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Abstract
Promoting the spatial resolution of hyperspectral sensors is expected to improve computer
vision tasks. However, due to the physical limitations of imaging sensors, the
hyperspectral image is often of low spatial resolution. In this paper, we propose a new
hyperspectral image super-resolution method from a low-resolution (LR) hyperspectral
image and a high resolution (HR) multispectral image of the same scene. The reconstruc-
tion of HR hyperspectral image is formulated as a joint estimation of the hyperspectral
dictionary and the sparse codes based on the spatial-spectral sparsity of the hyperspectral
image. The hyperspectral dictionary is learned from the LR hyperspectral image. The
sparse codes with respect to the learned dictionary are estimated from LR hyperspectral
image and the corresponding HR multispectral image. To improve the accuracy, both
spectral dictionary learning and sparse coefficients estimation exploit the spatial correla-
tion of the HR hyperspectral image. Experiments show that the proposed method
outperforms several state-of-art hyperspectral image super-resolution methods in objec-
tive quality metrics and visual performance.

Keywords Hyperspectral imaging . Sparse representation . Structural prior

1 Introduction

Hyperspectral imaging sensors provide the ability to sample a scene’s spectral properties
more densely. Whereas a normal RGB imaging sensors roughly divides the observation into
red, green, and blue, a hyperspectral imaging sensors can easily obtain thirty or more distinct
bands across the visible spectrum. Having detailed spectral information can be very useful
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to remote sensing [44] and computer vision tasks ranging from object recognition and
tracking [9], as RGB alone is often insufficient to identify the materials within a scene.
However, due to the physical limitations of imaging sensors, the hyperspectral image (HSI)
is often of low spatial resolution. This is due to the fact that hyperspectral imaging systems
need a large number of exposures to simultaneously acquire many bands within a narrow
spectral window. To ensure sufficient signal-to-noise ratio, long exposures are often
necessary, resulting in the sacrifice of spatial resolution. Simply increasing the spatial
resolution of image sensors would not be effective for hyperspectral imaging because the
average amount of photons reaching the sensors would be further reduced leading to even
lower signal-to-noise ratio. Consequently, the low spatial resolution hyperspectral images
(LR-HSIs) are often fused with high spatial resolution multispectral images (HR-MSIs) to
reconstruct high spatial resolution hyperspectral images (HR-HSIs). This procedure is
referred to as HSI super-resolution or HSI-MSI fusion.

The goal of this paper is to recover a HR-HSI Z ∈ RL ×N from a LR-HSI X ∈RL × n and a HR-
MSI image Y ∈ Rl ×N of the same scene, where L is the number of spectral bands of Z (L » l), N
and n (N =W ×H, n =w × h, w « W and h « H) denote pixel number in Z and X respectively.
The reconstruction of Z from X and Y is an ill-posed inverse problem. For such ill-posed
inverse problems, regularization is a popular tool for exploiting the prior knowledge about the
unknown. Sparsity prior has been shown effective for solving hyperspectral image reconstruc-
tion [1, 2, 22, 24, 39], the target image Z can be written as [17, 23],

Z ¼ DAþ E ð1Þ
where D = [d1, · · ·, dK]∈RL�K

þ is the spectral dictionary, K(K ≥ L) is the number of atoms,

A = [a1, · · ·, aN] ∈RK�N
þ is the sparse coefficient matrix, and E is the approximation error. Both

X and Y result from linear degradations of Z,

X ¼ ZH þ E1;Y ¼ PZ þ E2 ð2Þ
whereH ∈ RN × n denotes the blurring and down-sampling degradation operator, P is a spectral
transformation matrix, E1 and E2 denote the approximation error matrix. Many LR-HSI and
HR-MSI fusion methods rely on a similar linear model of (2) [8, 24, 28, 29, 31, 35, 36, 38, 42,
46]. Combining (1) and (2) leads to

X ¼ DAH þ E1 ¼ DBþ E1;Y ¼ PDAþ E2 ¼ DAþ E2 ð3Þ
where B =AH∈RK × n denotes the transformed sparse coefficient matrix, D ¼ PD denotes the
transformed spectral dictionary. The spectral dictionary D and coefficient matrix A in (3) are
unknown. For scenes satisfying the sparsity assumption, coefficient matrix A have to be
sparse. It follows that D and A can be solved by sparse matrix decomposition.

