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Abstract
Video compression has great significance in the communication of motion pictures.
Video compression techniques try to remove the different types of redundancy within
or between video sequences. In the temporal domain, the video compression techniques
remove the redundancies between the highly correlated consequence frames of the video.
In the spatial domain, the video compression techniques remove the redundancies
between the highly correlated consequence pixels (samples) in the same frame. Evolving
neural-networks based video coding research efforts are focused on improving existing
video codecs by performing better predictions that are incorporated within the same codec
framework or holistic methods of end-to-end video compression schemes. Current neural
network-based video compression adapts static codebook to achieve compression that
leads to learning inability from new samples. This paper proposes a modified video
compression model that adapts the genetic algorithm to build an optimal codebook for
adaptive vector quantization that is used as an activation function inside the neural
network’s hidden layer. Background subtraction algorithm is employed to extract motion
objects within frames to generate the context-based initial codebook. Furthermore,
Differential Pulse Code Modulation (DPCM) is utilized for lossless compression of
significant wavelet coefficients; whereas low energy coefficients are lossy compressed
using Learning Vector Quantization (LVQ) neural networks. Finally, Run Length
Encoding (RLE) is engaged to encode the quantized coefficients to achieve a higher
compression ratio. Experiments have proven the system’s ability to achieve higher
compression ratio with acceptable efficiency measured by PSNR.
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1 Introduction

The extensive use of multimedia technology over the past decades has increased the demand
for digital information. This awful demand made the current technology inefficient in handling
the huge amount of data. Video compression by eradicating the redundancies present in it
removes this problem [8]. The fundamental goal of video compression is to reduce the bit rate
for transmission and storage of the information while maintaining the video quality. There are
two types of compression techniques lossless and lossy compression [2]. In the lossless
compression, the original video can be perfectly recovered from the compressed or encoded
video. These are also called noiseless since they do not add noise to the original frame, while
the second type is a lossy compression, in this type the recovered video does not have the same
quality as the original video, this type has a small distortion, which will not affect the
understanding of video generally. This type has been widely used because of its high
compression rate [30, 35, 43].

Unfortunately, there are still many problems or challenges that hinder video compression
from being popular [2]. This problem is how to make a trade-off between the video quality in
terms of Peak Signal to Noise Ratio (PSNR) and the amount of compression. If the compres-
sion ratio is high then the quality of the reconstructed video becomes low. Also, the compu-
tational cost of the video compressing algorithm should be considered. Another challenge is
the lack of understanding of image color spaces and their perceptual mechanisms that are used
as bases for developing perception-aware coding techniques. Moreover, application- and
context-dependent quality expectations of users have sometimes prevented researchers from
reaching generally applicable perceptual compression techniques. Nevertheless, perceptual
video compression has great potential as a solution to facilitate multimedia content manage-
ment due to its efficiency for data rate reduction [2, 26].

Recently, several approaches have been presented that attempt to tackle the above prob-
lems. The taxonomy of these approaches can be categorized as spatial, temporal, statistical,
and psycho-visual redundancies [11, 36]. Spatial redundancies (intra-coding) mean the ele-
ments are duplicated within a structure, such as pixels in a still image or frame. Exploiting
spatial redundancy is how compression is performed. The sensitivity of the eye drops as spatial
frequencies increase; i.e., as the spatial frequencies increase, the ability of the eye to discrim-
inate between the changing levels decreases. Any detail that cannot be resolved is averaged.
Temporal redundancies (inter-coding) mean the pixels in two video frames have the same
values in the same location. Statistical redundancies mean encoded the coefficients compres-
sion. Variable length coding is used to exploit these statistical redundancies and increase
compression efficiency by using binary codes in the last stage of video compression. Psycho-
visual redundancy is a redundancy corresponding to different sensitivities to all frame signals
by human eyes. Therefore, eliminating some less relative important information in our visual
processing may be acceptable. In general, spatial redundancies can be exploited to remove or
reduce higher frequencies in an effective way without affecting the perceived quality.

In video coding, quantization and entropy coding are the lossy and lossless compression
procedures respectively. For quantization part, the scalar quantization strategy has dominated
the hybrid video coding framework due to its low cost in computation and memory. However,
this uniform scalar quantization does not conform to the characteristics of the human visual
system and is not friendly to perceptual quality improvement. After quantization, the syntax
elements including coding modes and transform coefficients will be fed into the entropy
coding engine to further remove their statistical redundancy. Although the elaborately
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designed hybrid video coding framework has achieved significant success in predominant
compression performance, it becomes more and more difficult to be further improved.
Moreover, it also becomes computation-intensive and inhospitality to parallel computation
as well as a hardware manufacturer.

The process of video compression using Vector Quantization (VQ) can be divided into
three phases: codebook generation, encoding, and decoding. In the codebook generation stage,
a set of pre-computed codewords is generated based on a set of training image vectors. The
goal involved in the design of each vector quantization technique is to make the technique to
use more number of training vectors and less number of bits for codebook generation. The
main objective is to find the most representative set of codewords that will produce the least
distorted video after compression. It has been observed that as the number of bits used for
codebook generation decrease the computational complexity and memory requirements de-
creases but the spectral distortion increases. Research efforts in codebook design have been
concentrated in two directions: (1) to generate a representative codebook. (2) To reduce the
computational complexity of the codebook generation [28, 30, 32].

There are two alternative approaches to codebook creation. The codebook can be pre-
calculated and encoded statically at the beginning of the compression process, or it can be
created adaptively and updated continually during compression. Compression systems that use
static codebook creation suffer from one main problem: it is difficult to modify the codebook
as pages (frames) are processed. To compress multiple pages the system must either form a
codebook based on the set of pages or encode creation and deletion operators in the index
stream. Adaptive codebook techniques do not require the codebook to be transmitted before
the video’ frames are compressed. Instead, it is created dynamically as unique frames are
processed. The addition or deletion of components in the codebook is incremental and is
performed after each component is processed [28, 32].

Adaptive VQ is an alternative solution that can exploit the statistical dependence between
vectors while avoiding the complexity that would result from increasing the vector dimen-
sionality. Rather than code each vector independently, we examine the context or local
environment of a vector and modify the quantizer to suit our awareness of the “big picture”
of how other vectors in the sequence are behaving in order to more efficiently code this
particular vector. Adaptive codebook can match against any previously encoded character.
One main drawback of this method is that components are not consistently matched with the
same character, and the index value is not constant [32]. In the literature, the most commonly
used method in VQ is the Linde-Buzo-Gary (LBG) algorithm [28]. However, LBG has the
local optimal problem, and the utility of each codeword in the codebook is low. The local
optimal problem is that the codebook guarantees local minimum distortion but not global
minimum distortion. Since data points are represented by their index to the closest centroid,
commonly occurring data have less error and rare data have a higher error. Hence VQ is
suitable for lossy data compression.

In the literature, the majority of video coding algorithms utilizes neural network [23, 24]
that is composed of a spatial component that encodes intra-frame visual patterns, and a
reconstruction component that aggregates information to predict details. Some of these
algorithms make the spatial component deep so that it can better leverage spatial redundancies
for rebuilding high-frequency structures [15]. The neural video compression method based on
the predictive VQ algorithm requires the correct detection of keyframes in order to improve its
performance. The neural networks have the ability to learn how to do tasks based on the data
given for training or initial experience (Adaptive learning). Neural networks are a “black box”
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and have limited ability to explicitly identify possible causal relationships. The neural net-
work’s structure should be optimal but both these processes are time- consuming. Also, it may
suffer from overfitting. Recently, evolutionary optimization techniques (e.g. genetic algorithm,
and swarm intelligence) are exploited to enhance the NN learning process and build an
intelligent vector quantization [12, 46]. The efficiency of the VQ relies on the appropriate
codebook; hence, many research works based on optimization have developed for the gener-
ation of the global codebook.

