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Abstract
Virtual reality 360-degree video requires ultra-high resolution to provide realistic feeling
and dynamic perspective. Huge data volume brings new challenges to coding and
transmission. Quantization parameter (QP) is one of the key parameters to control output
bitrate and reconstruction quality during coding process. Many QP offset selection
algorithms designed for this kind of video are based on latitude or Equirectangular
Projection (ERP) weight maps, which cannot adapt to the situation of the flat block in
tropical area or the complex block in polar area. In this paper, a new metric to measure
complexity of Coding Tree Unit (CTU) is designed, and an adaptive QP offset selection
algorithm is proposed based on CTU complexity to improve the quantization process.
Each CTU is classified into one of the five categories according to its complexity, and
then different QP offset value is determined for each category. By improving the quality
of the visually sensitive area and reducing the bitrate of the flat one, the efficiency of the
encoder is improved. The experimental results show that, compared with the HM16.20,
the WS-PSNR increases by 0.40 dB, the BD-rate reduces by 1.99%, and the quality of
visually sensitive areas has improved significantly.
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1 Introduction

Virtual reality 360-degree video (hereinafter referred to as 360-degree video) requires ultra-high
resolution to provide realistic feeling and dynamic perspective [11]. The huge amount of data
presents challenges to coding and transmission. In the Equirectangular Projection (ERP) format,
the 360-degree video image is stretched to varying degrees, generating a lot of redundant data,
which significantly affects encoding performance [2, 9, 21]. Therefore, researches on coding
optimization of 360-degree video have received widespread attention. In order to improve coding
performance, an adaptive quantization parameter (QP) offset selection algorithm based on Coding
Tree Unit (CTU) complexity is proposed to optimize the quantization process in High Efficiency
Video Coding (HEVC). The main research contents and innovations are as follows:

The characteristics of video images in the ERP projection format are researched, a new
metric for measuring CTU complexity is designed, and an adaptive QP offset selection
algorithm based on CTU complexity is proposed. In this algorithm, CTUs are classified into
five categories according to complexity, and different QP offset values are determined for each
category. In this way, the flat blocks in the equatorial region and the complex blocks in the
polar region can be quantified effectively. The coding performance is enhanced by improving
the quality of the complex region and reducing the bit rate of the flat region. Experimental
results demonstrate that, compared with the latest reference software HM 16.20, the proposed
algorithm can achieve 0.40 dB WS-PSNR improving and 1.99% BD-rate saving. The pro-
posed algorithm can significantly improves 360-degree video coding performance.

2 Related work on QP offset selection

In HEVC, QP is one of the key parameters that control the output bit rate and reconstruction quality
in the encoding process [4, 14]. Different from traditional video, the complexity of each area of 360-
degree video varies greatly, and the large-scale QP distribution cannot achieve the desired effect.
Reducing the bit rate or improving the reconstruction quality of some areas requires the determi-
nation of QP according to the characteristics of 360-degree video [23]. In [26], a new entropy
equalization optimization (EEO) method is proposed to enhance the encoding performance of
virtual reality 360 videos. This method proposes a spherical bit rate equalization strategy to obtain
the Lagrangemultiplier of the coding block, which is used in the rate-distortion optimization process
in video coding. Then the QP value of each block is determined according to dynamic adaptation.
Based on the EEOmethod, two algorithms, EEOA-ERP andEEOA-CMP, are proposed to improve
the compression efficiency of ERP and CMP images respectively. Experimental results show that
compared with the latest algorithm WSU-ERP, EEOA-ERP achieves a 0.37% reduction in BD-
Rate in the low-latency (LD) configuration. Comparedwith HM16.17 under normal test conditions,
the objective quality of EEOA-CMP in random access (RA) configuration improves by 2.6%.

At present, many QP offset selection algorithms perform QP selection in strips. In the F
meeting of the Joint Video Experts Team (JVET), an adaptive QP scheme with number F0038
[15] based on ERP characteristics was proposed. The idea of the proposal is to adjust the QP
according to the weight of WS-PSNR which has a good correspondence with the distortion
distribution of ERP projection video. After compensation, the QP in the polar region can be
increased while the QP in the equatorial region remains unchanged.

The F0038 scheme provides ideas for many QP offset selection algorithms. In [10], a
coding optimization method based on spherical average weight is proposed to improve the
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coding efficiency of 360-degree video. Reduce coding errors by assigning finer quantization
parameters to areas with larger weights. The CTU is adaptively quantized according to the
WS-PSNRweight. Since the decoder can derive the QP offset based on the projection type and
the spatial position of the CTU, there is no need to transmit other parameter information.
Experimental results show that compared with fixed QP coding, the proposed adaptive
quantization algorithm can greatly improve the coding performance in ERP, rotating ERP
and CMP formats.