Besides the spectral information, some methods [8, 30–32, 36] also used the spatial
structure to regularize the fusion problem. Dong et al. [8] proposed a non-negative structured
sparse representation (NSSR) method which exploited the clustering-based sparsity of
hyperspectral images. The limitation of [8] is that the structured sparse representation is only
used to estimate the coefficient matrix, not for the spectral dictionary learning.

In this paper, we present a novel hyperspectral image super-resolution method. The main
contributions of our work are as follows.

(1) A non-negative clustering-based sparse representation (NNCSR) model is proposed.
The reconstruction of HR hyperspectral image is formulated as a joint estima-tion of the
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hyperspectral dictionary and the sparse coefficients based on the spatial-spectral sparsity of the
hyperspectral image. To improve the accuracy, both spectral dictionary and sparse coefficients
exploit the clustering-based sparsity of hyperspectral images.

(2) We present an experimental valuation, where the proposed method is compared against
several state-of-the-art approaches. Results of these experiments show our method outperforms
these state-of-the-art approaches in objective quality metrics and visual performance.

2 Related work

Reconstructing a HR-HSI from a LR-HSI and HR-MSI, although challenging, is a crucial
inverse problem that has been addressed in various scenarios [18–21]. As this inverse problem
is generally ill-posed, introducing prior distributions to regularize the target image has been
widely explored and some methods use Bayesian inference to regularize the problem [2, 12,
36, 37]. Based on prior knowledge and on the observation model, these Bayesian fusion
methods build the posterior distribution, which is the Bayesian inference engine. The work
[12, 36] computed the maximum a posteriori (MAP) estimator in an optimization framework
to solve the fusion problem. The work [37] formed the likelihoods of the observations and
developed a fast Sylvester based solver. Akhtar et al. [2] proposed a method using non-
parametric Bayesian dictionary learning.

Many fusion methods are based on matrix factorization (MF) [1, 8, 22, 24, 26, 30–32, 36,
38, 39, 42] or nonnegative matrix under- approximation (NMU) [4]. Assuming that the HR-
HSI only contains a small number of pure spectral signatures, these approaches first unfold the
HR-HSI as a matrix and then factor it into a basis matrix and a coefficient matrix. The work
[22] firstly introduced MF into fusion by factorizing the HSI into a dictionary of basis vectors
and a set of sparse coefficients. The work [39] proposed a non-negative sparse framework to
integrate LR-HSI and RGB data into a HR hyperspectral set of data. Akhtar et al. [1] exploited
signal sparsity, non-negativity and the spatial structure in the scene. A coupled non-negative
matrix factorization (CNMF) method [42] alternately applied NMF unmixing to LR
hyperspectral and HR multispectral data. Since non-negative matrix factorization is not always
unique [25, 26], the results of [42] are often not satisfactory. A similar fusion and unmixing
framework was introduced in [24]. The common point of [24, 42] is to learn the spectral bases
from the LR-HSI and sparse coefficients from the HR-MSI alternatively instead of using both
LR-HSI and HR-MSI jointly. To fully exploit the data information, Wei et al. [38] used an
optimization formulation similar to [24, 42], but both LR-HSI and HR-MSI images contrib-
uted to the estimation of spectral bases and sparse coefficients.

Recently, the work [6, 7, 27, 40] used tensor factorization. Different from MF based
methods, the hyperspectral image was approximated by a core tensor multiplied by dictionar-
ies of the width, height, and spectral modes. Dian et al. [7] first proposed a nonlocal sparse
tensor factorization for HSI-MSI fusion, where they approximate the HR-HSI by dictionaries
of three modes and a sparse core tensor. Li et al. [27] solved the fusion problem by
simultaneously conducting sparse Tucker decomposition on the HR-MSI and LR-HSI, where
the core tensor and three dictionaries are alternatively updated until convergence. Xu et al. [40]
propose a non-local tensor sparse representation model, and the main difference between [7,
40] is that they use different tensor sparse representation model.

