this
pre-processing technique is 0.686 for the Davidson et al. dataset.

9. Lower-casing of words: case-folding resulted in classifier performance improvement
against all datasets. For the Waseem et al. dataset, results improved in case of DT-
trigram, RF-trigram and CNN classifiers. For the Golbeck et al. dataset, only LSTM
and RF-bigram were able to beat the baseline results. For the Davidson et al. dataset,
performance increases are observed in the case of LSTM, RF-trigram, DT-unigram
and trigram, LR-bigram and trigram, NB-unigram and SVM-bigram and trigram clas-
sifiers. The best results achieved using this pre-processing technique is 0.648 on the
Davidson et al. dataset.

10. Removing stop-words: this common pre-processing technique also outperforms the
baseline results in all datasets. For theWaseem et al. dataset, BiLSTM and NB-unigram
showed most improvement. NB-bigram and LSTM for the Golbeck et al. dataset and
all NN-based classifiers and RF-unigram for the Davidson et al. dataset. The best
results achieved using this pre-processing technique is 0.674 against the Davidson
et al. dataset.

11. Elongated character removal: this pre-processing technique improves baseline
results only in the case of two datasets (the Davidson et al. and Golbeck et al. datasets).
The reason is that the presence of elongated characters is more common in these two
datasets compared to the Waseem et al. dataset. The best results achieved using this
pre-processing technique is 0.688 on the Davidson et al. dataset.

12. Incorrect spelling: correcting spelling improves results in all datasets against the base-
line. For the Waseem et al. dataset, results are most improved in case of CNN and

Multimedia Tools and Applications (2021) 80:35239–3526635258

Fig. 3 Graphical Representation: Effects of pre-processing techniques

BiLSTM classifiers. For the Golbeck et al. dataset, only the RNN-based classifiers
showed improvement whereas, all NN-based classifiers along with DT (trigram), LR
(bigram) and SV (trigram) outperform the baseline classifier results in the Davidson
et al. dataset. The best results achieved using this pre-processing technique is 0.676 for
the Davidson et al. dataset.

In the previous subsection, the effects of different pre-processing techniques on three
labelled Twitter hate speech and abusive language datasets is presented. According to
the results, the effect of text pre-processing techniques varies depending on the different
classification algorithms used. The green highlights are the best resulting classifier that out-
performs the baseline in each case, whereas the red highlights are the worst performing
classifier. The best results for each pre-processing technique can be seen in bold. Each tech-
nique beats baselines results in most of the classifiers in all of datasets. Results of each
technique, rendered one at a time, is graphically presented in Fig. 3.

Based on these outcomes, results are divided into two (best and worst) categories accord-
ing to the performance given in Table 7. We found that in the case where only one
pre-processing technique is used at a time, then the best-performing techniques are lemma-
tization and lower-casing whereas, removing punctuation and URLs, user-mentions and
hashtag symbols, has a negative impact on classification performance. In other words, when

Table 7 Best and Worst performing pre-processing techniques on all datasets

Performance Description Techniques

Best High performance in most cases Lemmatization and Lower-casing
of words

Worst Low performance in most cases Removing Punctuation and URLs,
usermentions and Hasthag symbols

Multimedia Tools and Applications (2021) 80:35239–35266 35259

the text analysis requires low pre-processing overhead, lemmatization and lower-casing are
the text pre-processing techniques of choice.

4.3.1 Pre-processing sequence

As previously discussed, classification results vary depending on which text pre-processing
techniques are used and the order they are applied. Tables 8, 9 and 10 show the results of
our proposed combination of different pre-processing results. We compare the results of our
proposed method with results against the baseline, where no text pre-processing technique
is applied, and with the results of the best performing individual pre-processing tech-
niques. It is evident from the results that the proposed pre-processing method is beneficial
classification performance. This can be explained as follows.

