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Abstract
Convolutional neural networks (CNNs) have achieved unprecedented competitiveness in
text and two-dimensional image data processing because of its good accuracy performance
and high detection speed. Graph convolutional networks (GCNs), as an extension of classi-
cal CNNs in graph data processing, have attracted wide attention. At present, GCNs often
use domain knowledge (such as citation recommendation system, biological cell networks)
or artificial created fixed graph to achieve various semi-supervised classication tasks. Poor
quality graph will lead to suboptimal results of semi-supervised classification tasks. We
propose a more general GCN of reconstructed graph structure with constrained Laplacian
rank. First, we use hypergraph to establish multivariate relationships between data. On the
basis of the hypergraph, In virtue of Laplacian rank constraint to the graph matrix, we learn
a new graph structure which has c connected components (where c is the number of classi-
fication), and then we construct an ideal graph matrix which is more suitable for the task of
semi-supervised classification on GCNs. Finally, the data and the new graph are input GCNs
model to get the results of classification. Experiments on 10 different datasets demonstrate
that this method is more competitive than the comparison method.

Keywords Graph convolutional networks · Adaptive graph · Hypergraph ·
Semi-supervised classification · Graph structure

1 Introduction

At present, deep learning has performed well in solving computer vision [24], image pro-
cessing [12], speech recognition [1] and other tasks [33]. Among different types of deep
learning models, convolutional neural networks (CNNs) have been widely studied and
applied because of its high performance in various tasks. LeCun et al. [20] and others
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established the basic framework of CNN model inspired by the cognitive mechanism of
biological natural vision. Krizhevsky et al. [19] proposed the AlexNet network and won
the championship in the 2012 ImageNet, making CNNs become the core algorithm model
in image classification. After that, CNNs developed rapidly. Many CNNs models, such as
ResNet [13], NasNet [33] and GoogleNet [27], have been proposed by researchers, which
show strong recognition ability in target detection, digital classification and other tasks.

In particular, although CNNs have good performance and high efficiency, it also has
great limitations. CNNs can only process data of the grid type. In the real world, the data we
collect are often defined on irregular grids, even in non-Euclidean spaces, such as biomolec-
ular networks, social networks, etc. Unlike image data and time series on regular grid, it
is obvious that we can process these data better in the form of graph. However, there are
some challenges in using CNNs to perform regular convolution operation in graph struc-
ture tasks. The convolution kernel of CNNs require that the number of adjacent nodes of
each node remain unchanged, and the number of nodes is orderly. In graph structure data,
each node has different number of adjacent nodes and the positions of nodes are differ-
ent. In social networks, for example, each person has different relations. Therefore, it is
impossible to directly use fixed rectangular filter to process graph structure data. For this
reason, Researchers try to modify the convolution kernel to extract the features of irreg-
ular graph structure data and propose a variety of graph convolutional networks (GCNs)
methods. Generally speaking, GCNs are divided into spatial-based and the spectral-based
strategies. For spatial-based strategies, GCNs define convolution kernels directly on the con-
nection relationship of each node, which is similar to the convolution kernel of traditional
CNNs. Hamilton et al. [11] proposed a new representation of graph nodes by aggregating
the features of neighbor nodes. Atwood and Towsley [3] proposed a diffusion based repre-
sentation learning method, which extends CNNs to solve general graph structure data. For
spectral-based strategies, the convolution operation on topological graph is realized by the
theory of spectrum. Bruna et al. [4] proposed to define the graph convolution in the Fourier
domain based on the characteristic decomposition of the graph Laplacian matrix. Besides,
Defferrard et al. [7] proposed to get the filter through the approximate expansion of the
Chebyshev polynomial of Laplacian, which reduced the computational complexity. Kipf
and Welling [18] used the first-order approximation of the Chebyshev polynomial to get the
kernel convolution, and proposed a simple graph convolution network.