Besides the spectral information, some methods [6, 8, 30–32, 36] also used the spatial
structure to regularize the fusion problem. Veganzones et al. [32] exploited the low rank of the
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hyperspectral images, while the work [30, 36] exploited the low intrinsic dimensionality of
hyperspectral images. Dong et al. [8] proposed a non-negative structured sparse representation
(NSSR) method. They exploited the clustering-based sparsity of hyperspectral images. A
similar work was proposed in [31]. The limitation of [8, 31] is that the structured sparse
representation is only used to estimate the coefficient matrix, not for the spectral dictionary
learning. Dian et al. [6] proposed a subspace based low tensor multi-rank (LTMR) regulari-
zation method for HSI super-resolution. The LTMR mainly exploited two prior information of
HR-HSI: high correlations among spectral bands and non-local self-similarities. Their work
achieved state-of-art performance.

Recently, considerable improvements in performance have been achieved by exploiting
learning methods [15, 16]. Spectral information and spatial structure can be learned from the
images. To fully exploit the data information, our work exploits the clustering-based sparsity
of the high spatial resolution hyperspectral images for both the coefficient matrix estimation
and the spectral dictionary learning.

3 Hyperspectral image super-resolution

In this section, we explain the proposed hyperspectral image super-resolution method. The
flowchart of the proposed method is illustrated in Fig. 1. The reconstruction of HR-HSI Z is
formulated as a joint estimation of the hyperspectral dictionaryD and the sparse coefficient matrix
A based on the spatial-spectral sparsity of the hyperspectral image. First, we learn the hyperspectral
dictionary D from the LR-HSI X. Once the spectral dictionary D is estimated, we estimate the
sparse coefficient matrix A from LR-HSI X and the corresponding HR-MSI Y. To improve the
accuracy, both spectral dictionary learning and sparse coefficients estimation are imposed a
structural sparsity constraint, which exploits the clustering-based sparsity of hyperspectral images
- namely reconstructed spectral pixels should be similar to those learned centroids. At last, we
reconstruct the HR-HSI Zwith the hyperspectral dictionaryD and the sparse coefficient matrix A.

3.1 NNCSR model

For spectral dictionary D, it is reasonable to assume that the LR-HSI X contains the same
spectral dictionary as the HR-HSI Z, but due to the spectral degradation P, only l spectral
channels cannot contain sufficient information to reconstruct L (L » l) spectral channels [24],
thus spectral dictionary D is estimated by solving the following sparse nonnegative matrix
decomposition problem

Fig. 1 Flowchart of the proposed hyperspectral image super-resolution method
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D;Bð Þ¼ argmin
D;B

1

2
X−DBk k22 þ λ1 Bk k1; s:t:bi≥0; dk ≥0 ð4Þ

where D = [d1, · · ·, dK]∈RL�K
þ is the spectral dictionary, K(K ≥ L) is the number of atoms,

B = [b1, · · ·, bN] ∈RK�N
þ is the sparse coefficient matrix. In this formulation, 12 X−DBk k 2

2 is a
term modeling data fidelity, ‖B‖1 is the regularization prior on the image to recover, and λ1 is a
parameter controlling the trade-off between these two terms.

Once the spectral dictionary D is estimated, the coefficient matrix A can be estimated from
both the HR-MSI image Y and the LR-HSI X by solving the following sparse nonnegative
matrix decomposition problem

A¼ argmin
A

Y−DA
��� ���2

2
þ τ X−DAHk k22 þ η2 Ak k1; s:t:αi≥0 ð5Þ

where A = [a1, · · ·, aN] ∈RK�N
þ is the sparse coefficient matrix. In this formulation, Y−DA

