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Abstract
360-degree images allow an immersive experience. They offer multiple views of a scene
and the viewpoint can be selected by the user. However, the huge amount of data that is
necessary for real-time transmission of 360-degree image and video requires efficient
coding techniques, particularly for virtual reality (VR) and augmented reality (AR)
applications. The viewer is only interested in a part of the scene so compressing the
entire scene with equal quality is inefficient. This study initially constructs a saliency
model of the 360-degree image and then a visual attention guided coding scheme is
developed using a predicted saliency map. For saliency prediction, two methods of
saliency prediction are used and the results are fused, to address the problem of geometry
distortion in the ERP (Equirectangular Projection) format. A smoothing-based optimiza-
tion is then realized in the spherical domain to improve the saliency map. Using the
saliency map of the 360-degree image, the distortion of the rate-distortion optimization is
modified to ensure a better visual experience. The experimental results show that the
viewports of greatest interest are rendered with the highest quality and there is a
maximum of 14.33% reduction in the bitrate when the quality measurement is performed
in these regions.
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1 Introduction

Advances in hardware and software technology bring more applications of VR and AR to our
life, such as computer games, live events, and remote medicine. VR provides users with a new
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media experience, offering the freedom to explore 360-degree content and giving users visual
experience that is more realistic and immersive. This kind of service is available on popular
image/video platforms, such as street exploration through Google map or 360-degree content
sharing on social platforms. 360-degree images are usually described in terms of longitudes
and latitudes or in terms of 3D coordinates on a spherical surface. They are defined as
panoramic images, which include information in 360 degrees in the horizontal direction and
180 degrees in the vertical direction. 360-degree images are termed omnidirectional images
and spherical images. For efficient storage and transmission, projections are used for 360-
degree images that convert each 3D coordinate to a location in the specific 2D plane. The
viewport image is generated on demand when the projected 2D image is converted to the
spherical domain, followed by rectilinear projection [45].

Several formats are used to represent 360- degree images using specified projections [45].
Equirectangular projection (ERP) is the most widely used format. This stores the 360-degree
image in one 2D image. The horizontal and vertical axis in the ERP image represents the
information in the longitudinal and the latitudinal directions on the sphere. The ERP image is
represented with high resolution. The test 360-degree video of the Joint Video Exploration
Team (JVET) [16] has a maximum resolution 8192 × 4096, and a maximum frame rate of
60 Hz. Obviously, a 360-degree image or video requires a huge storage and transmission
bandwidth. Therefore, many academic and industrial studies have sought to increase the
compression efficiency of 360-degree image and video. Many studies concern the develop-
ment of 360-degree image/video processing [24], coding [15, 19, 21–23, 26, 31, 39–41, 43,
46, 47, 51] and streaming [8, 12, 18, 28, 29].

The Video Coding Experts Group (VCEG, ITU-T Q6/16), worked on the standardization of
the 360-degree video coding [35]. The Joint Collaborative Team on Video Coding (JCT-VC)
studied the means of signaling for supplemental enhancement information (SEI) when
encoding a 360-degree video using High Efficiency Video Coding (HEVC) (https://www.
itu.int/rec/T-REC-H.265-201612-S/en). SEI specifies information about the projection format
and the region-wise packing. Later on, the JVET, which was jointly established by the ITU
Telecommunication (ITU-T) Study Group 16 (SG16) and the Motion Picture Experts Group
(MPEG), devised a standard for the future video coding, which is called Versatile Video
Coding (VVC) (https://jvet.hhi.fraunhofer.de/). 360-degree video coding is one of the most
important technologies, in conjunction with high dynamic range (HDR) video coding. The
JVET addresses several problems, including the compression of 360-degree video for different
projection methods, coding tool libraries and test methods [45]. These developments in VVC
are the reference for MPEG-I standard (https://mpeg.chiariglione.org/standards/mpeg-i).

In terms of the development of immersive media technology, the MPEG (ISO/IEC
JTC1/SC29/WG 11) established the standard for immersive technology (Immersive Visual
Media): MPEG-I (https://mpeg.chiariglione.org/standards/mpeg-i). This standardizes the
virtual environment, the degrees of freedom and the related immersive media formats.
Currently, there are ten parts. Part 1, “Technical Report on Immersive Media”, defines the
requirements and two phases: phase 1a provides three degrees of freedom (3DoF), which
allows the viewer to change the yaw, pitch and roll of the rendered viewport and phase 1b
extends the 3DoF coordinate system, called 3DoF+, by enabling a slight translation of the
viewer position. The second phase allows a significant change in the viewer position and gives
enhanced immersion. This is called 6DoF where the rendered viewport is a combination of
point cloud data and 360-degree video. Part 2 “Omnidirectional Media Application Format”
(OMAF) and part 3 VVC concern the delivery and coding of 360-degree video. For OMAF, it
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provides basic services for monocular and stereoscopic 360-degree video. The input video is
processed by projection and optional region-wise packing before encoding. For VVC, it
provides a significantly better compression capability than former standards, such as HEVC.

There are several ways to capture a scene with 360 degrees. Capturing and stitching multi-
view images is one solution. Another solution is to use fisheye cameras at both the front and
the rear sides. This type of product has been widely deployed in the market. The 360-degree
image/video can be displayed on computer monitors, smartphones, tablets and head-mounted
display (HMD). The viewing experience on different kinds of devices is discussed in [11].
Participants reported that the HMD offers the most immersive experience at the expense of
greater cognitive burden, motion sickness and physical discomfort. Therefore, an understand-
ing of the exploration behavior when viewing 360-degree images is crucial for the develop-
ment of many related technologies, including compression, delivery and free-view rendering,
and to ensure the highest quality of experience (QoE) for the viewer [2].