The above GCNs have been widely used in various classification tasks, but these meth-
ods rarely pay attention to the development of graph structures. There is no doubt that one of
the core of GCNs is the graph which can describe the neighborhood relationship of original
data. A proper graph structure plays an important role in GCNs learning. In deep learning
tasks, we often provide GCNs with a known graph structure, such as biomolecular network
and social network. However, the graph structure obtained from domain knowledge may
not be accurate or even available. For instance, in a social network, a user may have thou-
sands of friends, but only a few close friends. When analyzing such social network data, it
is not appropriate to create thousands of edges for the user to represent the nearest neigh-
bor relationship. Therefore, how to construct a more suitable graph based on the known
graph for GCNs classification is valuable. Futhermore, in some cases, the graph structure
of the data may be unknown. We can use the traditional graph data model (such as kNN
to build the graph) to obtain the graph structure of the data. But kNN only considers the
binary relationship between data, and the data collected in reality often contain complex
multivariate relationships. Complex relationships are simply represented as paired relation-
ships,which can easily lead to the loss of important relevant information [32]. For the sake of
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overcoming the information loss problem of traditional graph model in the knowledge of
complex multiple relationship, hypergraph model came into being. Yu et al. [29] proposed
to generate a set of hyperedges for each image by changing the size of the neighbor-
hood to achieve the image classification task. Jiang et al. [16] introduced a network
evolution method based on a hypergraph model with multi-dimensional connections, and
further explore the new relationship between data through the features extracted by graph
convolution.

Inspired by these views, We consider the advantages of hypergraphs and how to create
an ideal graph structure, and propose a novel GCNs of reconstructed graph structure with
constrained Laplacian rank. First of all, we build a hypergraph of data as the initial adja-
cency matrix. Furthermore, by imposing some constraints, we learn a new graph matrix
based on the initial graph matrix, making the new graph matrix more suitable for subse-
quent semi-supervised classification tasks on GCNs. Extensive experiments show that the
graph generated by this method is superior to other common graphs in semi-supervised
classification tasks and our method has the following advantages:

– In view of the current GCNs methods, it is not necessarily the most appropriate to
obtain graphs from the knowledge domain. This paper introduce a novel GCNs of
reconstructed graph structure with constrained Laplacian rank. By introducing hyper-
graphs and Laplace rank constraints, we construct a graph structure that is more suitable
for subsequent classification tasks of GCNs. Experiments on multiple data sets show
that our proposed method has achieved more competitive results in semi-supervised
classification tasks compared with the comparison method.

– The traditional graph structure only considers the binary relationship between data. In
practical application, there are many complex relationships between nodes. The tradi-
tional method of constructing graph can not describe the complex relationship between
data effectively, which affects the quality of graph. In this paper, we use hypergraph to
define the initial graph and consider the multiple relations of data.

The rest of this paper is arranged as follows. In Section 2, we briefly introduce the
related knowledge of hypergraph learning and GCNs. In Section 3 and Section 4, we
describe our proposed method of constructing optimal graph and related experimental
results, respectively. Conclusion and future work are presented at the end of the paper.

2 Related work

In this section, we describe graph learning and hypergraph related knowledge, and further
introduce a main model of GCNs.

2.1 Hypergraph and graph learning

With the progress of technology and the richness of social life, the real data collected
is no longer a two-dimensional grid structure or even a simple one-dimensional struc-
ture. But high-dimensional complex structure data, such as biomolecular network data and
commodity recommendation data, how to effectively analyze and apply these data with
high-dimensional complex structure has become a challenge for current researches [14].
As a kind of generalized data structure, The graph is used to described the complicated
node relations among samples. Many machine learning methods try to use graph struc-
ture to represent complex data [31]. For example, in the field of chemical analysis, people
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use graph structure to describe the relationship between chemical molecules [6], and in the
commodity recommendation system, people use graph structure to describe the relationship
among different people’s hobbies and commodities [21]. Real graph network is often high-
dimensional and difficult to process. Researchers have proposed LLE [25], SDNE [28],
Node2Vec [10] and other graph embedding methods. For example, Hu et al. [14] and Zhu
et al. [31] designed novel graph embedding methods for SVM classification and spectral
clustering, respectively. The traditional graph structure only considers the binary relation-
ship between data. In practical application, the structure of data is often complex multiple
relationship, so the traditional point-to-point graph structure cannot effectively describe the
complex relationship between data, thus affects the quality of the graph. The hypergraph is
the generalization of the common binary graph [30]. The hypergraph algorithm is initially
applied to the very large-scale integrated electricity [2]. Zhou et al. [30] extended spectral
clustering to hypergraphs and carried out tasks such as classification and clustering. In the
deep learning task, Shi et al. [26] proposed to use hypergraph to establish the high-order
correlation of visual data for CNNs vision classification . In this paper, hypergraph with
multiple information is used to replace the ordinary graph of binary relation. A large num-
ber of literatures show that the richer the information learned from the data, the better the
performance of real experiments [5, 30].