�� ��
2
2 and X−DAHk k 2

2 are two terms of modeling data fidelity, ‖A‖1 is the regularization prior on
the image to recover, and τ, η2 are two parameters controlling the trade-off between these
terms. A typical natural scene usually contains a collection of similar patches from all over the
image. These non-local similar patches can be exploited to enhance the performance of image
restoration tasks [10, 11]. But the l1-norm nonnegative sparse model of (4) and (5) cannot
exploit the spatial correlations among local and nonlocal similar neighbors. To address this
issue, we propose the following non-negative clustering-based sparse representation (NNCSR)
model,

D;B;Uð Þ¼ argmin
D;B;U

1

2
X−DBk k22 þ λ1 Bk k1 þ λ2∑Q

q¼1 ∑
i∈Sq

Dαi−μq

�� ��2
2
; s:t:bi≥0; dk ≥0ð6Þ

A;Uð Þ¼ argmin
A;U

Y−DA
��� ���2

2
þ τ X−DAHk k22 þ η1∑

Q
q¼1 ∑

i∈Sq
Dαi−μq

�� ��2
2
þ η2 Ak k1; s:t:αi≥0 ð7Þ

where μq denotes the centroid of the q-th cluster Sq ¼ i yi−yq
�� ����n

2
2 < tg ; yi and yq denote

the image patches of Y centered at positions i and q respectively. Recently, clustering learning
has been widely used [13, 14, 43]. The efficient k-Nearest Neighbour (k-NN) clustering
method is used to group similar spectral pixels for each spectral pixel [18]. Due to the
structural similarity between Z and Y, we perform the k-NN clustering on the HR-MSI image
patches to search for similar neighbors of yq. The vector μq is computed as

μq ¼ ∑
i∈Sq

wi Daið Þ ð8Þ

where wi ¼ 1
c exp − yi−yq

�� ���
2
2=hÞ is the weighting coefficients. The proposed NNCSR model

exploits the structural prior that the reconstructed spectral pixels should be similar to those
learned centroids.

In practice, bothD and ai for each pixel zi of Z are unknown,μq cannot be directly computed via
(8). This difficulty can be overcome by estimating μq from the current estimates of D and ai. We
estimate D and ai alternatively. For notation convenience, Eq. (6) and (7) can be rewritten as
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D;B;Uð Þ¼ argmin
1

2
D;B;U

X−DBk k22 þ λ1 Bk k1 þ λ2 DA−Uk k22; s:t:bi≥0; dk ≥0 ð9Þ

A;Uð Þ¼ argmin
A;U

Y−DA
��� ���2

2
þ τ X−DAHk k22 þ η1 DA−Uk k22 þ η2 Ak k1; s:t:αi≥0 ð10Þ

where U = [μ1,…,μq,…,μQ].

3.2 Spectral dictionary learning

First, the spectral dictionary D can be learned from X by solving (4),i.e., the first two terms of
(9). As bothD and B are constrained to be nonnegative, existing dictionary learning algorithms
and online dictionary learning cannot be used. In [39], the alternating direction method of
multipliers (ADMM) is adopted to convert a constrained dictionary learning problem into an
unconstrained version and solved the unconstrained dictionary learning problem via alternative
optimization. For a fixed D, the subproblem with respect to B becomes

B¼ argmin
B

1

2
X−DBk k22 þ λ1 Bk k1; s:t:bi≥0 ð11Þ

which is convex and can be efficiently solved by any convex optimization solver. For fast
convergence rate, we use ADMM technique to solve (11). We reformulate (11) into

B¼ argmin
B

1

2
X−DSk k22 þ λ1 Bk k1; s:t:B ¼ S; bi≥0 ð12Þ

Applying ADMM [3], there is the following augmented Lagrangian function.