Visual exploration of a 360-degree image is significantly different from that for conven-
tional images. A much greater degree of freedom of viewpoint is offered by a 360-degree
image. When viewing a 360-degree image, the human visual system focuses particularly on
visually attractive elements and ignores the less important viewports. So, predicting the
visually attractive elements is important. The amount of data that is required for 360-degree
image and video is quite huge, so it is inefficient to allocate the same resource for each part of
the 360-degree image and video. If the viewport image that is selected by the viewer can be
predicted, more bits can be assigned to the predicted region and fewer bits to the remaining
parts during encoding. Using a saliency map increases the efficiency with which viewport-on-
demand is realized. For streaming applications, several versions of the 360-degree video are
encoded and stored in a server. A saliency map and the head movement collected from the
HMD can be used to predict the viewing direction of the viewer in the next instant. This allows
a seamless viewing experience during the change in the viewport.

Predicting areas of visual attention involves determining the significance with respect to the
surrounding environment. There are studies of saliency prediction for the conventional 2D
images [9, 14, 17, 30, 44, 50]. Itti et al. [17] proposed a method to predict saliency using a
bottom-up mechanism, whereby the information about color, intensity and orientation is
integrated. Zhang et al. [50] presented a saliency predictor called Boolean Map Saliency
(BMS), which determines the significance of each pixel by comparing it to its neighboring
pixels. The rapid development of deep learning techniques allows the prediction of a saliency
model that uses deep learning [9, 30]. Although the ERP image is represented as a 2D image,
these saliency predictors do not perform well for it. The ERP image suffers from the geometric
distortion, which is propositional to the latitude. Thus, this issue should be addressed during
the development of saliency prediction for the ERP image.

This study proposes two techniques for 360-degree images. The first predicts the saliency
map of the ERP image. Then a coding technique for the ERP image uses visual attention as a
guide. To predict the saliency, the proposed model uses existing saliency predictors for a 2D
image. Pre-processing and post-processing are necessary to address the geometrical distortion
of the ERP image. In particular, smoothing-based optimization is realized in the spherical
domain. During encoding of the 360-degree image, a saliency map for the 360-degree image is
used to modify the distortion definition for the rate-distortion optimization (RDO) process, to
provide a better visual experience.

The remainder of this paper is organized as follows: Section II gives an overview of related
works on 360-degree image and video. The proposed technique for saliency prediction for an

Multimedia Tools and Applications (2021) 80:8309–8329 8311



ERP image and the proposed saliency-based coding for an ERP image are respectively detailed
in Section III and Section IV. Section VI details the experimental results and Section VII gives
conclusions.

2 Related work on 360-degree images/video

2.1 Projections and viewport generation

There are many projection methods for converting 3D spherical information into a 2D plane
[45]. ERP is the most widely used projection method and Youtube supports the ERP format.
To describe the ERP conversion, a three-dimensional coordinate system is defined, as shown
in Fig. 1(a), where the X axis, Z axis and Y axis respectively points towards the front, the right
and the top of the sphere. Any 3D point P(X, Y, Z) on the spherical surface is expressed as
X = cos(θ)cos(φ), Y = sin(θ), and Z = −cos(θ)sin(φ), where θ and φ are respectively the
latitude and the longitude of the point P. The rectangular plane that is formed by φ and θ is
the projection result, where φ is in the range (−π, π) and θ is in the range (−π/2, π/2). This
projection method is simple and has an obvious artifact towards the pole. As illustrated in Fig.
1(b) (https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/), the
projection density at the poles and the equator is uneven, so the geometrical distortion
increases with latitude. This creates problems for saliency prediction and compression for
ERP images.

In addition to ERP, cube map projection (CMP) which uses six square faces to present the
surface of the sphere is also a common projection format. Each face represents a 2D image for
a particular viewport with a field of view (FOV) of 90o. Each face in CMP is rendered using
rectilinear projection. As shown in Fig. 1 (c) and (d), during rectilinear projection, the viewing
angle is along the Z axis and the 2D image is formed by projecting the surface of the sphere
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Fig. 1 Projection of a 3D spherical surface to a 2D plane: a The 3D coordinate, b ERP image (https://blog.
google/products/google-vr/bringing-pixels-front-and-center-vr-video/), c rectilinear projection [45], and d CMP
images (https://blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/)
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onto the 2D plane. The pixel value in the 2D image comes from the point on the surface, which
is the intersection of the spherical surface and the line that connects the pixel on the 2D plane
and the origin of the sphere. If the viewport is not along with the Z axis, the sphere must be
rotated so that viewport aligns. The projection is then performed. To allow free-view naviga-
tion, when the ERP or the CMP image is projected back to the sphere, a viewport is rendered
by rectilinear projection whereby the angles of rotation relative to each axis are specified by
the viewer. The JVET has established a 360Lib software package for 360-degree video coding
and processing (https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/trunk). The conversion of the
projection format and generation of the viewport are realized with 360Lib. In addition to
ERP and CMP, the JVET also supports many projections. For more information,
please refer to [45].