2.2 GCNsmodel

We review the GCNs for semi-supervised proposed by kipf and welling [18]. GCNs are sim-
ilar to CNNs and other neural network architectures, including multiple graph convolutional
hidden layers. Given data set X = {x1, x2, ..., xn} ∈ R

n×d , n and d represent the number of
samples and features respectively. The graph adjacency matrix A ∈ R

n×n corresponding to
data set X. Then GCNs propagate layer by layer according to the following functions:

X(k) = σ(D̃
− 1

2 ÃD̃
− 1

2X(k−1)U(k−1)), (1)

where k is the number of hidden layers, Ã = A + IN is an adjacency matrix with a ring
undirected graph, and D is a diagonal matrix with d̃i = ∑

n
j=1Ãij . σ(�) is an activation

function. U(k−1) ∈ R
dk−1×dk is defined the k − 1 layer’s weight matrix that changes itera-

tively with the number of layers. We apply softmax function to the output feature X(K) of
the final K-layer to obtain the prediction label of each sample:

P = softmax(X(K)), (2)

where P ∈ R
n×c is the predicted label matrix, c is the number of real classes, and Pi

is the prediction label of the i-th sample. For semi-supervised classification tasks, The
weight matrices {U1,U2, ...,UK } are updated by the cross entropy loss function, which is
as follows:

Loss = ∑

i∈L

c∑

j=1
p̃ij lnpij , (3)

where pij represents the i-th label predicted as j -th class and p̃ij shows the i-th belonging
to the real j -th class. and L is the set of labeled samples.
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3 Ourmethod

In this section, for the convenience of understanding, we define some notations in this paper,
and then describe the proposed method in Section 3.2, Section 3.3, respectively. Besides,
we introduce the corresponding optimization steps in Section 3.4.

3.1 Notations

For the convenience of understanding, we have the following definitions. For a matrix S, the
i-th row and the i,j-th of matrix S are denoted as si and sij . We denote the Frobenius norm

of matrix S as ||S||F =
√∑

ij |sij |2 . Finally, we denote ST and tr(S) as the transpose of

matrix S and the trace of matrix S, respectively.

3.2 Initial graph

Graph representation learning is widely used in machine learning and artificial intelligence
tasks. However, the traditional graph structure has some limitations in the expression of data
correlation. Data correlation may be more complex than point-to-point relationship. The
traditional graph structure modeling does not describe the complex relationship between
data sufficiently [30]. In this case, the traditional graph restricts the application of graph
convolution neural network. For the sake of overcoming this limitation, hypergraph model
came into being [30].

Hypergraph G = (V,E,W) contains three parts: vertex set V, hyperedge set E, and
hyperedge weight matrix W. it is defined that hyperedge e has a weight w(e). the link
relationship of hypergraph G is expressed as the correlation matrix H ∈ R

|V |×|E|, which is
defined as follows:

h(v, e) =
{
1 v ∈ e,

0 v /∈ e.
(4)

The above formula shows that if a vertex v is located in a hyperedge e, then h(v, e) = 1
, otherwise h(v, e) = 0. According to the definition of correlation matrix, the degree matrix
of hypergraph vertex and hyperedge can be further expressed as:

d (v) = ∑

e∈E
w(e)h(v, e)

δ(e) = ∑

v∈V
h(v, e).