Algorithm 1 Spectral dictionary learning

-------------------------------------------------------------------------------------------------------
Algorithm 1 Spectral dictionary learning

-------------------------------------------------------------------------------------------------------

Input X , K, λ1, λ2;

Initialize D by randomly selecting the columns of X with normalization;

For i=0,1,……,num1 do
Solving (11) via ADMM: 

For t=1,2,…,T1 do
Update S(t+1),B(t+1) via (16);

Update R(t+1)  via (15);

μ:=γμ(γ>1);
Update B= B(t+1) if t=T1;

End for
Update D using current B via (18);

Output D if i=num1;

End for
-------------------------------------------------------------------------------------------------------
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Lμ B; S;Rð Þ¼ 1

2
X−DSk k22 þ λ1 Bk k1;þμ S−Bþ R

2μ

����
����2
2

; s:t:B ¼ S; bi≥0 ð13Þ

where R is the Lagrangian multiplier (μ > 0). Then, solving (12) consists of the following
alternative iterations,

S tþ1ð Þ ¼ argmin
S

Lμ B tð Þ; S;R tð Þ
� �

B tþ1ð Þ ¼ argmin
B

Lμ B; S tþ1ð Þ;R tð Þ
� �

; s:t:bi≥0 ð14Þ

where t is the iteration number and Lagrangian multiplier R is updated by

R tþ1ð Þ ¼ R tð Þ þ μ S tþ1ð Þ−B tþ1ð Þ
� �

ð15Þ

The sub-problems in (14) have closed-form solutions,

S tþ1ð Þ ¼ DTDþ2μI
� �−1

DTXþ2μ B tð Þ−
R tð Þ

2μ

� 	� 	

B tþ1ð Þ ¼ Soft S tþ1ð Þ þ R tð Þ

2μ
;
λ1

2μ

� 	
 �
þ

ð16Þ

where Soft(.) denotes a soft-shrinkage operator and [x]+ = max{x, 0}.For a fixed B, spectral
dictionary D can be updated by solving

D¼ argmin
D

X−DBk k22; s:t:dk ≥0 ð17Þ

Eq. (17) can be solved using block coordinate descent [8] or be solved analytically

D¼XBT BBT� �−1 ð18Þ
The algorithm for the initial spectral dictionary learning is summarized in Algorithm 1. Once
the initial spectral dictionary D is estimated, sparse coefficient matrix A can be estimated by
solving (10). We will elaborate on the sparse coefficient estimation in the next section. When
the sparse coefficient matrix A is estimated, the last term of (9) can be solved analytically,

D¼UAT AAT� �−1 ð19Þ

3.3 Sparse coefficient estimation

With respect to the learned spectral dictionary D, we estimate the sparse coefficient matrix A
by solving (10). Eq. (10) is convex and can be efficiently solved by any convex optimization
solver. For fast convergence, we use ADMM technique to solve (10), and obtain the following
Lagrangian function:
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Lμ A;Z; S;R1;R2ð Þ ¼
Y
τX
η1DS

2
4

3
5− DS

τZH
η1U

2
4

3
5

������
������
2

2

þ η2 Ak k1 þ μ DS−ZþR1

2μ

����
����2
2

þ μ S−AþR2

2μ

����
����2
2

; s:t:ai≥0 ð20Þ

where R1, R2 are Lagrangian multipliers (μ> 0). Minimizing the augmented Lagrangian
function leads to the following iterations:

A tþ1ð Þ ¼ argmin
A

Lμ A; Z tð Þ; S tð Þ;R1
tð Þ;R2

tð Þ
� �

; Z tþ1ð Þ

¼ argmin
Z

Lμ A tþ1ð Þ; Z; S tð Þ;R1
tð Þ;R2

tð Þ
� �

; S tþ1ð Þ

¼ argmin
S

Lμ A tþ1ð Þ; Z tþ1ð Þ; S;R1
tð Þ;R2

tð Þ
� �

; ð21Þ

where the Lagrangian multipliers are updated by

R1
tþ1ð Þ ¼ R1

tð Þ þ μ DS tþ1ð Þ−Z tþ1ð Þ
� �

;R2
tþ1ð Þ ¼ R2

tð Þ þ μ S tþ1ð Þ−A tþ1ð Þ
� �

ð22Þ

All sub-problems in (20) can have closed-form solutions,

S ¼ D
T
Dþ η1 þ μð ÞDTDþ μI


 �−1
D

T
Y þ η1D

TU þ μDT Z tð Þ−
R1

tð Þ

2μ

� 	
þ μ A tð Þ−

R1
tð Þ

2μ

� 	
 �
;

Z ¼ τXHT þ μ DS tð Þ þ R1

2μ

� 	
 �
τHHT þ μI
� �−1

; A ¼ Soft S tð Þ−
R2

tð Þ

2μ
;
η2
2μ

� 	
 �
þ

ð23Þ

As the matrix to be inverted in the equation of updating Z is large, we use conjugate gradient
algorithm to compute the matrix inverse. The overall algorithm for reconstruction Z is
summarized in Algorithm 2.