2.2 Saliency prediction for 360-degree images

There are several techniques for saliency prediction for a 360-degree image [1, 7, 10, 20, 25,
36, 52]. Although ERP is the most commonly used format, it suffers from the geometrical
distortion, particularly in regions at high latitudes, so it does not allow an entirely accurate
saliency map when a saliency predictor for a traditional 2D image is used. To address this
problem, the polar region can be represented using another format, such as a cube map face,
which is generated by CMP. The saliency predictor for a conventional 2D image can be used
to derive the areas of visual attention for these cube faces and this is then projected to the ERP
image. Lebreton et al. [20] proposed GVBS360 and BMS360, which are extended saliency
models that use Graph-based Visual Saliency (GVBS) [14] and Boolean Map Saliency (BMS)
[50], which are designed for the 2D image. Multi-plane projection is used in [52] to simulate
the viewing behavior of human eyes in the HMD. Bottom-up and the top-down feature
extractions are performed on each plane. Chao et al. [7] used fine-tuned SalGAN [30] for
two image sources, including the original ERP and the cube faces images in several orienta-
tions. A fusion process is then used to generate the final saliency map in ERP format. ERP
images centered on two different longitudes along the equator and cube map faces generated
by rotating the cube center through several angles were used in [36] to generate a saliency
map. Ling et al. [25] split the ERP image into patches and extracted sparse features. An
integrated saliency map was produced considering the visual acuity and latitude. Abreu et al.
[1] determined the saliency using data for eye fixation from subjective experiments. A fusion
saliency map was constructed by integrating the saliency maps of the ERP image for various
translations.

2.3 360-degree image/video coding

The polar area in an ERP image is stretched so that there are many redundant pixels. Efficient
coding must assign fewer bits to regions at high latitudes [19, 21, 24, 31, 41, 46, 47]. Yu et al.
[47] divided the ERP image into multiple tiles and adjusted the sampling density by resizing.
The sampling rate was determined by rate-distortion optimization (RDO). In [46], a tile-based
regional downsampling technique is proposed for inter-frame coding. Three tiles that represent
the top, the middle and the bottom parts of the ERP image are rearranged by resizing the top
and the bottom tiles. Li et al. [21] used the tile representation, but described the polar region as
cambered surfaces and flattened them as circles. The two circular images and tilts are
assembled as one 2D image for encoding. A nested polygonal chain mapping was proposed
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in [19] to improve the coding efficiency for the polar region. The tile format was also used and
tiles are resized according to their locations. The tile nearest to the pole is resampled with a
larger factor and placed in the middle of the re-packed rectangular region, surrounded by other
resampled tiles from lower latitudes. The rule is enacted for all the tiles and finally tiles with
various resampling rates are arranged as one 2D image.

The quality of a region can also be adjusted by assigning an adaptive QP (quantization
parameter) [15, 31, 39, 41, 51]. Racapé et al. [31] and Tang et al. [41] expressed the QP as a
function of the latitude. Another study [15] computed the QP based on the weight in WS-
PSNR (weighted-to-spherically-uniform PSNR) [38]. Other coding-optimization-based tech-
niques have been used in [22, 40]. A spherical domain RDO is realized in [22] and a weighted
distortion is used, which depends on the latitude of the pixel in the spherical domain. Luz et al.
[26] determined the QP by accessing both the saliency and spatial activity. Several studies
focus on the motion model in the sphere domain [23, 43]. Li et al. [23] proposed a spherical
motion model, which derives the motion of the block in the 2D plane by projecting to the
sphere. A rotational motion model is presented in [43], whereby the motion is described as a
rotation on the sphere along geodesics. Viewport adaptive encoding is proposed in [18].
Several viewport dependent projection schemes were studied and multiresolution versions of
the ERP and the CMP format were proposed.

2.4 Spherical objective quality metrics

To ensure compatibility with the current video coding standard, a 360-degree image must be
projected as a 2D image and compressed. The 2D decoded image is then projected back to a
sphere. A free-view image is then generated by rectilinear projection. Since each pixel in the
2D image is not equally important, the specified technique is needed to evaluate the coding
performance. The JVET supports three quality assessment metrics, including PSNR, WS-
PSNR, S-PSNR-NN [48], and CPP-PSNR [49]. The architecture of the 360-degree video
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Fig. 2 The testing procedure for 360-degree video [45]
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evaluation system specified by the JVET is shown in Fig. 2 [45]. The original ERP image is
assumed to be 8 K and it is down-converted to 4 K and then converted to other formats,
followed by encoding and decoding. The receiving end performs the calculation for WS-PSNR
and S-PSNR-NN on the decoded image and the uncompressed image. Besides, the PSNR
computations can also be end-to-end realized.

3 Proposed saliency prediction model for 360-degree images

Omnidirectional images present a scene in a wider range than a conventional image. However, not
all of the areas of omnidirectional images received intensive attention. The image feature and the
position on the sphere domain can be used to predict accurate saliency maps for 360-degree images.

3.1 Architecture of the proposed model

The proposed saliency prediction model projects the spherical surface into ERP images and
multi-view (MV) images. A process then predicts the saliency for each type of image and an
initial saliency map is generated by fusing the saliency maps from the ERP image and the MV
image. Figure 3 shows the overall architecture of the proposed saliency prediction model,
which has four main steps:

(a) ERP-based saliency prediction
(b) MV-based saliency prediction
(c) The use of an equator bias
(d) Optimization in the spherical domain

In the following, each step is introduced with details.

3.2 ERP-based saliency prediction

In the ERP image, the borders on the two sides are connected in the scene. However, if
saliency prediction uses a conventional predictor, a visual target is difficult to be recognized if
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Combination

MV-based Saliency 

Prediction

ERP-based 

Saliency Prediction

Optimization

Fig. 3 The architecture of the proposed model
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it is on the border. To preserve the saliency in the global context, more than one ERP image is
generated by translating the original ERP image. The works in [36, 52], respectively use 2 and
4 ERP images.