Pre-processing improves the quality of text, by removing noise, and in so doing helps the
learning algorithm extract better features. The proposed recommended combination works
well because the application order of the techniques plays a significant role in improving
the quality of the tweets, enhancing semantic meaning and minimising information loss. On
the other hand, changing the order in which pre-processing is applied results in information
loss, reducing semantic meaning, which in turn impacts negatively on the quality of the fea-
tures extracted by the learner which in its turn leads to deteriorating classification results.
The proposed method structures and normalizes the unstructured and informal nature of

Table 8 Comparison of Proposed Combination on classification task (Waseem et al. Dataset)

ClassifierTechniques Baseline Highest
individual
technique
results

C1 C2 C3 C4 C5 C6 C7 Proposed

SVM tfidf-uni 0.554 0.559 0.485 0.545 0.545 0.543 0.545 0.543 0.561 0.569

tfidf-Bi 0.527 0.529 0.528 0.529 0.525 0.525 0.529 0.53 0.526 0.540

tf-idfTri 0.500 0.510 0.545 0.508 0.508 0.512 0.508 0.508 0.494 0.570

NB tfidf-uni 0.508 0.518 0.428 0.476 0.479 0.476 0.476 0.476 0.510 0.522

tfidf-Bi 0.487 0.494 0.419 0.486 0.489 0.485 0.486 0.485 0.492 0.503

tf-idfTri 0.474 0.482 0.481 0.483 0.482 0.481 0.483 0.483 0.476 0.497

LR tfidf-uni 0.541 0.546 0.496 0.538 0.539 0.537 0.538 0.539 0.541 0.552

tfidf-Bi 0.508 0.518 0.527 0.519 0.518 0.517 0.519 0.520 0.510 0.545

tf-idfTri 0.490 0.497 0.542 0.498 0.498 0.497 0.498 0.496 0.484 0.558

DT tfidf-uni 0.523 0.524 0.459 0.518 0.523 0.520 0.521 0.523 0.518 0.531

tfidf-Bi 0.497 0.503 0.498 0.496 0.496 0.494 0.497 0.500 0.496 0.519

tf-idfTri 0.478 0.488 0.506 0.478 0.477 0.470 0.478 0.480 0.473 0.541

RF tfidf-uni 0.525 0.532 0.475 0.512 0.515 0.518 0.519 0.514 0.528 0.541

tfidf-Bi 0.517 0.523 0.505 0.510 0.506 0.504 0.510 0.506 0.521 0.535

tf-idfTri 0.500 0.510 0.524 0.498 0.499 0.495 0.497 0.500 0.492 0.539

CNN GloVe 0.535 0.548 0.526 0.535 0.540 0.538 0.544 0.539 0.542 0.563

LSTM GloVe 0.529 0.541 0.426 0.533 0.531 0.533 0.533 0.524 0.527 0.577

BiLSTM GloVe 0.531 0.547 0.432 0.529 0.522 0.518 0.519 0.534 0.510 0.586

Multimedia Tools and Applications (2021) 80:35239–3526635260

Table 9 Comparison of Proposed Combination on classification task (Golbeck et al. Dataset)