Evolutionary algorithms such as genetic algorithm is a family of metaheuristics, population-
based, meaning that a pool of solutions is used in every iteration of the solution process, that
uses operators to combine/modify the solutions aiming at iteratively improving/evolving the
solutions of the pool based on a fitness function. In addition, all metaheuristic algorithms use a
certain trade-off of randomization and local search. Two major components of any
metaheuristic algorithms are: intensification and diversification, or exploitation and explora-
tion [12]. Diversification means to generate diverse solutions to explore the search space on a
global scale, while intensification means to focus the search in a local region knowing that a
current good solution is found in this region. A good balance between intensification and
diversification should be found during the selection of the best solutions to improve the rate of
algorithm convergence. The selection of the best ensures that solutions will converge to the
optimum, while diversification via randomization allows the search to space from local optima
and, at the same time, increases the diversity of solutions. A good combination of these two
major components will usually ensure that global optimality is achievable. The GA repeats
these processes until a fitness function satisfies a certain condition. GA has been widely used
in complex optimization problems and has been shown to provide good solutions for learning
NN and optimal codebook design [41]. The codebook design can be regarded as a searching
problem; its goal is to search an optimal solution as the most representative codebook which
could correctly be applied in the image compression. The color image becomes the source of
training samples [4].

1.1 Contribution

This paper proposes a new codebook generation model for video compression using a
combined scheme of neural network (NN) and genetic algorithm (GA). The combined scheme
makes full use of the near global optimal searching ability of GA and the self-learning ability
to link input and output of NN to compute the codebook. The suggested model differs from the
traditional methods that rely on Learning Vector Quantization (LVQ) network for video
compression by utilizing the genetic algorithm as a pre-step to construct optimal codebook
for vector quantization; instead of building VQ using LVQ networks directly. This optimal
codebook will act as an activation function of the NN to eliminate its sensitivity to initializa-
tion, slow convergence problems, and instabilities. The novelty of proposed video compres-
sion scheme is that it works based on removing different types of redundancies in one package.
The system handles the frame’s spatial redundancy by dropping the duplicate in the high-
frequency coefficients of the discrete wavelet transform through adapting vector quantization
based NN; whereas the redundancy inside the low-frequency (high energy) coefficients will be
eliminated by using DPCM. The model controls the enter-frame temporal redundancy by
utilizing background subtraction algorithm to extract motion objects within frames to generate
the condensed initial codebook. Regarding statistical redundancy, the system employs run
length encoding to increase the compression ratio. In general, a key issue in LVQ is the choice
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of an appropriate measure of distance or similarity for training and classification (Euclidean
distance in our case).

The rest of the paper is organized as follows: Section 2 describes some of the recent related
works. The detailed description of the proposed system has been made in Section 3. In
Section 4, the results and discussions are given. Finally, conclusions are drawn in Section 5.

2 Literature survey

Research in the video compression domain has attracted tremendous interest in recent years
due to its challenging nature in effectively satisfying a high compression ratio without
degradation of the reconstructed video. In the past decades, several traditional video compres-
sion algorithms have been introduced, such as H.264 and H.265. Most of these algorithms
follow the predictive coding architecture whereby only the unpredicted elements of a signal are
fed forward for further stages of information processing. The H.264 improves the video coding
efficiency by performing motion compensation for the variable small block-size. HEVC stands
for High-Efficiency Video Coding, also known as H.265 is able to compress video with double
data compression ratio but just needs half bitrate to keep the same video quality and reduce
storage by half when compared to H.264. Different from JPEG, HEVC utilizes more intra-
prediction modes from neighbouring reconstructed blocks in the spatial domain. Besides intra-
prediction, more coding gains of video compression come from the high efficient inter
prediction, which utilizes motion estimation to find the most similar blocks as a prediction
for the to-be-coded block. Nevertheless, a more efficient video coding scheme is required for
higher-resolution and the newest services such as Ultra High Definition (UHD) and Virtual
Reality (VR) [6, 14, 21].

After standardizing H.264/AVC and H.265/HEVC successfully, Versatile Video Coding
(VVC), Scalable Video Coding (SVC) are being standardized. The basic framework of VVC is
the same asHEVC,which consists of block partitioning, intra and inter prediction, transform, loop
filter, and entropy coding. VVC aims for a 30 to 50% bit-rate reduction for the same perceptual
quality as HEVC, but with an estimated 10 times or more encoding complexity compared to its
predecessor. Meanwhile, the encoding structure of SVC includes one base layer and one or more
enhancement layers. SVC is a newer form of video compression which dynamically adjusts the
frame rate or resolution in real-time based on varying network conditions. SVC provides two
types of quality scalability, known as coarse grain scalability and medium grain scalability.
However, finding a precise correlation between consecutive frames is important to final coding
performance. Block matching based motion estimation and motion compensation have been
implemented in the reference software model of the previous video compression standards. The
fundamental motion model of the conventional block-based motion compensation is a transla-
tional motion model. Yet, this technique suffers the limitation that it can only compensate for a
pure parallel translation between frames. In actual videos, motion by a non-affine transformation
appears more generally than by an affine transformation with such restriction [19–22].

Recently, neural networks have achieved significant success in many fields including video
compression [5, 31]. Neural networks can either be used to augment a standard video
compression technique, or they can be used as part of a neural compression technique. The
primary way in which neural networks have been used to augment traditional video compres-
sion techniques is in the finding of motion vectors. The traditional approach involves an
exhaustive search of a region of the frame in which the block under examination may have
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come from. Alternatively, one could use the logarithmic block matching technique suggested
in the MPEG standard. This is a heuristic that produces good results, but not necessarily the
optimal results produced by the exhaustive search. The alternative to neural assisted video
compression is to create a video compression scheme based entirely on neural networks. One
of the major problems with the neural network, in general, is that some neurons are under-
utilized. In order to handle this problem within the context of generating VQ codebooks, some
authors suggested an adaptation of the neural network; begins by designing a small codebook
then the authors search the training set to find the block clusters corresponding to each index in
the codebook [38].

Recently, deep neural network (DNN) based autoencoder for video compression has
achieved comparable or even better performance than the traditional video codecs. One
possible explanation is that the DNN based video compression methods can exploit large
scale end-to-end training and highly non-linear transform, which are not used in the traditional
approaches. These methods are used to improve the performance of one particular module of
the traditional video compression algorithms instead of building an end-to-end compression
scheme [5, 31, 38]. The authors in [5] suggested a fully end-to-end deep learning framework
for video compression. Their framework inherits the advantages of both classic predictive
coding scheme in the traditional video compression standards and the powerful non-linear
representation ability from DNNs. However, DNN requires very large amount of data in order
to perform better than other techniques. Furthermore, there is no standard theory to guide for
selecting the right deep learning tools as it requires knowledge of topology, training method,
and other parameters. As a result, it is difficult to be adopted by less skilled people [31].

An insight into the penitential of using vector quantization for real-time neural video codec
is provided in [24]. This technique utilizes Predictive Vector Quantization (PVQ) that com-
bines vector quantization and differential pulse code modulation. The neural video compres-
sion method based on the PVQ algorithm requires the correct detection of keyframes in order
to improve its performance. For keyframe detection, their method uses techniques based on the
Restricted Boltzmann Machine method (RBM). Unfortunately, training RBMs with this
approach is known to be difficult, as learning easily diverges after initial convergence. This
difficulty has been reported recently by many researchers. Another work involving hybrid
transformation-based video compression may be seen in [2]. The hybrid DWT- DCT trans-
forms exploits the properties of both the DWT and DCT techniques and provides better
compression. The hybrid compressed frame is quantized and entropy coded with Huffman
coding. This method utilized the motion vectors, found from estimation using adaptive rood
pattern search, and is compensated globally. Their system was more complex because the
hybrid transforms with quantization needs a lot of time to compress the video.