Similarly to [36, 52], this study uses 8 orientations along the equator with a longitudinal
sampling rate of 45 degrees. As mentioned previously, the region near the equator in the ERP
image has good geometry, but other regions suffer from the geometrical distortion, which
increases with latitude. Therefore, conventional saliency predictors only yield accurate atten-
tion models for the middle portion. The proposed method predicts the saliency for the middle
portion and the edges separately for each ERP image. The edge portion is the region that
corresponds to the top and bottom faces of CMP and the middle portion denotes the remaining
region of the ERP, as illustrated in Fig. 4. Saliency maps for the middle portion and the two
edge portions are generated directly by SAM-ResNet [9], which achieves good performance
for the conventional image that satisfies the MIT300 benchmark [5]. Since the saliency maps
for the cube faces at different orientations with fixed latitude can be viewed as one map at
various angles of rotation, the saliency needs not to be predicted for each orientation. Only the
saliency maps for the top and bottom faces of the original orientation are predicted. For the
middle portion, a saliency map is generated for each orientation and these maps are fused into
one map by taking the maximum value. The saliency of the middle portion and the edge
portions is assembled after the top and bottom faces of the CMP are projected onto the ERP
format. However, before integration, the saliency map for the edge portion is scaled appro-
priately so that the maximum values in the middle portion and at edges are equal. These
procedures are illustrated in Fig. 5.

3.3 Multiview-based saliency prediction

In addition to the ERP-based saliency map, the saliency map is derived using Multiview (MV)
images around the sphere. These MV images are rendered by changing the viewport. One
viewport corresponds to one image. Using the software 360Lib that is developed by the JVET,
arbitrary viewport can be generated by assigning the rotational angles of the three axes. Each
viewport image is a 2D image so conventional saliency predictors can be used. Different from
CMP images, which have six faces for one orientation, the number of MV images is not fixed

Top edge

Bottom edge
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Fig. 4 An ERP image is split into two edges and one middle portion
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and more flexibility is allowed. This study uses 62 viewports. One viewport is rendered every
30 degrees along the equator. The procedure is repeated for the circle of latitude 30°, 60°, −30°
and − 60°. One viewport is rendered for the north pole and one for the south pole. The FOV for
each viewport is 90°. Then the MV images representing the sphere are then produced. Figure 6
illustrates the procedure to generate the viewport along the equator.

BMS [50] is used to predict the saliency of the MV images. Since these MV
images overlap, an MV-based saliency map in the ERP format is obtained by
combining all the MV saliency maps. A weight is assigned to each pixel in the
MV saliency map, as shown in (1)

wMV i; jð Þ ¼ 1þ d2 i; jð Þ
r2

� �−3=2

; ð1Þ

where 2r is the width of the MV image, and d is the distance between the pixel (i,j)
and the center pixel in the MV image. The idea is that the pixels in the center of the
MV image have the highest weight, while the boundary pixels have the least weights.
After projecting the MV saliency maps back to the ERP format, the obtained saliency
is calculated as:

SERP2 i; jð Þ ¼ ∑k
l¼1w

MV il; jlð Þ � SMV
l il; jlð Þ

∑k
l¼1wMV il; jlð Þ ; ð2Þ

where SMV
l is the saliency map of the lth MV image, (il, jl) is the pixel location in the

lth MV image where its corresponding pixel location is (i, j) in the ERP image and k
is the number of MV images involved for current pixel (i, j).
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Fig. 5 Procedures for the ERP-based saliency prediction
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Fig. 6 Multi-view projection for the 360-degree image
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When the ERP-based saliency, denoted as SERP1 and the MV-based saliency, denoted as SERP2

are obtained, they are combined into an initial saliency map, denoted as Sini. Before they are
combined by averaging, the maps are scaled to ensure the maximum values for each are the same.

3.4 The use of an equator bias

As mentioned in [34] that the regions near the equator are statistically attractive regions for VR
navigation, an equator bias is used to predict saliency for 360-degree images. A dataset [32] is
used to extract a global latitude-wise subjective attention map. This latitude driven character-
ization is used to refine the saliency map generated in the previous processes. The equator-bias
guided saliency at latitude i is calculated as:

SEB ið Þ ¼ 1

m� n
∑n

t¼1∑
m
j¼1St i; jð Þ; ð3Þ

where St(i, j) denotes the subjective saliency value for image t at location (i, j), and n and m
respectively denote the image numbers and the width of the image. A weighted average of the
equator bias map, denoted as SEB,and the initial saliency map, Sini, which is generated from the
previous steps, are fused as:

SE ¼ w� Sini þ 1−wð Þ � SEB; ð4Þ
where w is empirically selected as 0.7, which accounts for the contribution of the scene-
dependent characteristics and the equator bias.

3.5 Optimization in the spherical domain

The last step involves smoothing the saliency map to remove noise while maintaining the
edge. An optimization approach is used [27]. The objective cost function is:

J S Fð Þ ¼ ∑p SpF−S
p
Tð Þ2 þ λ∑q€N pð Þ S

p
F−S

q
Fð Þ2

� �
; ð5Þ

where SF is the smoothed saliency map, p and q respectively denote specified pixels on SF. N(p) is
the set of four nearest neighbors for the pixel p and ST is a manipulated version of SE through a
masking operation. This means that the value of some pixels of SE is retained on ST, while the
remainder is set to 0. The mask is generated by a uniform sampling of the spherical surface using a
spiral-based method [6]. In ST, only the pixel that corresponds to a uniformly sampled point on the
sphere is preserved. Because neighboring pixels in the ERP format do not have fixed distance in the
spherical domain and not all the pixels in the ERP domain are equally important. Similarly to the
metric of S-PSNRwhich computes the PSNR for selected pixels that are uniformly distributed on a
sphere surface, the uniformly sampled pixels on the sphere are projected back to the ERP image to
form the mask. These pixels become seeds and the image is smoothed. The number of points that is
sampled on the spherical surface is directly proportional to the size of the ERP image.