4 Experiments and discussion

4.1 Experimental datasets

To verify the performance of our proposed method, we have test the algorithm on two different
public datasets of hyperspectral images. The first dataset is Columbia computer vision
laboratory (CAVE) [41]. The CAVE dataset consists of 32 indoor HSIs. The images have
31 spectral bands, and each band has a size of 512 × 512. We take the hyperspectral images
from the dataset as ground-truth images and use these images to simulate LR-HSIs and HR-
MSI images. As in [8, 22], the original HR-HSIs Z are downsampled by averaging over
disjoint 32 × 32 blocks to simulate the LR-HSIs X. Similar to [8, 42], HR RGB images Y are
generated by downsampling the hyperspectral images Z along the spectral dimension using the
spectral transform matrix derived from the response of a Nikon D700 camera.
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Algorithm 2 Hyperspectral image super-resolution with NNCSR model.

-------------------------------------------------------------------------------------------------------
Algorithm 2 Hyperspectral image super-resolution with NNCSR model

-------------------------------------------------------------------------------------------------------

Learn the initial spectral dictionary D from X using Algorithm 1;

Obtain the sample sets Sq through k-NN search on Y;

Set parameters k, η1 and η2;

Initialize U=0, A=0, S=0, Z=0, R1=0, R2=0; 

Solving (10) via ADMM

For t=0,1,……,num2 do
Compute S(t+1),Z(t+1) and A(t+1) using current D, U via (23);

Update ( +1)

1

tR and ( +1)

2

tR via (22);

μ:=ρμ(ρ>1);
Update U using current D, A via (8);

End for
Update D with current U, S via (19);
Update U with current D, A via (8);

Reset A=0, S=0, Z=0, R1=0, R2=0;

Update S, Z and A using current D, U via (23);

Output the reconstructed Z.

------------------------------------------------------------------------------------------------------

The second dataset is Pavia University [5], acquired by the reflective optics system imaging
spectrometer optical sensor over the area of Pavia University. The Pavia University have the
115 spectral bands and 610 × 340 spectral pixels. As in [6, 7], by removing the bands of low
SNR, we reduce the HSI as 93 bands and select the up-left 256 × 256 × 93-pixel-size image as
the ground truth. To simulate the LR-HSI, we firstly filter each band of HR-HSI by a 7 × 7
Gaussian blur (standard deviation 2) and then downsample every four pixels in two spatial
modes. The HR-MSI of four bands is simulated by using IKONOS-like reflectance spectral
response filter [36].

4.2 Compared approaches

We compare the proposed NNCSR method with Bayesian sparse representation (BSR) [36],
MF [22], CNMF [42], NSSR [8], CSTF [27] and low tensor multi-rank (LTMR) [6], which
represent the state-of-the-arts of modern hyperspectral image super-resolution method. Among
the compared approaches, BSR is based on Bayesian inference, CSTF and LTMR are based on
tensor factorization, MF, CNMF and NSSR are based on matrix factorization.

4.3 Quantitative metrics

Five indexes are utilized to measure the quality of the fusion results.
The first index is the peak signal-to-noise ratio (PSNR) for HSI defined as,

PSNR Z ; eZ� �
¼ 1

L
∑L

i¼1PSNR Zi; eZ i

� �
ð24Þ
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where Z ∈ RL ×N and eZ∈RL�N are ground-truth and reconstructed HSIs respectively, Zi andeZ i represent i-th band of Z ∈ RL ×N and eZ∈RL�N . The higher the PSNR, the better the quality
of the reconstructed image.