With this same objective, in 2015 A. Elmolla et al. [8] introduced run-length and Huffman
coding as a means of packaging hybrid coding. Initially, the video is converted to numbers of
frames and then applying fast curvelet transform to get the coefficient of the frame, this
coefficient will be the input for the Run-length Encoding (RLE) then applying Huffman
Coding to the output of RLE the final output image will be compressed. This type of
compression has the ability to overcome the drawbacks of wavelet analysis, but there are
some of the limitations, they are not optimal for the sparse approximation of curve features
beyond-singularities. More formal description, as well as a review of video compression based
on Huffman coding, can be found in [1]. Yet, Huffman coding requires two passes one to build
a statistical model of the data and a second to encode it so is a relatively slow process. This, in
turn, means Huffman coding is slower than other techniques when reading or writing files.
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Recently a lot of research interest is being shown in optimization techniques that can obtain
the temporal redundancy that deals with motion estimation and compensation based on edge
matching which can alleviate the problem of local minima and at the same time reduces
computational complexity [13, 42]. The ant colony edge detector is used to create edges for
motion compensation. The frame is divided into non-overlapping rectangular blocks. The best
match to the current block is the search for in the previous frame to the search area and on the
basis of mutual information match is found. In order to remove the spatial redundancy, the
modified fast Haar wavelet transformation is used. The main disadvantages of block matching
are the heavy computation involved and the motion averaging effect of the blocks. If the
chosen blocks are too large then many different moving objects may be enclosed by one block
and the chosen motion vector is unlikely to match the motion of any of the objects.
Furthermore, the main problem of the ant colony algorithm is that convergence is guaranteed,
but time to convergence uncertain and problem representation (coding) is not straightforward
[42].

Another approach was introduced by Rubina in 2015 [37], defining a technique to provide
temporal–based video compression based on fast three-dimensional cosine transform. It has
been shown that the efficiency of removing temporal redundancy algorithms can be improved
by increasing the efficiency of inter prediction algorithms by the way of increasing the
efficiency of transformation coding. One of the main problems of this transform is represented
by video sequences mixing inside the group of frames. Recently, motion compensation has
become a cutting-edge and promising approach to video compression. For instance, Zhang and
others [47] employed a Motion Compensation Temporal Filtering (MCTF) technique to
eliminate temporal redundancy in the frames of video. MCTF is based on inter-frame wavelet
transform and lifting construction to overcome the disadvantage of block motion- compensa-
tion. However, using the advantage of a curvelet in signal analysis can improve the function of
video compression. The disadvantage of block motion compensation is that it introduces
discontinuities at the block borders (blocking artifacts).

To minimize the influence caused by the hybrid transformation in terms of compression
quality and increase the compression ratio; Esakkirajan et al. [11] incorporated the advantages
of multiwavelet coefficients, possesses more than one scaling function, and adaptive vector
quantization scheme, the design of the codebook is based on the dynamic range of the input
data. In this work, the spatial redundancy is minimized using a multiwavelet transform,
temporal redundancy is minimized using a motion estimation algorithm, and the psycho-
visual redundancy is minimized using the adaptive vector quantization technique. The objec-
tive of the paper is to develop a low bit rate video coder with acceptable visual quality. The
performance of their scheme is compared with a wavelet-based video coder. Simulation results
showed that multiwavelet based adaptive vector quantization gives better coding performance
than wavelet-based adaptive vector quantization scheme. However, reducing the three types of
redundancies make the system more complex.

Another approach was suggested by Nithin et al. in 2016 [34], defining a technique to
provide component-level information to support spatial redundancy reduction based on prop-
erties of fast curvelet transform, Burrows-Wheeler Transform (BWT) and Huffman coding.
BWT coding is used to encode the fast curvelet transform coefficient to compress many back
to back data elements and keep in the form of the isolated data value and count. The remaining
data of the BWT are encoded by using Huffman coding and it is deposited in a book and it
may be created for each video frame. For reconstruction, the system enabled decoding by
using combined codebook data and encoded data and it is transmitted. However, bigger blocks
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might slow things down considerably. In general, the majority of the video compression
algorithms rely on hand-crafted modules, e.g., block-based motion estimation, to reduce the
redundancies in the video sequences. Although each module is well designed, the whole
compression system is not end-to-end optimized. It is desirable to further improve video
compression performance by jointly optimizing the whole compression system. Although they
provide highly efficient compression performance, they are manually designed and cannot be
jointly optimized in an end-to-end way.

2.1 The need to extend the related work

Although video compression has been studied for nearly many decades, there is still room
to make it more efficient and practical in the real application. According to the aforemen-
tioned review. It can be found that past studies were primarily devoted to (1) devising
different types of redundancies that employ the video information (e.g., intra-frame, and
inter-frame), (2) not addressing the issues associated with the building of codebook for
vector quantization compression algorithms (most often built randomly), and (3) most
neuro-coding techniques rely on weights matrix adjustment to achieve compression which
on the other hand requires extensive training. However, to the best of our knowledge, little
attention has been paid to devising a new optimal codebook and improving its efficiency
for vector quantization as well.

While there are many standard compression models that have proven to be very successful,
but these models are mainly rely on motion estimation module to achieve high compression
with acceptable quality. Yet, this module faces many difficulties such as unwanted camera
motion, occlusion, noise, lack of image texture, illumination changes and the aperture prob-
lem. To reduce the impact of these difficulties on the efficiency of video compression systems;
the suggested model concentrates on building context-based vector quantization that relies on
the adaptive codebook design with the aim to tune the expected error from applying the simple
background subtraction algorithm instead of using the complex motion estimation module to
rise the concept of optimizing the whole compression system in in an end-to-end way.

3 Methodology

3.1 Mathematical analysis

An area that has close affinity with clustering is that of VQ. Vector quantization techniques are
used mainly for data compression, which is a prerequisite for achieving better computer
storage utilization and better bandwidth utilization (in communications). Given T be the set
of all possible vectors for the problem at hand. A vector quantizer Q of dimension I and size m
is a mapping of T to a finite set C, which is called the reproduction set and contains m output
reproduction points, the code vectors or codewords. Thus Q : T→C where C = {θ1, θ2,
….., θm} with θ1 ∈ T. Each code vector θi represents a specific region Ri of the vector
space. Herein, the question is how one can select the code vectors θiin such a way as to
achieve the least possible distortion. A usual approach is to optimize an appropriate criterion
function (distortion function), with respect to θi’s. A commonly used distortion criterion is the
average expected quantization error. For a finite number of samples x1,x2, …..,xN of x, this
error is defined as:
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D Qð Þ ¼ ∑m
j¼1Dj Qð Þ;D Qð Þ ¼ ∑N

i¼1d xi;Q xið Þð Þp xið Þ ð1Þ

where x is a random vector that models T and p(x) its corresponding pdf.Dj(Q) is known as the
average quantization error for region Rj. The quantity d is a distance measure, for example,
Euclidean (distortion measure). Q(xi) ∈C is the code vector that represents xi and p(xi) > 0,i =
1,2, …N, the respective probabilities. To achieve optimal quantizer (optimal codebook), two
conditions are necessary:

– Nearest neighbor condition: For fixed C,

Q xð Þ ¼ θ j::only if d x; θ j
� �

≤d x; θkð Þ; k≠ j ð2Þ

– Centroid Condition:

∑N
i¼1d xi;Q xið Þð Þp xið Þ ¼ min

y
∑N

i¼1d x; yð Þp xð Þ ð3Þ

One way to compute the code vectors of the set C is to start with an arbitrary initial estimate of
the code vectors and to iteratively apply the nearest neighbor condition and the centroid
condition, interchangeably, until a termination criterion is satisfied. In the suggested model, a
new codebook Q(xi) generation algorithm for video compression is presented. This new
algorithm combines the LBG algorithm, genetic algorithm, and neural network in a unified
framework in order to efficiently search for an optimal codebook based on the training video.

3.2 Proposed model

This paper proposes a new model that combines the two types of video coding: intra-frame and
inter-frame coding in a unified framework with the aim of removing different types of
redundancies (spatial, temporal, and statistical). The intra-frame coding is achieved by fusing
the information come from both of wavelet transform that decorrelates the pixels of the input
frame, converting them into a set of coefficients that can be coded more efficiently than the
original pixel values themselves and quantization information originates from differential pulse
code modulation that forms the core of lossless compression algorithms. The vector
quantization technique is adapted for inter-frame coding based on the background subtraction
algorithm to condense the codebook length. Finally, the run-length encoding algorithm is used
to merge information for the two encoded data to achieve high compression by removing the
statistical redundancy. Figures 1 and 2 show the main model’s components for both compres-
sion and decompression phase respectively and how they are linked to each other.