4 Proposed saliency-driven 360-degree image coding

Since the ERP format is widely used, it is used as the input for the proposed scheme. As
mentioned in the previous section, the geometrical distortion in the ERP image is greater at
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higher latitudes. To address this problem and to ensure efficient encoding, some works [21, 46,
47] divide the ERP image to several tiles and reduce the amount of resource to the region at
high latitude by squeezing the width of the tile or by assigning a larger QP. However, the
coding efficiency decreases with a number of tiles. Besides, when the width of the tiles is
squeezed, the prediction across the tiles becomes less efficient so that the coding efficiency is
reduced. The adaptive-QP-based method uses different QPs across tiles so the playback of a
free view is unsatisfactory if the selected viewport covers several tiles that are reconstructed
with different quality.

This study proposes a saliency-driven coding technique for a 360-degree image. The
saliency map and a weight map that is used to calculate WS-PSNR are combined into a final
weight map. The distortion term in the RDO is modified using this final weight map. This
ensures that the regions with a high weight are encoded with smaller QPs and high-quality
viewports are rendered after reconstruction. The computation of the weight for WS-PSNR is
detailed in the next section.

4.1 Weighted-to-spherically-uniform PSNR (WS-PSNR)

In addition to the saliency map, the weight used for the quality metric WS-PSNR is also used
to derive the final weight map for the proposed coding technique. A WS-PSNR considers the
position on the spherical surface to compute the PSNR. A stretching ratio is defined that
represents the area of a point (x,y) on the projection plane over the area of the corresponding
longitude and latitude location (θ, φ) on the spherical surface. The stretching ratio for a point
(x,y) in the continuous domain for the ERP format is:

SR x; yð Þ ¼ cos yð Þ; ð6Þ
where the range of x, and y is (−π to π) and (−π/2 to π/2) respectively. Since the ERP image is
in a digital format, the SR expression in the continuous domain must be discretized. The SR of
the pixel (i, j) in the ERP image is calculated as:

SR i; jð Þ ¼
∬SR x i; jð Þ; y

�
i; j

�� �
dxdy

∬dxdy
ð7Þ

where (x(i,j), y(i,j)) denotes the sampling location on the continuous x-y plane for a discrete
point (i,j). The weight is simplified and expressed as the SR for the center pixel. For the ERP,
the weight is calculated as:

ws i; jð Þ ¼ cos
jþ 0:5−

H
2

� �
π

H
ð8Þ

where H is the height of the ERP image.

4.2 Modified distortion for RDO

For image/video coding, rate-distortion optimization [37] is used to determine the best coding
mode, in order to ensure a compromise between cost and performance. The RDO is generally
expressed as:
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J ¼ Dþ λR; ð9Þ
where R is the bitrate that is required for the current block and D is the distortion, which is the
sum of the squared difference between the original block and the reconstructed block. The
Lagrange Multiplier λ controls the balance of R and D and it is modeled as a function
of the QP.

A benefit of expressing a 360-degree image using the ERP image is that the ERP is a
rectangular image that can be encoded by state-of-the-art coding standards. Although it is
feasible to do this, the performance is not optimal. The ERP image is a data format and is not
designed to be displayed directly for VR applications. Therefore, the distortion term for RDO
must be modified using the specified characteristics of the ERP image.

This study proposes a saliency-driven RDO. The distortion is weighted in terms of the
importance of the pixel and expressed as:

DCTU ¼ W � H

∑W−1
i¼0 ∑

H−1
j¼0w i; jð Þ ∑

N−1
i¼0 ∑

N−1
j¼0w i; jð Þ � I i; jð Þ−bI i; jð Þ

� �2
; ð10Þ

whereW and H are the width and height of the ERP image, w(i, j) is the weight that represents

the importance of the pixel (i, j) and I ;bI denotes, respectively, the original and the recon-
structed block. For HEVC, the coding unit is CTU (coding tree unit) and the CTU size is N ×
N. The weight w is computed by considering the saliency value, denoted as wc, and the weight
in the WS-PSNR metric, denoted as ws, as

w ¼ wc � ws; ð11Þ
The wc and ws for the test image P4 in the dataset [32] are shown in Fig. 7. It shows that a high
weight appears in the region around the equator for both wc(i, j) and ws(i, j).

The distortion term is modified during RDO to reduce distortion for the CTU that is more
important. In the normalization term in (10), the denominator sums the weight in the whole
image. The QP for each CTU is computed by considering the relative importance within the
ERP image. If the weight is uniformly distributed throughout the image, the distortion and
RDO are not changed. However, if some regions are more important, they become more
distorted if the QP is not changed. Using the new balance between the new distortion and the
rate, for a CTU with a higher weight, the QP that is determined by the new RDO is smaller.
For a CTU that is less important, which is usually near the polar area, the distortion is reduced
and the rate becomes dominant. Therefore, a larger QP is assigned. To ensure a QP adjustment,
an adaptive QP is used in the proposed scheme, whereby all QPs within the range of initial QP
±ΔQP are examined and the one that gives the best R-D performance is selected. In [22], a
spherical domain RDO and a weighted distortion is used, as shown in (12),

Fig. 7 Illustration of wc and ws. (a) ERP image, (b) wc for (a), and (c) ws
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J ¼ ∑N−1
i¼0 ∑

N−1
j¼0ws i; jð Þ x i; jð Þ−bx i; jð Þ

� �2
þ λR ð12Þ

Then, (12) is rewritten as (13) by considering a block-based operation where wa is a block-
based weight.