The second index is the root mean square error (RMSE) defined as

RMSE Z; eZ� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z−eZ��� ���2

F

LN

vuut
ð25Þ

where Z ∈ RL ×N and eZ∈RL�N are scaled to the range [0, 255]. RMSE is a measure of the
estimation error. The smaller the RMSE, the better the quality of the reconstructed image.

The third index is the spectral angle mapper (SAM) [36, 45], which is defined as the
averaged angle between the estimated pixel ez j and the ground truth pixel zj, i.e.

SAM Z ; eZ� �
¼ 1

LN
∑LN

j¼1arcos
ezTj z j

ez j��� ���
2
z j

�� ��
2

ð26Þ

SAM is given in degrees. The smaller SAM, the less spectral distortions.
The fourth index is the relative dimensionless global error in synthesis (ERGAS) [33]

defined as

ERGAS Z; eZ� �
¼ 100

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
∑L

i¼1

MSE Zi; eZ i

� �
μ2eZ i

vuuut ð27Þ

where d is the spatial downsampling factor, and μZ∼
i
is the mean value of eZ i. ERGAS reflects

the overall quality of the reconstruction image. The smaller ERGAS, the better quality of the
reconstructed results.

The fifth index is the universal image quality index (UIQI) [34], which is calculated on a
sliding window of size 32 × 32 and averaged on all windows. The UIQI for two windows a
and b is given by

UIQI a; bð Þ ¼ 4σ2
ab

σ2
a þ σ2

b

μaμb

μ2
a þ μ2

b

ð28Þ

where σab is the sample covariance between a and b, and σa and μa denote the standard
deviation and mean value of a, respectively.

4.4 Parameters discussion

In our method, four key parameters: the number of atoms K, the parameter k of k-NN, the
regularization parameters η1 and η2 need to be discussed.

To discuss the effects of these parameters, we plot the PSNR curves of the fused results of
Balloons (an HSI in the CAVE dataset) varying from these parameters in Fig. 2. As we can see
from Fig. 2 (a), the proposed method performs best when the number of atoms is in the range
of 75 ∼ 125 and is insensitive to the variation in the values of K in this range. Therefore, 75
atoms are enough to preserve the spectral information. In our implementation, we set K = 75.
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From Fig. 2 (b), we can see the PSNR rises as k changed from 1 to 60, and then it keeps
relatively stable as k increases further. Therefore we can select k = 60. From Fig. 2(c), we can
see that the performance of the proposed method rises as η1 varies from 0.01 to 0.025, and then
it declines as η1 grows further. The PSNR for Balloons rises as η2 varies from 3*10−5 to
8*10−5, and then it declines as η2 is greater than 8*10−5. So we set η1 = 0.025 and η2 = 8*10−5.
Similar observations can be obtained for other test images.

4.5 Experimental results

Table 1 reports the average quality metrics of competing methods on the CAVE dataset. We
highlight the best results in bold. For fair comparison, the results of BSR [36], MF [22],
CNMF [42] and NSSR [8] are directly obtained from [8]. From Table 1, we can see that our
NNCSR method performs consistently better than other testing methods according to these
quality metrics, which indicates that HR-HSIs recovered by our method have better spatial and
spectral qualities in CAVE dataset. For example, the PSNR of our method is greater than that
of the state-of-the-art CSTF method by 1.12 dB, and the SAM is reduced by 0.22 degrees
compared with NSSR. The improvement mainly comes from one aspect. Both NNCSR and
NSSR exploit the clustering-based sparsity of hyperspectral images. The main difference is
that NNCSR exploits the clustering-based sparsity for both sparse coefficient estimation and
dictionary learning, while the NSSR only for sparse coefficient estimation, not for dictionary

(a) The atoms K (b) The parameter k of k-NN

(c) The parameter 1 (d) The parameter 2.
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Fig. 2 The PSNR as functions of parameters K, k, η1 and η2, respectively. (a) The atoms K, (b) The parameter k
of k-NN, (c) The parameter η1, (d) The parameter η2
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Table 1 The average results of the competing methods on the CAVE dataset