ClassifierTechniques Baseline Highest
individual
technique
results

C1 C2 C3 C4 C5 C6 C7 Proposed

SVM tfidf-uni 0.583 0.588 0.532 0.587 0.585 0.585 0.587 0.588 0.588 0.597

tfidf-Bi 0.580 0.581 0.562 0.576 0.571 0.575 0.576 0.575 0.581 0.594

tf-idfTri 0.558 0.566 0.577 0.563 0.559 0.569 0.563 0.567 0.561 0.596

NB tfidf-uni 0.479 0.487 0.426 0.479 0.482 0.478 0.479 0.478 0.480 0.493

tfidf-Bi 0.494 0.511 0.462 0.487 0.485 0.485 0.487 0.487 0.496 0.519

tf-idfTri 0.504 0.510 0.485 0.501 0.500 0.504 0.501 0.499 0.510 0.522

LR tfidf-uni 0.604 0.609 0.534 0.606 0.608 0.607 0.606 0.607 0.606 0.618

tfidf-Bi 0.592 0.598 0.578 0.592 0.591 0.591 0.592 0.589 0.593 0.611

tf-idfTri 0.574 0.578 0.601 0.575 0.568 0.574 0.575 0.575 0.572 0.619

DT tfidf-uni 0.571 0.580 0.509 0.569 0.566 0.566 0.573 0.565 0.565 0.582

tfidf-Bi 0.559 0.559 0.533 0.550 0.556 0.549 0.552 0.550 0.554 0.584

tf-idfTri 0.539 0.543 0.572 0.515 0.545 0.522 0.528 0.522 0.533 0.589

RF tfidf-uni 0.563 0.568 0.476 0.561 0.559 0.560 0.561 0.558 0.564 0.572

tfidf-Bi 0.555 0.567 0.507 0.548 0.550 0.544 0.546 0.549 0.559 0.579

tf-idfTri 0.530 0.537 0.554 0.520 0.529 0.526 0.522 0.529 0.528 0.568

CNN GloVe 0.603 0.599 0.575 0.589 0.596 0.590 0.587 0.599 0.592 0.620

LSTM GloVe 0.491 0.583 0.426 0.565 0.555 0.544 0.561 0.560 0.551 0.624

BiLSTM GloVe 0.587 0.601 0.426 0.611 0.573 0.572 0.568 0.567 0.578 0.649

Table 10 Comparison of Proposed Combination on classification task (David et al. Dataset)

ClassifierTechniques Baseline Highest
individual
technique
results

C1 C2 C3 C4 C5 C6 C7 Proposed

SVM tfidf-uni 0.633 0.637 0.509 0.726 0.735 0.729 0.726 0.731 0.727 0.736

tfidf-Bi 0.583 0.615 0.687 0.631 0.609 0.631 0.631 0.632 0.609 0.697

tf-idfTri 0.454 0.485 0.471 0.491 0.486 0.487 0.491 0.488 0.478 0.731

NB tfidf-uni 0.441 0.457 0.295 0.440 0.443 0.439 0.440 0.441 0.447 0.464

tfidf-Bi 0.405 0.413 0.390 0.411 0.404 0.409 0.411 0.408 0.415 0.424

tf-idfTri 0.361 0.373 0.445 0.377 0.374 0.373 0.377 0.374 0.375 0.458

LR tfidf-uni 0.646 0.648 0.504 0.745 0.745 0.747 0.745 0.743 0.742 0.741

tfidf-Bi 0.579 0.596 0.697 0.619 0.603 0.614 0.619 0.617 0.604 0.711

tf-idfTri 0.439 0.470 0.723 0.479 0.479 0.478 0.479 0.477 0.459 0.733

DT tfidf-uni 0.587 0.605 0.438 0.699 0.689 0.694 0.701 0.701 0.704 0.713

tfidf-Bi 0.487 0.523 0.618 0.498 0.488 0.496 0.490 0.477 0.500 0.635

tf-idfTri 0.367 0.392 0.662 0.382 0.397 0.380 0.385 0.379 0.399 0.689

RF tfidf-uni 0.583 0.630 0.359 0.596 0.586 0.603 0.595 0.595 0.607 0.635

tfidf-Bi 0.527 0.540 0.546 0.520 0.508 0.514 0.512 0.518 0.551 0.568

tf-idfTri 0.408 0.426 0.609 0.424 0.417 0.427 0.420 0.423 0.431 0.627

CNN GloVe 0.611 0.713 0.290 0.368 0.405 0.414 0.414 0.400 0.419 0.743

LSTM GloVe 0.570 0.642 0.318 0.575 0.593 0.578 0.037 0.615 0.631 0.749

BiLSTM GloVe 0.613 0.688 0.359 0.656 0.631 0.290 0.329 0.654 0.660 0.752

Multimedia Tools and Applications (2021) 80:35239–35266 35261

the tweet text, and is primarily responsible for the performance improvement of the classi-
fier. Figure 4 presents the graphical comparison of our proposed method with others on all
datasets.

A step-by-step sequence, when applied to the running the toy example presented earlier,
is given in Table 11. It is clear from the table that by following the proposed combination
of pre-processing steps the quality of the tweet text is improved. For instance; removing