(5)

Furthermore, we define two diagonal matrices Dv and De to represent the diagonal
degree matrix of hypergraph vertex and hyperedge respectively. Based on spectral graph
theory and literature knowledge [30] , we define the adjacency matrix A of hypergraph as
follows:

A = HWHT − Dv, (6)
In this paper, the diagonal elements of W are all defined as one. Hypergraph has been

proved to be able to completely represent the relationship between objects compared with
ordinary graph [26, 30]. In this paper, we choose hypergraph as the initial graph adjacency
matrix to reserve the multivariate relationship of data.

3.3 Adaptive graph learning

In graph learning theory, many works have proposed how to design a high quality graph
structure. Nie et al. introduced the CLR method to learn the similarity matrix of data for
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clustering task and achieved excellent results [23]. In this paper, we use hypergraph as
initial adjacency matrix A ∈ R

n×n and CLR model to learn a graph matrix S ∈ R
n×n

more suitable for our subsequent semi-supervised classification tasks on GCNs. First, we
define the minimum loss function between the optimal graph S and the initial graph A by
establishing the l2-norm distance formula, that is, to minimize the following regularization
terms. Besides, it is worth considering that some rows of the matrix S obtained in the above
formula may be all zero. We construct the constraint condition sTi 1 = 1, thus we have:

min
S

‖S − A‖2F .

s.t . sTi 1 = 1, si ≥ 0
(7)

In order to allow the adjacency matrix suitable for classification tasks, we apply Lapla-
cian rank constraint rank(LS) = n − c to the matrix S. According to the properties of
Laplace matrix, the number of zero eigenvalues of Laplace matrix LS is equal to the num-
ber of connected domains of affinity matrix. So the adjacency matrix just has c connected
components. We can get:

min
S

‖S − A‖2F .

s.t . sTi 1 = 1, si ≥ 0, rank(LS) = n − c
(8)

Because the rank constraint to matrix S is a complex constraints, in order to facilitate the
subsequent optimization, according to the literature method [22, 23], it is assumed that ωi

is the i-th smallest eigenvalue of Laplacian matrix LS . Since LS is a semi-positive definite
matrix, if there is a sufficiently large value λ , Eq. (8) can be further equivalent to:

min
S

‖S − A‖2F + 2λ
c∑

i

ωi .

s.t . sTi 1 = 1, si ≥ 0
(9)

Further, according to KyFan’s Theorem [8], we know that
c∑

i

ωi = min
YT Y=I

tr(YT LSY)

and Y ∈ R
n×c, and finally we get our objective function as follows:

min
S,Y

‖S − A‖2F + 2λtr(YT LSY),

s.t . sTi 1 = 1, si ≥ 0,YT Y = I
(10)

where the matrix S is a higher quality graph, A is the initial adjacency matrix introduced in
Section 3.2 and LS is the Laplace matrix about the matrix S.

Based on the above objective function (10) , we can get an ideal matrix S by introducing S
into GCNs model for classification task, Therefore, the convolution layer of GCNs changes
as follows:

X(k) = σ(D̃
− 1

2 SD̃
− 1

2X(k−1)U(k−1)), (11)

where S represents a new graph structure that is more suitable for subsequent classification
tasks. It is obtained by alternating iterative optimization of Eq. (10), and D is a diagonal
matrix with d̃i = ∑n

j=1 Sij .

3.4 Optimization

In this part, we mainly optimize and solve the objective function Eq. (10) to get the final
matrix S.

1) Optimize Y by fixing S
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When S is fixed, the objective function Eq. (10) becomes:

min
Y

tr(YT LSY),

s.t . YT Y = I
(12)

The closed form solution of Y consists of c eigenvectors corresponding to c

minimum eigenvalues of LS .
2) Optimize S by fixing Y

When Y is fixed, for the second term in the formula, we can get:

tr(YT LSY) = 1
2

∑

i,j

∥
∥yi − yj

∥
∥2
2
sij . (13)

It is easy to understand that the value of matrix S is independent for each i. for Eq. (11),
it is expanded by components as follows:

min
S

∑

j

(sij − aij )
2 + λ

∑

j

∥
∥yi − yj

∥
∥2
2
sij .

s.t . sTi 1 = 1, sij ≥ 0
(14)

We define vector ui = ∥
∥yi − yj

∥
∥2
2
, and the above formula is expanded by vector as

follows:

min
S

∥
∥si − (ai − λ

2ui )
∥
∥2
2 .

s.t . sTi 1 = 1, sij ≥ 0
(15)

Equation (15) can be solved by an iterative algorithm [15]. To sum up, we optimize and
obtain the ideal graph S for semi-supervised classification on GCNs, and the related pseudo
code is described in algorithm 1.