J ¼ Dþ λ
wa

R ð13Þ

In this way, distortion remains and the Lagrange multiplier is changed. This study is different
from [22] in three respects: 1) the modified distortion in (10) is defined differently from that in
[51], where no normalization term was used; 2) there is no need to modify the Lagrange
multiplier for this study but it is modified in [22] by considering the weight in the distortion
term, and 3) the QP is automatically determined during the RDO process for this study but it is
pre-computed based on the weight in WS-PSNR in [22] and is independent with the input.

5 Experimental results

The performance of the proposed saliency model of the 360-degree image is firstly presented.
The saliency model is then used for the proposed coding scheme and the coding performance
will be assessed using several objective metrics.

5.1 Saliency prediction

Two datasets [33, 42] are used to evaluate the performance. The dataset in [42] is the test set
for the Grand Challenge Salient 360! ICME2017 while the dataset in [33] is the training set for
the Grand Challenge Salient 360! ICME2018. These datasets include the data for the original
360-degree images and the head movement and head-eye movement collected from the
subjective experiments. The head saliency and head-eye saliency are then served as the ground
truth. This study considers the head-eye movement. Four common objective metrics for
saliency community are used: Kullback-Leibler Divergence (KLD), Pearson’s Correlation
Coefficient (CC), Normalized Saliency Scanpath (NSS) and AUC-Judd [4]. The toolbox
[13] is used to compute these scores.

The proposed scheme is first evaluated using a database [42] that contains 25 images.
Table 1 shows the results. The results of several works are also compared in this table. It is
seen that all the model achieves a similar AUC score. The proposed technique outperforms the

Table 1 The head-eye movement prediction using dataset [42]

Method KLD↓ CC↑ NSS↑ AUC↑

GVBS360 [20] 0.698 0.527 0.851 0.714
[52] 0.481 0.532 0.918 0.734
[7] 0.431 0.659 0.971 0.746
[36] 0.42 0.61 0.81 0.72
[25] 0.477 0.550 0.936 0.736
[10] 0.469 0.570 1.027 0.731
Proposed 0.442 0.566 1.031 0.723

Multimedia Tools and Applications (2021) 80:8309–8329 8321



other schemes in terms of the NSS score and it is comparable in terms of the KLD and CC
metrics. Unlike a previous study by the authors [10], which uses ERP and CMP images as the
input for the saliency predictor, this study replaces CMP-based saliency prediction with MV-
based saliency prediction and the overall quality is improved. The performance using the
dataset [33] is detailed in Table 2. Few studies report the score for the training set for the Grand
Challenge Salient 360! ICME2018, so only the results of two studies, [7, 10] are compared.
Table 2 shows that the proposed scheme has a smaller KLD score and a higher NSS score,
compared to [7].

5.2 Saliency-based coding for 360-degree image

To verify the performance of the proposed coding technique, 12 images from the dataset of
omnidirectional images in [33] are used. These images are divided into three groups. Each
group has 4 images. The first group has high performance, the second group has medium
performance and the third group has low performance in terms of KLD when the predicted
saliency is compared to the ground truth one. The mean score for each group is listed in
Table 3. There is a significant difference between these results and the average results are
shown in Table 3. These three groups are used to verify the coding performance for saliency
maps of a different quality that is predicted using the proposed technique.

The proposed coding scheme is implemented in HM16.17. The coding scheme is all intra
and the QP is 22, 27, 32 and 37. When the ERP images are decoded, two groups of viewports
are rendered using the tools in 360Lib (https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/trunk).
The first group renders six viewports along the equator every 60 degrees with a FOV of 75° in
both the horizontal and vertical directions. The second group renders viewports that are
centered on specified locations, as determined by the ground truth saliency map. Blocks of
size 64 × 64 are determined that present locations with high visual attention. The visual
attention for a block is calculated by summing the saliency value inside the block. The
centers of the top-3 blocks then serve as the specified viewport locations, and the saliency-
based viewport is rendered using rectilinear projection. Only top-3 viewports are used because
some 360-degree images do not have many attractive targets, as illustrated in Fig. 8. It is seen
that the ground truth saliency has limited regions with high saliency.

Table 2 The head-eye movement prediction using dataset [33]

Method KLD↓ CC↑ NSS↑ AUC↑

[7] 0.739 0.642 1.585 0.820
[10] 0.769 0.618 1.616 0.768
Proposed 0.737 0.616 1.615 0.770

Table 3 Saliency prediction scores for three groups of images

High
P5, P26, P.27, P73

Medium
P25, P32, P83, P93

Low
P4, P7, P48, P57

KLD 0.460 0.598 0.951
CC 0.707 0.541 0.607
NSS 1.615 1.447 1.808
AUC 0.786 0.743 0.779
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Figure 9 shows the rendered viewports for Image P26 [33]. In the first row, the original
image and the saliency for the ground truth and the proposed model are shown. When the
optimization on the sphere domain is performed, the predicted saliency is more accurate. For
the streetlight, the wrong saliency value is corrected. Figure 9 also illustrates three kinds of
rendered viewports for Image P26: the equator-based, top-3 saliency-based viewports and the
viewports at the pole. The top-3 saliency-based viewports are the viewports that attract the
most attention. The viewports at the pole show the sky and the ground, which are seldom
required for free-view navigation.