Step 1. Generate Initial Codebook: In this step, a codebook for each video is built offline
that relies on extracting the moving parts of the frames (foreground) beside the
background; each of them is represented as a codeword. The separating of moving
objects is performed based on the background subtraction technique. Background
subtraction technique is a widely used approach for detecting moving objects in
videos from static cameras that is formally defined as [3]:

f c− f cj j < δ ð4Þ
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where fc is a current frame, fp is a previous frame, δ is the threshold. The accuracy of this
approach is dependent on the speed of movement in the scene. Faster movements may require
a higher threshold. Among the available algorithms for optimal codebook design, the sug-
gested model uses LBG algorithm that is the most popular one and is always used by
researchers in VQ as the “standard” codebook design algorithm for benchmarking to build
the initial codebook. The steps of this algorithm are described as follows [32]:

– P vectors will be picked up from the data set P = {pi|i = 1, 2,…. .,Np} as initial codewords
with Np is the total number of moving objects plus background. The codewords are
denoted as. c1 c2……. ck

– The closest codeword based on square of the Euclidean distance, will be found for each
vector in the data set P, and then the vector is added into the corresponding cluster of the
closest codeword found using:

Fig. 1 Flow diagram of proposed model: Compression phase
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pi∈Z j; i ¼ 1;…:;Np; j ¼ 1;…::k if and only if ;

pi−c j
�� �� < pi−cq

�� �� q ¼ 1; 2;…::k; j≠q

ð5Þ

where ‖.‖ denote Euclidean distance and Zi is ith cluster.

Fig. 2 Flow diagram of proposed model: Decompression phase
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– The new codewords c¼1 c¼2……:c¼k are calculated as

c¼i ¼ 1

Si
∑p j∈Zi

p j ð6Þ

Si denotes the number of vectors that belongs to cluster of Zi.

– The iteration will be stopped, if the discrepancy between codewords in two successive
iterations is smaller than a predefined threshold or a specific number of iterations has been
reached. However, the result is affected by the selection of the initial codebook, which
often leads to the generation of a suboptimal final codebook.

Step 2. Codebook Optimization: given the initial codebook, the next step is to tune the
codewords inside the codebook by a specific objective function. The genetic algo-
rithm is adopted here to realize this step. In this case, an instance of a GA-based
codebook optimization problem can be described in a formal way as a tuple (Y, Q, T,
f) where [4, 12, 40, 41]:

– Y is the solution space (initial population – a combination of different codewords). Each
codeword is signified as a gene and every codebook is represented as a chromosome.

– Q is the feasibility predicate (different operators- selection, crossover, and mutation). The
crossover is the process of exchanging the parents’ genes to produce one or two offspring that
carry inherent genes from both parents. Herein, the crossover is a single point crossover to
increase the diversity of mutated individuals and it is the most popular crossover and it is
widely used. The purpose of mutation (uniform) is to prevent falling into a locally optimal
solution of the solved problem. Tournament selection is probably the most popular selection
method in the genetic algorithm due to its efficiency and simple implementation.

– T is the set of feasible solutions (new generation populations). With these new genera-
tions, the nearest neighbour of the source vector gives the least dissimilarity (distortion)
among all the codevectors in the codebook. The performance of VQ is influenced by the
size of the codebook and dimension of the code vector, which is a couple of contradictions
between distortion and complexity. GA is used to search for the best centroid of each
partition. VQ is basically a clustering method, grouping similar vectors (blocks) into one
class. The vectors are obtained from image data (frame) by extracting non-overlapping
square blocks. The pixels in each block are arranged in a line-by-line order. VQ can be
considered as a mapping of features. It maps input vectors into a set of codewords. Similar
vectors are mapped to the same class or codeword in the codebook.

– f is the objective function (fitness function). The individual that has higher fitness will win
to be added to the predicate operators’ mate. Herein, the fitness function is computed
based on the Euclidean distance between the initial codebook and each frame that is
converted to a vector for matching purpose [45]:

d X ; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
∑
k

l¼1
X il−Y jl
� �2s

; f ¼ 1

d X ; Yð Þ ð7Þ
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Where N is the total number of frames, k represents the total number of the codeword in the
initial codebook, X is the frame vector and Y is the initial codebook. In this case, X is
partitioned to many sub-vectors each of which equals Y in length. This approach fully exploits
the robustness of the genetic algorithm to improve the performance of video compression and
to simplify the computation complexity of the VQ coding through generating optimal code-
book that supports to represent the majority of frame data in a correct index. This codebook
table will be stored in a database for use later in the decompression phase.

3.2.1 Compression phase

Data compression is subject to a space-time complexity trade-off. For instance, a compression
scheme for video may require expensive hardware for the video to be decompressed fast enough
to be viewed as it is being decompressed, and the option to decompress the video in full before
watching it may be inconvenient or require additional storage. The design of data compression
schemes involves trade-offs among various factors, including the degree of compression, the
amount of distortion introduced (when using lossy data compression), and the computational
resources required to compress and decompress the data [33]. The compression phase consists of
two main stages, lossless compression based on DPCM and lossy compression based on an
enhanced LVQ neural network. Both stages operate on the wavelet domain of each frame.

Wavelet transform decomposes a signal into a weighted linear combination of a set of
scaling functions and wavelet functions (mother wavelet). Scaling and wavelet functions are
orthogonal functions that divide the function space into a series of orthogonal high and low-
frequency spaces. Coefficients (weights) associated with the scaling function, called approx-
imation coefficients, capture low frequency information, while coefficients associated with
wavelet function, called detail coefficients, capture high-frequency information. Unlike
Fourier transform, wavelet transform provides local information (in both time and
frequency) of a given signal, which makes this transform very useful for extracting
disturbance information from power signals. Wavelet transform can be performed using
different types of wavelet functions (e.g. Haar). The number of levels for multiresolution
analysis is another parameter for this analysis. After a certain number of levels, detail
coefficients are susceptible to noise. Features extracted from higher-level coefficients often
are correlated to features extracted from lower-level coefficients and do not add much value to
the classification system [4, 12, 18, 41]. We can approximate a discrete signal as:

f n½ � ¼ 1ffiffiffiffiffi
M

p ∑
k
W∅ j0; k½ �∅ j0;k n½ � þ 1ffiffiffiffiffi

M
p ∑

∞

j¼ j0
∑
k
Wψ j; k½ �ψ j;k n½ � ð8Þ

Here f[n], ∅ j0;k n½ �, and ψj, k[n] are discrete functions defined in [0,M − 1], totally M points.

Because the sets ∅ j0;k n½ �� �
k∈z and ψ j;k n½ �� �

j;kð Þ∈z2; j≥ j0
are orthogonal to each other. The inner

product can be taken simply to obtain the wavelet coefficients.

W∅ j0; k½ � ¼ 1ffiffiffiffiffi
M

p ∑
n
f n½ �∅ j0;k n½ � ð9Þ

Wψ j; k½ � ¼ 1ffiffiffiffiffi
M

p ∑
n
f n½ �ψ j;k n½ � j≥ j0 ð10Þ
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W∅[j0, k] are called approximation coefficients while Wψ[j, k] are called detailed coefficients.

∅ tð Þ ¼ ∑
n
h∅ n½ �

ffiffiffi
2

p
∅ 2t−nð Þ ð11Þ

It is evident to show that h∅ n½ � ¼ 1=
ffiffiffi
2

p
; 1=

ffiffiffi
2

p
;

� �
for Haar scaling functions. It is designed

properly such that we apply a discrete low pass filter h∅[n] to have ∅(t). Similar relationship
exists for the wavelet functions. It is [18]

ψ tð Þ ¼ ∑
n
hψ n½ �

ffiffiffi
2

p
∅ 2t−nð Þ ð12Þ

Again, for Haar wavelets, hψ n½ � ¼ 1=
ffiffiffi
2

p
;−1=

ffiffiffi
2

p
;

� �
. These two filters are related by:

hψ n½ � ¼ −1ð Þnh∅ 1−n½ � ð13Þ
The computation time can be reduced.