4 Experimental

We set up several groups of experiments to verify the performance of our proposed method.
In Section 4.1 , we introduce the data sets and experimental methods used in the experiment,
and in Section 4.2 , based on the experimental results, we analyze the superiority of the
proposed method.
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Table 1 Details of the public
datasets Datasets Samples Features Classes

Musk2 6598 166 2

Ozone 2536 72 2

Chess 3196 36 2

Waveform 2746 21 3

Robotnavigation 5456 24 4

MinistData10 6996 784 10

Arrhythmia13 452 279 13

Diabetes 768 8 2

Dig1-10 1797 64 10

MinistData05 3495 784 10

4.1 Datasets and experimental methods

To verify the performance of the proposed method on classification tasks, we test it on
10 real datasets, including the handwriting recognition datasets (MinistData05 and Minist-
Data10), sound datasets (Waveform), etc. We describe information about all data sets in
Table 1 , and the public data sets were collected from UCI Machine Learning Repository 1

and the CSDN blog 2 .
About the experimental setup, we refer to some of the experimental settings of the previ-

ous work [9, 18]. Because of the different sizes of data sets, for all data sets, we randomly
selected 10%, 20% and 30% samples as labeled samples, and used another 10% samples as
validation samples. The remaining 80%, 70% and 60% were used as test samples. We use
the Adam optimization method [17] to define that the number of training iterations using
GCNs model is no more than 200, and set the learning rate to 0.01. If the cross entropy
loss value of the validation set remains unchanged for 20 consecutive times, the training
is stopped. Besides, we set dropout rate to 0.5. For the comparison methods, we set up
KNN-GCN (KGCN) and Hypergraph-GCN (HGCN) methods respectively. For the KGCN
method, kNNmethod is used to define the graph adjacency matrix of data, while the HGCN
method uses Section 3.2 method to define the graph adjacency matrix of data. In addition,
we set the neighborhood size of all datasets to 15. We mainly used ACC as the evaluation
index of the experiment, and all the reported results were the average results with different
training, verification and test data segmentation in 10 times.

4.2 Experiment results

The experiment results of the comparison methods KGCN, HGCN and the proposed method
in this paper are shown in Table 2 and Fig. 1 respectively. Table 2 shows the average accu-
racy and the corresponding standard deviation of all models for 10 datasets under three
different data partitions. It can be clearly seen that our proposed model has achieved the
best or more advantageous results in all data sets. For example, For Musk2 datasets, when
the label rate is 10%, our method is higher than HGCN and KGCN by 0.16% and 0.08%

1http://archive.ics.uci.edu/ml/.
2https://blog.csdn.net/qq 32892383/article/details/104424358
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Table 2 Mean classification results (ACC ± Std (%)) under 10 different datasets, and the best performance
are indicated by bold