Method MF CNMF BSR NSSR CSTF NNCSR

PSNR 39.37 39.53 39.16 42.26 41.41 42.53
RMSE 3.03 2.93 3.13 2.21 3.06 2.15
SAM 6.12 5.48 6.75 4.33 8.75 4.11
ERGAS 0.40 0.39 0.37 0.30 0.39 0.29

(a) (b) (c) (d)

Fig. 3 Reconstructed images and corresponding error images of Oil-Painting from CAVE dataset [41] at band
16 and 26. The first two rows show the reconstructed images. The next two rows show the error images. (a)
Ground truth, (b) NNCSR, (c) NSSR [8], (d) CSTF [27]

7362



Multimedia Tools and Applications (2021) 80:7351–7366

learning. The CSTF does not exploit the clustering-based sparsity. For visual comparison, the
recovered HR-HSIs, corresponding error images of the competing approaches at band 16 and
26 for Oil_Painting (an HSI in CAVE dataset) are shown in Fig. 3. A representative region of
each reconstructed image is magnified. As can be seen from the magnified images and error
images, the HR-HSI reconstructed by NNCSR has fewer artifacts than that produced by NSSR
and CSTF.

The quality metrics of the competing approaches on the Pavia University are
shown in Table 2. For fair comparison, the results of LTMR [6] are directly obtained
from its original paper. Our NNCSR method has obvious advantages over CSTF in
terms of all quality indexes. Meanwhile, the LTMR and NSSR delivers comparable
performance to the NNCSR. Figure 4 shows the reconstructed images and error
images at band 30 of the competing approaches for the Pavia University. We can
see that all testing approaches can reconstruct the spatial structures of the HR-HSIs.
As we can see from the error images, the HR-HSIs produced by NNCSR and NSSR
have fewer errors than that produced by CSTF.

Table 2 The results of the competing methods on the Pavia University dataset

Method NSSR CSTF LTMR NNCSR

SAM 1.439 1.745 1.493 1.431
ERGAS 0.794 0.932 0.805 0.793
UIQI 0.996 0.995 0.996 0.996

(a) (b) (c) (d)

Fig. 4 Reconstructed images and corresponding error images of the competing approaches for the Pavia
University at 30-th band. The first row shows the reconstructed images. The second row shows the error images.
(a) Ground truth; (b) NNCSR; (c)NSSR [8]; (d)CSTF [27]
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4.6 Computation efficiency

In algorithm 2, the computational complexity mainly consists of three parts: 1) the initial
spectral dictionary learning, 2) k-NN nearest neighbor searching each patch within a window
of size h × h, 3) the sparse coding. The complexity of solving the initial dictionary is
O(num1T1(K2n +K3 +KLn)) in algorithm 1. The complexity of computing the k-NN per patch
isO(Nk1h2). The complexity of updating S is the same as that of D, i.e. O(K2L +KN2 +K3 +

KLN). The complexity of updating Z and A isO LN
ffiffiffiffi
N

p
logN

� �
and O(N) respectively. The

propose algorithm is implemented with Matlab R2016a on an Intel(R) Core(TM) i7-6700T
CPU @2.80GHz 2.81GHz. A running time comparison between the proposed method and
other competing methods on a 512 × 512 × 31 test image is shown in Table 3. From Table 3, it
can be seen that the proposed NNCSR method is quicker than CSTF [27]. And it is slightly
slower than NSSR [8], this is because NNCSR exploits the clustering-based sparsity prior for
both dictionary learning and sparse codes estimation, while NSSR [8] exploits the clustering-
based sparsity prior only for sparse codes estimation.

5 Conclusions

A non-negative sparse representation model for hyperspectral image super-resolution is
proposed. The hyperspectral dictionary is learned from the LR hyperspectral image. The
sparse codes with respect to the learned dictionary are estimated from LR hyperspectral image
and the corresponding HR multispectral image. To improve the accuracy, both spectral
dictionary learning and sparse coefficients estimation exploit the clustering-based sparsity of
the hyperspectral image. Experiments show that the proposed method outperforms several
state-of-the-art methods in objective quality metrics and visual performance.
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