Fig. 4 Comparison of Proposed method on classification task

Multimedia Tools and Applications (2021) 80:35239–3526635262

Table 11 A step by step working mechanism of proposed method

Tweet @UnitedAirlines Cooool I’m :) with servc! You ROCKED

#urgr8 http://ow.ly/VIbf0

Steps Recommended combination Step by step pre-processing results

1 Removal of Unicodes, URLs, Cooool I’m :) with servc!

User-mentions & hashtags symbols You ROCKED urgr8

2 Replacing Emoticons & Emojis Cooool I’m happy with servc!

You ROCKED urgr8

3 Replacing Slangs & Abbreviations Cooool I’m happy with servc!

You ROCKED youaregreat

4 Correction of Spelling mistakes Cooool I’m happy with service!

You ROCKED youaregreat

5 Expanding Contractions Cooool I am happy with service!

You ROCKED youaregreat

6 Replacing Elongated words Cool I am happy with service! You

ROCKED youaregreat

7 Removing Punctuations Cool I am happy with service You

ROCKED youaregreat

8 Lower-casing of words cool i am happy with service you

rocked youaregreat

9 Word Segmentation cool i am happy with service you

rocked you are great

10 Removing Numbers cool i am happy with service you

rocked you are great

11 Removing Stopwords cool happy service rocked great

12 Lemmatization cool happy service rock great

URLs, user-mentions and hashtags, useful for humans, has in practice no impact on machine
classification. Similarly, emoticons, abbreviations, spelling mistakes and other language
imperfections, easily understandable for humans, are ideally eliminated by pre-processing
in order to enhance machine classification.

Further, the sequence applying pre-processing techniques is crucial. For instance, if we
do not follow the proposed order and randomly “remove all numbers” before replacing
abbreviations and acronyms such as words gr8, fi9, b4, 2mro etc into their actual seman-
tic meaning is lost. Similarly, performing word segmentation before replacing slang and
acronyms also results in information loss. For instance, if we do not first replace abbrevia-
tions and slang into their actual words from the phrases like urgr8 and emfi9 etc, then
again we end up losing necessary and useful information. Further, expanding contractions
after the tokenization step looses information and breaks contractions such as can’t into
can and t and don’t into don and t. Similarly, this is the case with other pre-processing
techniques and the sequence they are applied. The experimental analysis confirms that
the proposed systematic combination is the best compared to any other combinations and
addresses the challenges of improving the quality of poor quality tweet text. The proposed

Multimedia Tools and Applications (2021) 80:35239–35266 35263

method improves the quality of the text, leads to better feature extraction, which in turn
helps the learner produce a better classifier.

5 Conclusion

The paper has studied the effect of twelve different pre-processing techniques for tweet
classification using three different labelled datasets for Twitter hate speech and abusive
language. Experiments were exhaustively conducted to measure the effect of the differ-
ent pre-processing on three datasets. Each pre-processing technique is evaluated with five
traditional and three deep learning-based learning algorithms with various (but standard)
feature extraction models. Further, the paper presents both the worst and best-performing
techniques and recommends those pre-processing techniques that yield the best outcomes
when used individually. Results vary with different learning algorithms, which confirms that
choosing a suitable learning algorithm, a learning algorithm that is fit-for-the-purpose to the
problem domain, remains a considerable factor in text classification performance. After a
series of experiments with different combinations and observing the interactions of the vari-
ous pre-processing techniques, a sequence of optimal pre-processing techniques that results
in the best classifier performance is recommended. This research opens new opportunities
to explore different techniques and methods to improve the quality of the short texts, an area
that has been previously overlooked. Future work, using the same methodology, can investi-
gate the effect of these and other pre-processing techniques in different domains, and other
combinations of pre-processing techniques and their interactions.

References

1. Agarwal A, Xie B, Vovsha I, Rambow O, Rebecca J (2011) Passonneau. sentiment analysis of twitter
data

2. Alomari E, Mehmood R, Katib I (2019) Road traffic event detection using twitter data, machine learning,
and apache spark. In: 2019 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted
computing, scalable computing & communications, cloud & big data computing, internet of people and
smart city innovation (Smart- World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, pp 1888–1895

3. Alotaibi S, Mehmood R, Katib I, Rana O, Albeshri A (2020) Sehaa: a big data analytics tool for health-
care symptoms and diseases detection using twitter, apache spark, and machine learning. Appl Sci
10(4):1398

4. Balahur A (2013) Sentiment analysis in social media texts. In: WASSA@NAACL-HLT
5. Bao Y, Quan C,Wang L, Ren F (2014) The role of pre-processing in twitter sentiment analysis. In: Huang

D-S, Jo K-H, Ling Wang (eds) Intelligent computing methodologies. Springer International Publishing,
Cham, pp 615–624

6. Boia M, Faltings B, Musat CC, Pu P (2013) A: is worth a thousand words: how people attach sentiment
to emoticons and words in tweets. In: 2013 international conference on social computing, pp 345–350

7. Davidson T, Warmsley D, Macy MW, Weber I Automated hate speech detection and the problem of
offensive language. arXiv:04009.2017

8. Dos Santos CN, de C. Gatti MA (2014) Deep convolutional neural networks for sentiment analysis of
short texts. In: COLING