Dataset Musk2 Ozone

Label rate 10% 20% 30% 10% 20% 30%

KGCN 84.51 ± 0.2 84.40 ± 0.2 84.57 ± 0.4 97.08 ± 0.1 97.04 ± 0.2 97.12 ± 0.1

HGCN 84.59 ± 0.1 84.55 ± 0.2 84.65 ± 0.4 97.08 ± 0.1 97.15 ± 0.2 97.25 ± 0.2

Proposed 84.67 ± 0.2 84.71 ± 0.2 84.82 ± 0.3 97.11 ± 0.1 97.17 ± 0.3 97.26 ± 0.2

Dataset Chess Waveform

Label rate 10% 20% 30% 10% 20% 30%

KGCN 76.89 ± 3.6 78.99 ± 1.5 80.21 ± 2.3 80.40 ± 1.2 80.83 ± 0.5 81.12 ± 0.9

HGCN 71.50 ± 3.5 72.60 ± 1.0 72.07 ± 1.6 79.60 ± 0.8 79.63 ± 0.6 79.90 ± 0.9

Proposed 79.60 ± 3.6 80.03 ± 2.2 81.19 ± 1.5 80.55 ± 1.3 81.37 ± 0.9 81.48 ± 1.0

Dataset Robotnavigation MinistData10

Label rate 10% 20% 30% 10% 20% 30%

KGCN 62.43 ± 1.5 63.16 ± 1.2 63.27 ± 1.2 82.20 ± 0.6 82.84 ± 0.4 83.15 ± 0.7

HGCN 61.07 ± 1.7 61.74 ± 0.8 62.20 ± 1.7 79.45 ± 0.8 79.69 ± 0.7 80.32 ± 0.8

Proposed 63.04 ± 2.1 62.59 ± 1.5 64.17 ± 1.2 83.82 ± 0.7 84.69 ± 0.5 85.02 ± 0.4

Dataset Arrhythmia13 Diabetes

Label rate 10% 20% 30% 10% 20% 30%

KGCN 53.89 ± 1.4 53.65 ± 1.8 54.02 ± 2.2 64.88 ± 0.7 64.28 ± 1.6 64.98 ± 0.9

HGCN 53.59 ± 0.6 53.78 ± 2.0 54.02 ± 2.4 64.59 ± 0.7 64.76 ± 0.8 65.01 ± 1.0

Proposed 54.11 ± 1.6 54.29 ± 2.5 54.79 ± 1.5 65.34 ± 0.6 65.62 ± 1.5 65.53 ± 1.7

Dataset Dig1-10 MinistData05

Label rate 10% 20% 30% 10% 20% 30%

KGCN 88.38 ± 1.8 89.35 ± 0.9 89.94 ± 1.4 79.17 ± 1.0 81.12 ± 1.3 81.27 ± 0.9

HGCN 88.22 ± 1.4 88.29 ± 0.9 88.28 ± 1.5 76.67 ± 1.2 77.05 ± 1.0 77.32 ± 1.7

Proposed 88.16 ± 2.0 90.01 ± 2.0 90.65 ± 1.0 80.64 ± 1.7 83.11 ± 0.9 83.58 ± 0.7

respectively, and when the label rate is 20%, our method is higher than HGCN and KGCN
by 0.25% and 0.17% respectively. Besides, with the label rate growing up, the classifica-
tion performance of our method is also improving. In addition, the accuracy of our method
is 81.19%, 81.48%, 85.02% and 97.26% on Chess, Waveform, Ministdata10 and Ozone
datasets, respectively. This further shows that our method has excellent performance on
semi-supervised classification tasks. This is because this paper not only considers the mul-
tiple information between the data, but adaptively assigns the optimal neighborhood to each
node through the Laplacian rank constraint. Finally, we get the most suitable data graph
representation matrix for GCNs.

Figure 1 shows the 2D T-SNE visualization with the convolution output feature of
KGCN, HGCN and our method on Dig1-10 dataset and Ministdata10 dataset respec-
tively. Through comparison, the data distribution of different types is more clear in our
method, while several types of data distribution in KGCN show aggregation distribution,
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(a) KGCN-Dig1-10 (b) HGCN-Dig1-10 (c) Proposed-Dig1-10

(d) KGCN-MinistData10 (e) HGCN-MinistData10 (f) Proposed-MinistData10

Fig. 1 2D T-SNE visualization of the features output by KGCN, HGCN and our proposed method are
performed on Dig1-10 dataset and Ministdata10 dataset

which represents that our method has better performance in graph node representation and
semi-supervised classification tasks.