The BD-rate [3] for the proposed coding scheme is defined with respect to the HEVC
anchor. Two kinds of PSNR are considered: the PSNR for 6 viewports on the equators,
denoted as EQ-PSNR and the PSNR for the top-3 saliency-based viewports, denoted as SM-

Fig. 8 Two 360-degree images and their saliency maps (ground truth). The top is P57 and the bottom is P25 [33]

Fig. 9 The rendered viewports for Image P26 [33]. The first row shows the 360-degree image and the saliency
overlay on the 360-degree image. From the left to right, they are the ground truth and the predicted saliency
without and with the optimization in the sphere domain. The second row shows the equator-based viewports. The
third-row shows the top-3 saliency-based viewports inside the green box and the viewports at the pole inside the
red box
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PSNR. The metrics over the whole ERP image, including WS-PSNR and S-PSNR-NN are
also reported. WS-PSNR uses the weighted mean square error to compute the PSNR while S-
PSNR-NN measures the quality of a set of uniformly sampled positions on the sphere.

In (11), two types of weight are used. To demonstrate the superiority over the results for
one weight, an experiment is conducted. Three images P5, P25 and P7 [33] with a single
weight are evaluated. The weight is either ws or wc, which is the predicted saliency using the
proposed method. P5, P25 and P7 respectively represent the group with high, medium and low
KLD performance. Their performance determines whether there is a difference in images with
different KLD scores. Table 4 shows the results. The bitrate is reduced for EQ-PSNR and SM-
PSNR if both weights are used so the strategy that is defined by (11) increases the quality of
the viewport that is highly salient.

The performance of the proposed coding technique is compared with results for [22, 26]. In
[26], saliency is used to derive the QP for each CTU while RDO in the spherical domain was
adopted in [22]. The saliency used for [26] is the predicted saliency using the proposed work,
in order to verify how to use the saliency for 360-degree image coding. In [22], the distortion is
modified by considering the weight in WS-PSNR. The Lagrange multiplier is then changed
and such a change is equivalent to a QP adjustment. Studies [22, 26] modify the QP in
individual ways to achieve improved coding performance for the 360-degree images. For this
study, the QP is adjusted automatically and is determined by the RDO when the definition of
distortion is modified using the saliency map and the weight in WS-PSNR.

Table 5 summarizes the performance for the 12 images with respect to the HEVC anchor.
These results show that the proposed technique achieves a significant bitrate reduction,
especially for equator-based and the top-3 saliency-based viewports. The average bitrate
reduction for SM-PSNR and EQ-PSNR is 8.73% and 9.76%, respectively, using the proposed
scheme. In particular, the maximum bitrate reduction for SM-PSNR is 14.33%. Compared to
[26] which is also a saliency-driven coding scheme, Table 5 shows that the modified RDO
determines the right QP. For WS-PSNR and S-PSNR-NN metrics, the respective bitrate
increment is only 0.95% and 0.99% for the proposed technique and 1.66% and 1.74% for
[26]. The bitrate increase for the proposed scheme is smaller than the bitrate reduction in SM-
PSNR and EQ-PSNR. Compared to [22], which is also an RDO-based coding scheme, the
proposed scheme has a greater bitrate reduction for EQ-PSNR and SM-PSNR. In terms of WS-
PSNR an S-PSNR-NN, [22] has a greater bitrate reduction. From the performance for three
image groups, Table 5 shows that the quality of the saliency map has an obvious effect on the
coding efficiency. Generally, the proposed saliency model is sufficiently accurate in identify-
ing the visual target, so the proposed coding scheme performs well for most of the test images.

The proposed scheme has a bitrate reduction of 11.25% for Image P25. To further
analyze the performance, the QP map for the proposed scheme, the anchor, [22, 26]

Table 4 BD-rate (%) for different weight maps (image dataset [33])

EQ-PSNR SM-PSNR WS-PSNR S-PSNR-NN

wc ws ws ∗wc wc ws ws ∗wc wc ws ws ∗wc wc ws ws ∗wc

P5 −8.16 −7.57 −9.75 −7.85 −7.29 −9.28 −1.33 −3.10 −0.22 −1.31 −3.04 −0.18
P25 −7.54 −10.66 −13.94 −7.57 −8.49 −11.25 −0.53 −3.66 −0.65 −0.39 −3.54 −0.60
P7 −5.94 −8.78 −8.52 −5.68 −6.81 −8.33 −0.98 −2.43 −0.16 −0.91 −2.37 −0.10
Ave. −7.21 −9.00 −10.74 −7.03 −7.53 −9.62 −0.95 −3.06 −0.34 −0.87 −2.98 −0.29

Multimedia Tools and Applications (2021) 80:8309–83298324



Ta
bl
e
5

B
D
-r
at
e
(%

)
fo
r
di
ff
er
en
t
sc
he
m
es

(d
at
as
et
[3
3]
)

G
ro
up

E
Q
-P
SN

R
SM

-P
SN

R
W
S-
PS

N
R

S-
PS

N
R
-N

N

[2
2]

[2
6]

pr
op
os
ed

[2
2]

[2
6]

pr
op
os
ed

[2
2]

[2
6]

pr
op
os
ed

[2
2]