9. Fayyad UM, Piatetsky-Shapiro G, Uthurusamy R (2003) Summary from the KDD-03 panel: data mining:
the next 10 years. ACM SIGKDD Explor Newsl 5(2):191–196

10. Gimpel K, Schneider N, O’Connor B, Das D, Mills D, Eisenstein J, Smith NA (2010) Part-of-speech
tagging for twitter: Annotation, features, and experiments. Carnegie-Mellon Univ Pittsburgh Pa School
of Computer Science

11. Golbeck J, Ashktorab Z, Banjo RO, Berlinger A, Bhagwan S, Buntain C, Cheakalos P, Geller AA,
Gergory Q, Gnanasekaran RK, Gunasekaran RR, Hoffman KM, Hottle J, Jienjitlert V, Khare S, Lau

Multimedia Tools and Applications (2021) 80:35239–3526635264

http://arxiv.org/abs/04009.2017

R, Martindale MJ, Naik S, Nixon HL, Ramachandran P, Rogers KM, Rogers L, Sarin MS, Shahane
G, Thanki J, Vengataraman P, Wan Z, Wu DM (2017) A large labeled corpus for online harassment
research. In: WebSci

12. Haddi E, Liu X, Shi Y (2013) The role of text pre-processing in sentiment analysis. In: ITQM
13. Hovy D, Waseem Z (2016) Hateful symbols or hateful people? predictive features for hate speech

detection on twitter. In: Proceedings of the student research workshop, SRW@HLT-NAACL 2016, The
2016 conference of the north american chapter of the association for computational linguistics: human
language technologies, San Diego California, USA 12-17, 2016, pp 88–93

14. Jianqiang Z (2015) Pre-processing boosting twitter sentiment analysis? pp 748–753, 12
15. Jianqiang Z, Xiaolin G (2017) Comparison research on text pre-processing methods on twitter sentiment

analysis. IEEE Access 5:2870–2879
16. Jianqiang Z, Xiaolin G (2018) Deep convolution neural networks for twitter sentiment analysis. IEEE

Access PP:1–1, 01
17. Khan FH, Bashir S, Qamar U (2014) Tom: Twitter opinion mining framework using hybrid classification

scheme. Decis Support Syst 57:245–257
18. Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP
19. Kiritchenko S, Zhu X, Mohammad SM (2014) Sentiment analysis of short informal texts. J Artif Int Res

50(1):723–762
20. Kouloumpis E, Wilson T, Moore JD (2011) Twitter sentiment analysis: the good the bad and the omg!

In: ICWSM
21. Lin C, He Y (2009) Joint sentiment/topic model for sentiment analysis. In: Proceedings of the 18th

ACM conference on information and knowledge management, CIKM ’09, New York, NY, USA, ACM,
pp 375–384

22. Looks M, Herreshoff M, Hutchins D, Norvig P (2017) Deep learning with dynamic computation graphs.
arXiv:1702.02181

23. Mohammad S, Kiritchenko S, Zhu X (2013) Nrc-canada: building the state-of-the-art in sentiment anal-
ysis of tweets. In: Second joint conference on lexical and computational semantics (*SEM), Volume 2:
proceedings of the seventh international workshop on semantic evaluation (SemEval 2013), association
for computational linguistics, pp 321–327

24. Naseem U (2020) Hybrid words representation for the classification of low quality text (Doctoral
dissertation)

25. Naseem U, Musial K, Eklund P, Prasad M (2020) Biomedical named-entity recognition by hierarchically
fusing biobert representations and deep contextual-level word-embedding. In: 2020 International Joint
Conference on Neural Networks (IJCNN), IEEE, pp 1–8

26. Naseem U, Khan SK, Razzak I, Hameed IA (2019) Hybrid words representation for airlines sentiment
analysis. In: Australasian Joint Conference on Artificial Intelligence. Springer, Cham, pp 381–392

27. Naseem U, Musial K (2019) Dice: deep intelligent contextual embedding for twitter sentiment analysis.
In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp 953–958. IEEE

28. Naseem U, Razzak I, Eklund P, Musial K (2020) Towards improved deep contextual embedding for the
identification of irony and sarcasm. In: 2020 International joint conference on neural networks (IJCNN),
IEEE, pp 1–7