∅ j;k n½ � ¼ 2 j=2∅ 2 jn−k
� � ¼ ∑

n
h∅½ń�

ffiffiffi
2

p
∅ 2 jn−k
� �

−n ð14Þ

Let ń ¼ m−2k, we have

∅ j;k n½ � ¼ ∑
m
h∅ m−2k½ �

ffiffiffi
2

p
∅ 2 jþ1n−m
� � ð15Þ

Combine Eq. 6 with Eq. 12, it becomes

W∅ j; k½ � ¼ 1ffiffiffiffiffi
M

p ∑
n
f n½ �2 j=2∅ 2 jn−k

� 	

¼ 1ffiffiffiffiffi
M

p ∑
n
f n½ �2 j=2 ∑

m
h∅ m−2k½ �

ffiffiffi
2

p
∅ 2 jþ1n−m
� �

¼ ∑
m
h∅ m−2k½ �


 1ffiffiffiffiffi
M

p ∑
n
f n½ �2 jþ2ð Þ=2∅ 2 jþ1n−m

� �
¼ ∑

m
h∅ m−2k½ � W∅ jþ 1;m½ �;¼ h∅ −n½ �*W∅ jþ 1; n½ �jn¼2k;k ≥0 ð16Þ

Similarly, for the detail coefficients, it is

Wψ j; k½ � ¼ hψ −n½ �*W∅ jþ 1; n½ ���n¼2k;k ≥0 ð17Þ

For the commonly used discrete signal, say, a video frame, the original data can be viewed as
approximation coefficients with order J. That is, f[n] =wϕ[j, n] By Eq. 13, next level of
approximation and detail can be obtained. This algorithm is “fast” because one can find the
coefficientslevel by level rather than directly using Eqs. 8 and 9 to find the coefficients.

3.2.2 Stage 1: Lossless compression

For each frame, the low wavelet frequency coefficients that have a large amount of energy are
losslessly compressed to preserve the most important features from loss. In this, DPCM is
employed as a signal encoder that uses the baseline of Pulse-Code Modulation (PCM) but adds
some functionality based on the prediction of the samples of the signal [39]. DPCM takes the
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values of two consecutive samples; if they are analog samples, quantize them; calculates the
difference between the first one and the next; the output is the difference, and it can be further
entropy-coded. Applying this process, the short-term redundancy (positive correlation of
nearby values) of the signal is eliminated; compression ratios on the order of 2 to 4 can be
achieved if differences are subsequently entropy coded; because the entropy of the difference
signal is much smaller than that of the original discrete signal treated as independent samples.

3.2.3 Stage 2: Lossy compression

For each frame, the high wavelet frequency coefficients that have a small amount of energy are
lossy compressed to achieve a high compression ratio. In this LVQ neural network are adapted
to compress these coefficients; LVQ neural network utilizes the optimized codebook for each
video as a dynamic vector quantization to be embedded into the hidden layer as an activation
function. The generalized net model of a neural network algorithm is consists of a set of
neuron; each neuron or a group of neurons are represented by a token of α – type (learning
rate). When alpha is close to 0, the neural net will engage in more conservative weight
modifications, and when it is close to 1, it will make more radical weight modifications. These
tokens enter the net through the place X 1 and have the following initial characteristics [7]:

y αi lð Þ
� � ¼ l; i; f i lð Þ

D E
; i ¼ 1; 2;…::;Nl; l ¼ 0; 1;…::; L ð18Þ

In this, i represents the number of the token (neuron), fi(l)is an activation function of the ith

neuron associated with the l th layer of the neural network. The basic generalized net model of
the neural network algorithm contains three transitions.

– Every token αi(l) is transferred from the place X 1to the place X 2 as well as X 3 via the
transition Zl.

– The tokens are transferred sequentially according to increasing indexes for given in order
to be aggregated with other tokens of the same level l into one new token αi(l).

– Representing the whole layer l, according the following conditions of transition Zl.

Zl ¼ X 1;X 2f g; X 2;X 3f g; r; ∨ X 1;X 2ð Þh i ð19Þ
where r is the transition’s condition determining which tokens will pass the transition. Herein,
the whole neural network is represented by three transitions Zl = 1, 2, 3 with three places X 1, X 2,
and X 3. In practical both Z1 and Z3 is represented by a sigmoid function, whereas Z2 for the
hidden layer is represented by the optimized codebook.

Unlike the current compression methods that employed the neural network as a black-
box for lossy compression, the suggested model adapts the optimized codebook derived
from step 2 as an activation function embedded in each hidden layer’s neurons. In our
case, the vector quantization neural network is employed as a compression algorithm
combining vector quantization and supervised learning. In general, Learning Vector
Quantization (LVQ) neural network does better than the back-propagation one in the field
of supervised video compression as it has a superior performance in the sense of mini-
mizing errors while maintaining rapid convergence [9].

The first step in the design of the LVQ neural network is to configure the parameters of
both competitive and linear layers. The HL wavelet band (selected according to the
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experimental results) for each frame is employed as an input vector to the input layer. The
hidden layer contains the optimized codebook; one vector for each hidden layer’s node; while
the output is the index that will be used in the encoding phase. In general, LVQ is a supervised
learning algorithm that can be used to modify the codebook. It combines clustering and
classification processes based on the feed-forward neural network [9].

Inside LVQ [9, 25], the first step has been accomplished using a competitive layer of the
network that works similarly to the Self-Organizing Map (SOM). The layer clusters the input
data vectors using a table of vectors (codebook). The number of codebook vectors is much less
than the number of input data vectors, however, it has to be predefined by the user. In
clustering operation, every data vector is assigned to the closest codebook vector according
to a predefined distortion measure. The second step of the LVQ is accomplished using the
linear layer of the network that maps each codebook vector to the target class (index). The
learning procedure works as follows:(1) Codebook initialization: The number of codebook
vectors for each target class has to be comparative to the number of occurrence of that class
and these vectors are initialized to the centre of the input ranges, (2) Winner determination:
The Euclidean distance has to be calculated between training data vector and each codebook
vector [25]. The neuron mc with a codebook vector that has the least Euclidean distance to a
data vector Xi is considered a winner. Formally the codewordWi from the optimized codebook,
is modified as follows [25]:

– If the input vector agrees with the codeword assignment, i.e. i = j then

Wi t þ 1ð Þ ¼ Wi tð Þ þ α tð Þ X−Wi tð Þ½ � ð20Þ

– If the input vector doesn’t agrees with the codeword assignment, i.e. i ≠ j

Wi t þ 1ð Þ ¼ Wi tð Þ−α tð Þ X−Wi tð Þ½ � ð21Þ

where α is the learning rate, a parameter in the range 0 <α < 1. Typically, the learning-rate
parameter is initialized to, say, 0.1 and then decreases monotonically with each iteration. After
a suitable number of iterations, the codebook typically converges and the training is terminat-
ed. In general, the proposed system does not need much time to learn by adjusting the neural
network weights because the vector quantization inside the hidden layer is optimal and thus the
process of matching the VQ’s index and input vector will be done fast.

3.2.4 Stage 3: Run length coding

Given both of the quantized coefficients vector obtained from the DPCM lossless compression
stage and VQ index vector obtained from the LVQ neural network lossy compression stage;
the two vectors are merged into a unified vector with specific delimitation between them for
decoding. In this case, there exists one unified vector for each frame. To increase the
compression ratio, RLE is utilized to handle statistical redundancy among unified vector
elements. Formally the RLE is defined as a tuple (R, L, S) for (run-flag, run-length, and run
symbol) respectively, where S is a member of the alphabet of the symbols [16]. In general,
Run-length algorithms are very effective if the source contains many runs of consecutive
symbols. In the final, each video is represented as a matrix; each row contains the RLE of a
frame; the number of rows determined by the number of video frames.
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3.2.5 Decompression phase

Decompression process is done in a reverse way to the compression process as illustrated in
Fig. 2 that includes the following steps:

– First, apply run-length decoding to each row of the matrix Vr that contains the compressed
video to retrieve the merged coefficients vector fr. This vector comprises the quantized
coefficients LLC and VQ index vector idx for each frame.

– For the quantized coefficients LLC, apply inverse DPCM to obtain the uncompressed
coefficients (low frequencies) LL.

– For the given VQ index vector idx, by utilizing the stored codebook table, this index value
is converted to the equivalent vector to retrieve the high-frequency coefficients (each
frame has one vector that contains HL coefficients).