[2
6]

pr
op
os
ed

hi
gh

P5
−5

.3
0

−4
.9
2

−9
.7
5

−4
.0
8

−4
.6
6

−9
.2
8

−1
.4
0

1.
16

−0
.2
2

−1
.4
4

1.
16

−0
.1
8

P2
6

−5
.5
3

−7
.6
5

−1
4.
64

−6
.6
8

−7
.1
6

−1
3.
97

−0
.9
2

2.
13

1.
70

−0
.8
6

2.
22

1.
84

P2
7

−4
.9
7

−3
.4
1

−7
.4
6

−5
.0
7

−6
.0
5

−1
4.
33

−1
.0
7

2.
40

2.
84

−0
.9
8

2.
68

2.
86

P7
3

−4
.3
0

−4
.3
8

−1
1.
37

−4
.2
6

−4
.9
0

−1
1.
63

−0
.8
1

2.
36

1.
48

−0
.7
7

2.
52

1.
67

m
id
.

P2
5

−6
.3
4

−4
.8
4

−1
3.
94

−6
.6
0

−4
.4
6

−1
1.
25

−1
.0
1

0.
79

−0
.6
5

−0
.8
9

0.
82

−0
.6
0

P3
2

−5
.1
4

−4
.2
6

−1
1.
57

−3
.3
6

0.
98

−2
.8
6

−1
.1
9

1.
34

−0
.1
8

−1
.2
5

1.
31

−0
.1
5

P8
3

−7
.0
6

−4
.2
6

−4
.8
0

−7
.5
8

−5
.2
8

−6
.4
8

−2
.8
0

1.
22

0.
78

−3
.0
7

1.
33

0.
80

P9
3

−7
.6
2

−4
.2
1

−1
1.
95

−7
.4
8

−3
.6
1

−1
1.
24

−1
.1
6

2.
29

0.
59

−1
.1
9

2.
30

0.
42

lo
w

P4
−6

.5
8

−9
.8
7

−1
4.
16

−5
.1
3

−2
.4
1

−3
.6
7

−1
.5
2

0.
87

1.
87

−1
.6
2

1.
00

2.
04

P7
−4

.1
3

−3
.1
2

−8
.5
2

−4
.4
2

−2
.5
9

−8
.3
3

−0
.9
3

1.
04

−0
.1
6

−0
.9
5

1.
05

−0
.1
0

P4
8

−1
.6
2

2.
04

−0
.0
9

−1
.8
8

1.
15

−2
.0
8

−0
.6
1

3.
05

2.
41

−0
.6
0

3.
19

2.
50

P5
7

−7
.6
7

−2
.8
2

−8
.8
3

−7
.2
8

−4
.1
3

−9
.6
9

−2
.3
6

1.
33

0.
97

−2
.3
6

1.
31

0.
78

A
ve
.

−5
.5
2

−4
.3
1

−9
.7
6

−5
.3
2

−3
.5
9

−8
.7
3

−1
.3
2

1.
66

0.
95

−1
.3
3

1.
74

0.
99

Multimedia Tools and Applications (2021) 80:8309–8329 8325



are shown in Fig. 10. The HEVC anchor scheme uses the adaptive QP strategy to
give better coding efficiency. The proposed method also uses the adaptive QP, but
[22, 26] assign QP to each CTU according to some pre-determined calculations. The
ΔQP used is 3.

For [26], although its QP map is also correlated with the saliency value, not many
CTUs are encoded with smaller QP. Instead, more CTUs are encoded with the maximum
QP. There is no RDO optimization involved in [26] and the coding performance is
degraded if the compromise between the distortion and rate during the RDO process is
not considered. For [22], the QP is only related to the weight for WS-PSNR and is
independent of the image content. The R-D curve for Image P25 is shown in Fig. 11. It is

Fig. 10 The QP distribution for Image P25, for an initial QP of 22: (a) the 360 degree image, (b) predicted saliency
map of (a), (c) the QP map for the anchor, (d), (e) and (f) are the QP maps for [22, 26] and the proposed method
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Fig. 11 R-D performance for Image P25, a EQ-PSNR, b SM-PSNR, c WS-PSNR, and d S-PSNR-NN
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seen that the proposed scheme has better performance in terms of EQ-PSNR and SM-
PSNR.

6 Conclusion

This study proposes a saliency-based coding scheme using two techniques: a saliency predic-
tion and a saliency-driven RDO. For the saliency prediction, the saliency map of a 360-degree
image is predicted using saliency predictors for a conventional 2D image. ERP-based andMV-
based saliency predictions are realized. An optimization in the sphere domain is employed to
improve the saliency. The experimental results show that the proposed technique accurately
predicts the saliency and particularly it has good performance in terms of the NSS score. For
the three other metrics, the proposed technique gives results that are comparable to the best
experimental results. For the saliency-driven RDO, a saliency map is a reference and the
distortion term is modified during the ROD process to give a better visual experience in the
region of interest. Compared to the HEVC anchor, the experimental results show that the
proposed technique gives a maximum of 14.33% reduction in the overall bitrate when the
image quality in the region with high visual attention is considered. For the WS-PSNR and S-
PSNR-NN metrics, the performance is comparable to that for the anchor scheme. In particular,
the S-PSNR-NN result shows that the strategy of allocating more resources to the regions that
attract the most visual attention does not significantly reduce the quality of the whole image. A
comparison with results for other studies shows that the proposed scheme gives much better
results for the viewports that contain visual targets. These results confirm the effectiveness of
the proposed scheme.
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