29. Naseem U, Razzak I, Hameed IA (2019) Deep context-aware embedding for abusive and hate speech
detection on twitter. Aust. J. Intell. Inf. Process. Syst. 15(3):69–76

30. Naseem U, Razzak I, Musial K, Imran M (2020) Transformer based deep intelligent contextual
embedding for twitter sentiment analysis. Future Gener Comp Syst 113:58–69

31. Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: In
EMNLP

32. Saeed Z, Abbasi RA, Maqbool O, Sadaf A, Razzak I, Daud A, Aljohani NR, Xu G (2019) What’s
happening around the world? a survey and framework on event detection techniques on twitter. J Grid
Comput 17(2):279–312

33. Saeed Z, Abbasi RA, Razzak I (2020) Evesense: what can you sense from twitter? Adv Inform Retr
12036:491

34. Saeed Z, Abbasi RA, Razzak I, Maqbool O, Sadaf A, Xu G (2019) Enhanced heartbeat graph for
emerging event detection on twitter using time series networks. Expert Syst Appl 136:115–132

35. Saeed Z, Abbasi RA, Razzak MI, Xu G (2019) Event detection in twitter stream using weighted dynamic
heartbeat graph approach. arXiv:1902.08522

36. Saeed Z, Abbasi RA, Sadaf A, Razzak MI, Xu G (2018) Text stream to temporal network-a dynamic
heartbeat graph to detect emerging events on twitter. In: Pacific-asia conference on knowledge discovery
and data mining. Springer, New York, pp 534–545

Multimedia Tools and Applications (2021) 80:35239–35266 35265

http://arxiv.org/abs/1702.02181
http://arxiv.org/abs/1902.08522

37. Saif H, Andres MF, He Y, Alani H (2013) Evaluation datasets for twitter sentiment analysis: a survey
and a new dataset, the sts-gold. In: ESSEM@AI*IA

38. Saloot MA, Idris N, Mohd Shuib NL, Raj RG, Aw A (2015) Toward tweets normalization using
maximum entropy. In: NUT@IJCNLP

39. Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inform Process
Manag 24(5):513–523

40. Severyn A, Moschitti A (2015) Twitter sentiment analysis with deep convolutional neural networks.
In: Proceedings of the 38th international ACM SIGIR conference on research and development in
information retrieval, SIGIR ’15, New York, NY, USA, ACM, pp 959–962

41. Singh T, Kumari M (2016) Role of text pre-processing in twitter sentiment analysis
42. Suma S, Mehmood R, Albeshri A (2020) Automatic detection and validation of smart city events using

hpc and apache spark platforms. In: Smart infrastructure and applications. Springer, p New York
43. Suma S, Mehmood R, Albugami N, Katib I, Albeshri A (2017) Enabling next generation logistics and

planning for smarter societies. Procedia ComputSci 109:1122–1127
44. Symeonidis S, Effrosynidis D, Arampatzis A (2018) A comparative evaluation of pre-processing

techniques and their interactions for twitter sentiment analysis. Expert Syst Appl 110:298–310
45. Tai KS, Socher R, Manning CD (2015) Improved semantic representations from tree-structured long

short-term memory networks. In: ACL
46. Uysal AK, Günal S (2014) The impact of preprocessing on text classification. Inf Process Manage

50:104–112
47. Yamada I, Takeda H, Takefuji Y (2015) Enhancing named entity recognition in twitter messages using

entity linking. In: NUT@IJCNLP

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Multimedia Tools and Applications (2021) 80:35239–3526635266

	A survey of pre-processing techniques to improve short-text quality: a case study on hate speech detection on twitter
	Abstract
	Introduction
	Background and related work
	Text pre-processing methods
	Removal of noise, URLs, hashtags & user mentions
	Word segmentation
	Replacing emoticons and emojis
	Replacing abbreviation and slang
	Replacing elongated characters
	Incorrect spelling
	Expanding Contractions
	Removing Punctuation
	Removing numbers
	Folding to lower-casing
	Removing stop-words
	Lemmatization

	Related work

	Methodology
	Individual analysis of pre-processing techniques
	Recommended combination of pre-processing techniques

	Experimental analysis
	Experiment settings
	Words representation
	Classifiers
	Traditional Machine learning classifiers
	Deep learning classifiers

	Evaluation metrics

	Datasets
	Results and discussion
	Pre-processing sequence

	Conclusion
	References