– Given LL, and HL from the previous steps, these bands are combined with their other two
unaltered bands (LH, HH) that given from the stored database and utilizing inverse DWT
to get the decompressed frame [27]:

f d k½ � ¼ ∑
∞

−∞
HL K½ �∅ −nþ 2k½ � þ LL k½ �ψ −nþ 2k½ � ð22Þ

where fd represent the decompressed frame.

– Repeat the previous steps for each row in the compressed matrix Vr; collect the frames to
retrieve the original video. One important feature of VQ is the ease of control of the
compression ratio and the amount of loss through the variation of the number of bits used
for quantization. Another important advantage of VQ image compression is its fast
decompression by table lookup technologies

4 Experimental results

In this section, the efficiency of the proposed model is analysed. Experiments were conducted
to determine the variation in the robustness of the proposed model. Experiments were
conducted on a benchmark video dataset [44] (https://www.cs.utexas.edu/~chaoyeh/web_
action_data/dataset_list.html) (available at http://www.nada.kth.se/cvap/actions/ and
https://media.xiph.org/video/derf/). The testbed is a set of videos with different resolutions,
different numbers of frames, and different extensions like AVI and MPEG. Herein, the
background for all these videos is unmovable, while their foreground is varying from near
stability like Miss America to movement like Aquarium. Furthermore, to verify the reliability
of the proposed model in dealing with Full HD (1920 × 1080) and Ultra HD ((3840 × 2160)
video sequences, eight video sequences with different spatial and temporal information were
downloaded in the uncompressed format *.YUV from the SJTU Media Lab (SJTU 4 K Video
sequences, online: http://medialab.sjtu.edu.cn/web4k/index.html). Samples of the testbed
videos are shown in Fig. 3 and Table 1 list the description of this dataset. The suggested
model has been implemented in MATLAB (R2015a). The model has been implemented using
the laptop computer with the following specifications: Processor: Intel (R), Core (TM) i3 CPU,
Q720 @ 1.60GHz. RAM: 4 GB. System type: 64-bit operating system. Microsoft Windows 7
Single language as running operating system, and Hard Disk: 500 GB. To compare the
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efficiency of the proposed model with other existing techniques, the popular measure,
compression ratio (CR), and Peak Signal-to-Noise Ratio (PSNR) were employed for perfor-
mance evaluation. Logically, a higher value of PSNR is good because it means that the ratio of

Runners (UHD)  Fountains (FHD)    
Fig. 3 Benchmark dataset
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signal to noise is higher. Here, the signal is the original frame, and the noise is the error in
reconstruction [26, 28, 32].

In this paper, the suggested intelligent vector quantization scheme that relies on a genetic
algorithm has been tested with several benchmark videos. The suggested model has been tested
with different GA parameters to perceive the influence of these parameters on the model’s
accuracy. Table 2 shows GA parameters that were taken for optimizing the codebook indexing
table. In general, the performance of GAs largely depends on the parameters such as chromo-
some size, recombination operator probability value, and the selection mechanism. Identifying
suitable values for these parameters is not very easy. It varies according to the complexity of the
problem and dimension. Any advanced knowledge of these parameters makes GA more
effective to reach the global optimum in a time-effective manner. GA always suffers from the
problem of premature convergence and the appropriate value of crossover and mutation
probability helps GA not to get trapped at local optima. The good GA balances between wide
exploration and deep exploitation. The Local search method can be applied to the best-obtained
solution at each iteration in order to accelerate the convergence of the algorithm.

Crossover is made in the hope that new chromosomes will have good parts of old
chromosomes and maybe the new chromosomes will be better. However, it is good to leave
some parts of the population to survive to the next generation. The Mutation is made to prevent
falling GA into local extreme, but it should not occur very often, because then GA will in fact
change to random search. Regarding chromosome size, if there are too few chromosomes, GA
has a few possibilities to perform crossover and only a small part of the search space is

Table 1 Dataset description

Video Frame resolution Number of Frames Time
(Sec)

Extension

Aquarium 720 × 480 155 5 MPEG
Man running 160 × 120 154 5 AVI
Traffic road 512 × 512 48 2 MPEG
Akiyo 720 × 480 89 3 AVI
Boxing 160 × 120 154 5 AVI
Miss America 640 × 480 89 3 AVI
Tennis 320 × 240 30 1 MPEG
Suzie 192 × 144 30 1 MPEG
Runners 3840 × 2160 30 10 YUV
Fountains 1920 × 1080 50 8 YUV
Construction Field 3840 × 2160 50 10 YUV
Wood 1920 × 1080 60 8 YUV

Table 2 Genetic algorithm parameters

Encoding style Decimal encoding

Population size 30
Generations number 100
Crossover method Single point
Mutation rate Uniform mutation
Selection type Tournament selection
Probability of crossover 0.3
Probability of mutation 0.2
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explored. On the other hand, if there are too many chromosomes, GA slows down. Research
shows that after some limit (which depends mainly on encoding and the problem) it is not
useful to increase population size, because it does not make solving the problem faster [10]. In
our case, some of these parameters were determined experimentally as they depend mainly on
the problem such as crossover and mutation probabilities; whereas the other parameters were
specified according to the values stated in the previous studies as they represent defaults values
that not affected by the size and type of the problem.

Experiment no. 1: The efficiency of the suggested model regarding with the different
types of high frequency subbands The first set of experiments was performed to show how
the quality of the proposed model in terms of PSNR and CR affected by the utilized wavelet
details bands. As shown in Table 3, CR is not affected by the band type. One possible
explanation of these results is that the suggested system encodes a small number of detail
coefficients lossy as compared to approximation coefficients that contain a large number of
coefficients. These small coefficients are encoded based on the lookup table in the form of one
index. As the coefficients in the three bands are related; so the representation of these
coefficients as an index is also similar. Therefore there is no difference between the compres-
sion ratios with the difference of these bands. The results in the Table also reveal that the HL
band gives the highest PSNR as this band contains the most salient features compare to the
other bands particularly in the frame with the textures / smooth area. It must be taken into
account that each video has features that differ from the other and therefore these results may
change slightly, but it remains in the overall that the HL subband is the one that achieves the
best results in terms of PSNR.

Figure 4 shows the concepts of wavelet bands that include the approximation output (coarse
bands), which is the low-frequency content of the input signal component, and the multidi-
mensional output(fine bands), which gives the details, or the high-frequency components of
the input signal at various levels for vertical, horizontal and diagonal orientations. In this case,
the frequency distribution of the LL-subband coefficients approximates the frequency distri-
bution of the original image, while the wavelet coefficients in every other subband have a
generalized Gaussian distribution with zero means. This property remains valid at all decom-
position depth. Moreover, the furthest away a non-LL coefficient is from the mean in that
subband, the more probable the corresponding position(s) in the original image have a
significant feature [4, 12, 41]. In general, thresholding (quantizing) wavelet coefficients at
very coarse scales usually increases the compression ratio but may result in the elimination of
important features, whereas thresholding only at very fine scales may not eliminate enough
noise. Therefore, the depth of wavelet decomposition needs to be selected to optimize the
quality of the filtered signal, while maintaining a high compression ratio as possible [10].

Experiment no. 2: The efficiency of the suggested model regarding with the different
codebook sizes The second set of experiments was performed to show how the proposed

Table 3 Model performance evaluation regarding the wavelet details bands for man running video

Wavelets Bands CR PSNR

HH 30.512 37.126
HL 30.512 44.235
LH 30.512 35.581
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model’s performance depends on the size of the codebook. As shown in Table 4, the higher the
size of the codebook, the higher the CR and the lower the PSNR ratio. In many cases, CR
stabilizes or increases slightly when the codebook size is 256 or greater. The justification of these
outputs lies in the fact that the more the size of the codebook vector, the more data it has stored.
These data are represented as one Index; thus increasing the codebook size leads to increase the
compression ratio. In the case of decompression, the search is done inside the lookup table; if
there is a mistake in the index representation, the representation of the mistake for a large amount
of information leads to reduce the PSNR and hence reduce the video quality.