5 Conclusion

We propose a novel GCN of reconstructed graph structure with constrained Laplacian rank
in this paper. First of all, we use hypergraph with complex multivariate relations to estab-
lish the initial graph between data. Based on the initial graph, we construct a new graph
representation matrix which is more suitable for semi-supervised classification tasks on
GCNs. Different from the previous methods, Our method is more general, especially when
the graph structure of data is missing and unavailable. The experimental results on 10 real
datasets show that the method has excellent performance compared with the comparison
methods. In future work, we will try to embed the graph learning method proposed in this
paper into the hidden layer of GCNs, so as to dynamically adjust the graph representation
matrix in each iteration. In addition, we can build a better adaptive graph model to improve
the performance and practicability for semi-supervised classification on GCNs.
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5. Bulò SR, Pelillo M (2009) A game-theoretic approach to hypergraph clustering. In: Advances in neural
information processing systems, pp 1571–1579

6. Coley CW, Jin W, Rogers L, Jamison TF, Jaakkola TS, Green WH, Barzilay R, Jensen KF (2019)
A graph-convolutional neural network model for the prediction of chemical reactivity. Chem Sci
10(2):370–377

7. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast
localized spectral filtering. In: Advances in neural information processing systems, pp 3844–3852

8. Fan K (1949) On a theorem of weyl concerning eigenvalues of linear transformations i. Proc Natl Acad
Sci USA 35(11):652

9. Franceschi L, Niepert M, Pontil M, He X (2019) Learning discrete structures for graph neural networks.
arXiv:1903.11960

10. Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp 855–864

11. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances
in neural information processing systems, pp 1024–1034

12. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE international
conference on computer vision, pp 2961–2969

13. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp 770–778

14. Hu R, Zhu X, Zhu Y, Gan J (2019) Robust svm with adaptive graph learning. World Wide Web
15. Huang J, Nie F, Huang H (2015) A new simplex sparse learning model to measure data similarity for

clustering. In: Twenty-Fourth International Joint Conference on Artificial Intelligence
16. Jiang J, Wei Y, Feng Y, Cao J, Gao Y (2019) Dynamic hypergraph neural networks. In: Proceedings of

the twenty-eighth international joint conference on artificial intelligence (IJCAI), pp 2635–2641
17. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: International conference on

learning representations (ICLR)
18. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks.

arXiv:1609.02907
19. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural

networks. In: Advances in neural information processing systems, pp 1097–1105
20. LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. The

handbook of brain theory and neural networks 3361(10):1995
21. Mirza BJ, Keller BJ, Ramakrishnan N (2003) Studying recommendation algorithms by graph analysis.

Journal of intelligent information systems 20(2):131–160
22. Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: Pro-

ceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp 977–986

23. Nie F, Wang X, Jordan MI, Huang H (2016) The constrained laplacian rank algorithm for graph-based
clustering. In: Thirtieth AAAI Conference on Artificial Intelligence

24. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region
proposal networks. In: Advances in neural information processing systems, pp 91–99

25. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. science
290(5500):2323–2326

26. Shi H, Zhang Y, Zhang Z, Ma N, Zhao X, Gao Y, Sun J (2018) Hypergraph-induced convolutional net-
works for visual classification. IEEE transactions on neural networks and learning systems 30(10):2963–
2972

Multimedia Tools and Applications (2022) 81:34183–34194 34193

http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1903.11960
http://arxiv.org/abs/1609.02907


Multimedia Tools and Applications (2022) 81:34183–34194

27. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A
(2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 1–9

28. Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining, pp 1225–1234

29. Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification.
IEEE Trans Image Process 21(7):3262–3272

30. Zhou D, Huang J, Schölkopf B (2007) Learning with hypergraphs: Clustering, classification, and
embedding. In: Advances in neural information processing systems, pp 1601–1608

31. Zhu X, Gan J, Lu G, Li J, Zhang S (2019) Spectral clustering via half-quadratic optimization. World
Wide Web

32. Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral
feature selection. IEEE Transactions on Neural Networks and Learning Systems 28(6):1263–1275

33. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image
recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 8697–8710

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

34194


	Graph convolutional networks of reconstructed graph structure with constrained Laplacian rank
	Abstract
	Introduction
	Related work
	Hypergraph and graph learning
	GCNs model

	Our method
	Notations
	Initial graph
	Adaptive graph learning
	Optimization

	Experimental
	Datasets and experimental methods
	Experiment results

	Conclusion
	References