Experiment no. 3: The role of genetic algorithm and neural network for improving the
model performance The third set of experiments was performed to compare between the
proposed model that utilizes both of genetic algorithm and neural network to build optimal
codebook for vector quantization and the approach in [41] that utilizes a combined scheme of
principal component analysis (PCA) and genetic algorithm for codebook construction. The
combined scheme makes full use of the near-global optimal searching ability of GA and the
computation complexity reduction of PCA to compute the codebook. Also, the comparison is
made with a traditional LBG based video compression technique (without GA) that relies on
the randomness to build the codebook. Herein, the module combining GA and NN in the
suggested model is replaced once by the module integrating PCA and GA, and the second time
with the traditional LBG module; and every time the model performance is measured in terms
of CR and PSNR. For the LBG algorithm, the distortion threshold ε was set to 0.001.

Fig. 4 Wavelet bands and salient features
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As shown in Table 5, using GA +NN achieves an improvement of about 8.16% in
compression ratio and 5.51% in PSNR compared with the PCA+GA based video coding
technique. One possible explanation for this result is that feature of inter-pixel and inter-block
correlation is effectively exploited by our model to compress the codebook and the indices of
the representative codewords. For CPU time comparisons, the time for generating codebooks
needed by LBG increases with the codebook size (it needs on average 45 s for 7 bit/
codewords), while the time needed by our algorithm with GA+NN or PCA+GA remains
fairly consistent regardless of the codebook size (it needs about 10 s with GA+NN module
and 8 s with PCA+GA on average). Figure 5 shows the visual difference between the original
and the reconstructed video’s frame.

Experiment no. 4: Model’s self-assessment The fourth set of experiments investigates the
effect that different parameter settings have on the proposed model, which includes the

Table 4 Effect of codebook size of vector quantization on video coding in terms of CR and PSNR

Codebook size Video CR PSNR

16 Man Running 27.925 44.235
Traffic Road 24.904 30.553
Aquarium 23.245 33.224
Akiyo 25.512 33.985
Miss America 27.970 45.325
Boxing 25.194 43.653

32 Man Running 29.656 40.589
Traffic Road 25.724 30.423
Aquarium 26.561 32.403
Akiyo 27.512 32.598
Miss America 29.365 45.305
Boxing 27.652 41.359

128 Man Running 30.512 40.343
Traffic Road 30.512 30.348
Aquarium 30.551 32.257
Akiyo 30.512 30.141
Miss America 30.512 44.254
Boxing 30.512 41.325

256 Man Running 32.512 40.271
Traffic Road 30.665 30.048
Aquarium 30.552 31.810
Akiyo 30.512 30.141
Miss America 30.512 44.254
Boxing 30.512 40.936

Table 5 System performance evaluation with and without GA

Video LBG PCA+ GA GA+NN

CR PSNR CR PSNR CR PSNR

Man Running 30.365 37.547 30.983 38.167 33.512 40.271
Traffic Road 29.354 27.241 29.844 28.095 32.665 30.048
Aquarium 28.968 28.248 29.786 28.848 32.552 31.810
Akiyo 28.785 27.954 29.365 28.495 32.512 30.141
Miss America 28.417 40.696 28.971 42.292 33.876 44.254
Boxing 29.657 37.857 29.743 39.146 33.234 40.936
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background subtraction’s threshold δ, crossover ratio pc, and mutation ratio Pm. To keep the
number of parameter setting combinations small, the model will only vary the setting for one
parameter (δ) at a time while keeping the setting for other parameters (pc, pm) to its default
value. In Table 6, δ value changes from 0.06 to 0.1, and the PSNR achieved by the model is
observed in the near stability video like Suzie. In general, faster movements require higher
thresholds, while if the video has a little movement then the threshold must be small as much
as possible to achieve a reasonable quality for video compression algorithms. As shown in
Table 6, increasing the threshold according to the nature of the video leads to an increase in
PSNR. This increase stop after a specific value (in the case of Suzie video afterδ= 0.08 there is
no increase in PSNR. The reason for these results is that the large threshold leads to a decrease
in the number of dissimilar pixels between the frames; therefore each codeword in the
codebook contains a small amount of data. After decompression, these small data if there
exists a distortion will cause a small PSNR as compared with the codebook with the large size.

An issue when applying GAs is to determine a set of control parameters that balance the
exploration and the exploitation capabilities of the given algorithm. There is always a trade-off
between the efficient exploration of the search space and its effective exploitation. In extreme
cases, an inadequate choice of the parameter values can hinder the algorithm’s ability to locate
the optimum [10]. For example, if the mutation rate is too high, much of the space will be
explored, but there is a high probability of losing promising solutions; the algorithm has
difficulty to converge to an optimum due to insufficient exploitation. More specifically, some
of the GA mutation operators favor the exploration of the search space, while some other
operators favor its fast exploitation. The explorative mutation operators have a greater
possibility of locating the minima of the objective function, but generally, need more iteration
(generations). On the other hand, the exploitive mutation operators rapidly converge to a
minimum of the objective function [17]. Table 7 shows the PSNR values for Boxing video
resulting from the change in pc values and clarified that the best value was achieved when pc
equals 0.7. Similarly, Table 8 shows the PSNR values for Boxing video resulting from the
change in pm values and clarified that the best value was achieved when pm equals 0.3.

One possible explanation for these results is that the balance between exploration and
exploitation is achieved for the aforementioned two values in order to obtain the optimal
solution. In GA, mutation operators are mostly used to provide exploration and crossover
operators are widely used to lead the population to converge on one the good solutions find so

Fig. 5 a Original frame b Reconstructed frame (PSNR =31.810)
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far (exploitation) [10]. Consequently, while crossover tries to converge to a specific point in
the landscape, the mutation does its best to avoid convergence and explore more areas.
Obviously, we prefer to explore much more at the beginning of the search process (to ensure
the population coverage and diversity). On the other hand, we prefer more exploitations at the
end of the search process to ensure the convergence of the population to the global optimum.
There is just an exception; when population converges to a local optimum, we should (if we
can) increase the population diversity to explore other areas.

Table 6 The effect of background subtraction threshold for reconstructed suzie video in terms of PSNR

Video Frame Threshold Value PSNR

0.06 41.487

0.07 42.008

0.075 42.054

0.08 42.308

0.1 42.308

Table 7 The effect of crossover ratio on the reconstructed boxing video in terms of PSNR. (Population Size = 20,
Generation Number = 100, Pm = 0.3)

pc PSNR

0.01 40.115
0.05 40.054
0.1 41.028
0.3 41.154
0.7 41.336
0.9 41.102
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The mutation operator is aimed to produce a little modification to an individual
(chromosome) to produce a new offspring stochastically. So the aim of the mutation is to
produce a limited random unbiased change in the population to exploit a certain promising
region. This is why the mutation rate is usually small because the aim is to exploit the
promising regions found by the crossover operator. It is also small so that the information
accumulated in the chromosome over the past generations is not wasted by introducing a high
variation in the population [17]. Regrading population size, too small population can converge
early and it will not provide adequate initial surface exploration. The too-large population
takes an excessive number of function evaluations to converge. In general, population size
depends on the optimization problem. In evolutionary algorithms, the enormous population
size usually does not improve performance. The best population size depends on the encoding
and size of the encoded string.

An advantageous point of a GA is its ability to find a global optimal solution in multidi-
mensional space, and this ability is also useful for constructing an optimal codebook of VQ for
video compression. This means that we can obtain a better quality of a representative
codebook. In previous studies to design a codebook using GA, genes were coded by binary
values, zero and one. The suggested system utilized the real-coded GA to design a codebook.
Its variable space is continuous, while the binary-coded GA is not. The real-coded GA is
therefore thought to outperform the binary-coded GA for codebook design. The reason for the
low compression ratio between the two systems is that the proposed system utilizes the lossless
compression to compress a large number of important coefficients.

Experiment no. 5: Comparative analysis The following set experiments were conducted to
validate the efficiency of the suggested model in comparison with related optimization-based
compression techniques for both low resolutions, FHD, and UHD video sequences. The
comparative algorithm [42] utilizes a motion estimation technique based on the ant colony
and modified fast Haar wavelet transform to remove the temporal redundancy. On the
contrary, the proposed model removes both temporal redundancy by utilizing optimal vector
quantization, spatial redundancy by employing DPCM, and finally statistical redundancy by
implementing run-length encoding. The results in Table 9 confirm the superiority of the
suggested model as compared with the video codec method in [42] in terms of CR and PSNR
with an average improvement of 7–10% for CR and 21–23% for PSNR respectively for all
video sequences. Both methods use optimization algorithms in the video coding process, yet
the comparative one uses it to estimate residual frames. The main disadvantage of this method
is that it introduces discontinuities at the block borders (blocking artifacts). These artifacts
appear in the form of sharp horizontal and vertical edges that are easily spotted by the human
eye and produce false edges and ringing effects (large coefficients in high-frequency subbands)

Table 8 The effect of mutation ratio on the reconstructed boxing video in terms of PSNR. (Population Size = 20,
Generation Number = 100, Pc = 0.7)

Pm PSNR

0.01 41.115
0.05 41.054
0.1 41.028
0.2 41.154
0.3 41.336
0.5 41.102
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due to quantization of coefficients of the Wavelet-related transform used for transform coding
of the residual frames. In opposite, the suggested model uses the optimization module in the
form of GA in conjunction with NN to extract the optimal codebook in which the feature of
inter-pixel and inter-block correlation is effectively exploited.

Another set of experiments was conducted with the aim of comparing the proposed model
with similar state-of-the-art systems includes the method in [8], which employs fast curvelet
transform with run-length encoding and Huffman coding to remove spatial redundancy; the
method in [29] that utilizes end-to-end deep learning framework for video compression. This
framework inherits the advantages of both classic predictive coding scheme in the traditional
video compression standards and the powerful non-linear representation ability from DNNs.
Besides, a comparison is made with the standards methods such as H.264 as well as H.265/
HEVC using online software such as ×265, the free H.265/HEVC encode, and ×264, the best
H.264/AVC encoder (https://www.videolan.org/developers/x265.html). The comparative
methods were used in the testbed as a BlackBox with their default parameters; see [6, 14,
21, 29].

The results in Table 10 confirm the superiority of the proposed model over the codec
system in [8] with improvement 20–23% for PSNR and 13–15% for CR. This result is
expected as the method in [8] removes spatial and correlation redundancies only, whereas,
the suggest model removes spatial, temporal, and statistical, i.e. increasing CR. Furthermore,
utilizing the optimal codebook increases the PSNR in the decompression phase. We note the
convergence of the proposed model results with the standard methods and the method in [29];
however, they are achieving a slight increase in PSNR in the case of equal compression ratios.
The higher bit rate (high resolutions) means more data is stored, which means higher quality
compression. The convergence in the results confirms the validity of the proposed model in

Table 9 Comparison between our model and the optimization based video codec in [42]

Video Ant colony-based codec [42] Proposed Model

PSNR CR PSNR CR

Tennis 30.433 32.654 37.547 34.970
Suzie 34.574 33.452 42.308 36.874
Runners 35.146 32.654 42.247 33.309
Fountains 35.987 33.452 42.321 34.356
Construction Field 34.932 32.654 42.905 33.732
Wood 35. 716 33.452 42.295 33.242

Table 10 Comparison between our model and state-of-the art video codecs in [8, 29], H.264, and H.265

Video Ashraf et al.
method [8]

G. Lu et al.
method [29]

H.264 H.265 Proposed
Model

CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR

Traffic road 25.11 31.08 32.56 37.65 33.11 38. 12 33.67 38.73 33.71 37.50
Aquarium 24.93 30.64 32.10 37.13 33.87 38.88 33.86 38.85 33.54 38.34
Runners 29.62 34.17 32.87 42.24 32.82 42.75 32.91 43.06 33.23 42.36
Fountains 28.69 35.06 33.30 42.58 32.97 42.88 32.98 43.65 33.18 42.43
Construction 28.34 34. 32 34.11 42.22 33.26 43.25 33.65 43.87 33.96 42.32
Wood 29.63 35. 72 33.15 42.20 32.98 42.72 33.14 43.14 33.20 42.16

7392

https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
https://en.wikipedia.org/wiki/Transform_coding
https://en.wikipedia.org/wiki/Residual_frame
https://www.videolan.org/developers/x265.html


Multimedia Tools and Applications (2021) 80:7367–7396

terms of methodology and application. Herein, the focusing is on building an optimal
codebook for quantization-based compression instead of focusing on motion compensation
that faces many difficulties especially, in high- resolution videos.

In general, the codebook design can be regarded as a searching problem; its goal is to
search an optimal solution as the most representative codebook which could correctly be
applied in the video compression [4]. It is assumed that the GA-based vectors are mapped to
their nearest representative in the codebook with respect to a distortion function i.e. more
PSNR. GA is applied by different natural selection to find the most representative codebook
that has better fitness value in video compression. To expedite evolution and prevent the
solution from getting out of searching space, tuning crossover and mutation ratio are firstly
determined specifically.

Time complexity analysis The last set of experiments was conducted to evaluate the com-
plexity of the suggested model. Time complexity analysis is a part of computational com-
plexity theory that is used to describe an algorithm’s use of computational resources; in most
cases, the worst-case running time expressed as a function of its input using big-O notation. As
the proposed model was built using Matlab, which in turn depends on calling many built-in
functions, therefore, it is difficult to extract the big-O, herein; time was used as a measurement
to evaluate the complexity of the system. As shown in Table 11, more processing time is
needed for compression and decompression as the number of frames increase. It is also clear to
us that the compression phase needs about 97% of the total time to execute the program as this
step runs many subprograms that include wavelet transform, neural network, DPCM, RLE.
However, this step can be implemented once before video sending (offline) and store its output
in a database for later use. Of course, both compression and decompression time increases in
the case of FHD and UHD video sequences. This time depends mainly on the machine to
which the proposed model has been applied and this time can be reduced using a machine with
high-configuration or using a parallel processing concept.

5 Conclusion

The video compression has evolved into a mature technology in the last decade; however,
several issues remain to be solved until large-scale deployment is to be expected. Most of the
current video methods were based on traditional vector quantization that built based on the
partition-based variant in which the clusters are practically random and thus the resulting code
vectors are concentrated near the centroid of the training set. In recent times, the merging of
optimization techniques with the video compression scheme to improve its performance and
effectiveness in different areas has received considerable attention among researchers working
in this field. Inspired by the challenges that faced the video compression and in order to deal
with it, in this paper, an enhanced model has been established to produce an intelligent vector

Table 11 Average Time Consumed for the Whole mode in Seconds

Video No. Frames Compression Time Decompression Time

Suzie 30 64.774742 1.828832
Miss America 89 109.879026 2.998986
Aquarium 155 267.751918 5.2201428
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quantization scheme for video compression to facilitate the transfer and storage of videos.
Herein, the genetic algorithm is utilized to optimize codebook in vector quantization to achieve
high compression ratio with an acceptable quality of the reconstructed video. The enhanced
model fuses different techniques for redundancies (spatial, temporal, and statistical redundan-
cy) removing to increase video compression ratio with acceptable quality. The differential
pulse code modulation is utilized to remove the spatial redundancy, the optimal vector
quantization and neural network are exploited to remove the temporal redundancy; finally
the statistical redundancy will removed by implementing run length encoding technique.

In general, the application of the proposed Model faces some constraints that include (1)
using static background videos (not a movable camera) to efficiently apply the background
subtraction algorithm; (2) the model is applied with gray scale video. Working with color
video requires applying the same steps to each color channel; finally (3) extra memory space is
needed to store some information (wavelet HH and LH bands) that are used in the decoding
process. The proposed model has been evaluated using benchmark videos. The results
confirmed its efficiency in terms of compression ratio and peak signal to noise ratio. Utilizing
genetic algorithm achieves an improvement of about 5.54% in compression ratio and 9.14% in
PSNR compared with the traditional video coding techniques. In general, the efficiency of the
suggested model can be enhanced with tuning variables like codebook size, background
subtraction’s threshold, and GA parameters. To set a plan for future works, the model can
be upgraded to work with videos with movable camera instead of the static camera. Further-
more, adaptive DPCM can be employed instead of DPCM to increase compression ratio. More
transformations can be investigated for precise representation. Finally, the GA can be replaced
with another appropriate optimization method to find optimal codebook for vector
quantization.
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