In [11], a rate-distortion optimization scheme based on spherical domain is proposed. QP is
adaptively selected according to the WS-PSNR weight. The weight adopts the center point
position of each CTU and defines new WSAD and WSATD. Based on HEVC, the optimal
rate-distortion relationship in the spherical domain is derived, which saves the code rate.

In [24], a new adaptive algorithm is presented based on the weight of WS-PSNR and using
the normalization method. This algorithm defines a new weight of WS-PSNR to adjust QP.
Compared with the two methods, the WS-PSNR weight is analyzed in detail, and the idea that
QP values will decrease in tropical area and increase in polar area is proposed.

An adaptive QP offset selection algorithm based on CTU complexity is proposed in this
paper, which is quite different from the above-mentioned existing QP selection algorithm.
The literatures [13, 15, 18, 24] use the correspondence between the weight of WS-PSNR
and the distortion distribution of ERP projection video to select the QP offset. The closer
to the polar area, the greater the QP value is, and the overall bit rate can be saved by
reducing the bit rate in the polar area. The literatures [13, 18, 24] carried out in-depth
exploration on the correspondence between WS-PSNR and QP offset to obtain a more
efficient QP offset selection scheme. The premise of these algorithms is that in the ERP
projection format, the closer to the polar area, the more serious the stretching is, and the
video content is relatively fixed. There is a large flat area near the polar area, and the
important areas are concentrated on the tropical area. However, as the types of 360-degree
videos continue to increase, scenes become more and more complex [7]. These algorithms
cannot adapt well to the situation where there are the flat block in tropical area or the
complex block in polar area. The video images are classified at the CTU complexity in this
paper, different QP offset values are determined for each category. By improving the
quality of the visually sensitive area and reducing the bitrate of the flat one, the efficiency
of the encoder is improved.

3 Adaptive QP offset selection algorithm based on CTU complexity

360-degree video shooting is roughly divided into two categories: fixed-position cameras
and movable cameras [20]. As shown in Fig. 1, the video sequences are mostly shot
outdoors with the sky at the top of the video and the ground at the bottom. In the
AerialCity sequence (fixed-position cameras), the viewer focuses on the houses in tropical
area and the vehicles moving on the road; in the Balboa sequence (movable cameras), the
landscape of the buildings on both sides is more attractive as the vehicles move forward
[12]. The viewer is more sensitive to moving and complex objects, rather than the
background and the stationary object. In addition, many pixels are similar in the area of
sky or ground, and the fluctuation amplitude in the CTU is very small. It is unnecessary to
quantify in detail. Therefore, if more code rate can be allocated to the human visually
sensitive area during the encoding process and non-visually sensitive areas or flat areas are
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roughly coded, the coding performance can be improved under the condition that the
increase of bitrate is within the acceptable range, so as to obtain the image with better
subjective quality.

For the huge data volume of 360-degree video and the limitation of the current QP offset
selection problem, a new metric to measure the complexity of CTU is designed, and an
adaptive QP offset selection algorithm based on CTU complexity is proposed to improve the
quantization process in this paper. The algorithm consists of three parts including calculating
the texture complexity of each CTU by using gradient, classifying each CTU into one of the
five categories according to its complexity, and determining different QP offset value for each
category. By improving the quality of the visually sensitive area and reducing the bitrate of the
flat one, the encoder can achieve higher efficiency.

3.1 Complexity calculation based on CTU gradient

There are various connections among the pixels in the video frame, so the texture complexity
can be calculated using the difference between the current pixel and the adjacent pixels (upper
left pixel, upper pixel, left pixel). Among the methods of image processing, the gradient
reflects the connection characteristics between pixels [10]. The video image is stored as a two-
dimensional array, and the image gradient is the derivative of the pixel p(i, j):

Grad x; yð Þ ¼ jdx i; jð Þj þ jdy i; jð Þj ð1Þ

dx i; jð Þ ¼ p i; jð Þ−p i; j−1ð Þ ð2Þ

dy i; jð Þ ¼ p i; jð Þ−p i−1; jð Þ ð3Þ
Image gradient is commonly used for edge detection [8]. The direction of the gradient points to
the direction in which the image changes fastest. At the edge, the pixel value jumps and the
calculated gradient value is large, so the gradient can obviously reflect the existence of edge in
the image. The effect of image gradient processing of a frame in the 360-degree video
sequence DrivingInCountry is shown in Fig. 2.

In video coding, the texture complexity of a block is often considered. The gradient can reflect
the direction and speed of the pixel change, which can reflect the pixel fluctuation range within
the block and highlight the pixel jump. Therefore, the texture complexity can be expressed by

(a) AerialCity                              (b) Balboa

Fig. 1 360-degree video image (a) AerialCity (b) Balboa
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calculating the gradient of the CTU. This paper proposes the following two equations which can
be used to calculate the CTU complexity of polar area Tp and tropical area Te:

Tp ¼ ∑
H

j¼2
∑
W

i¼2
ηjpi; j−pi; j−1j þ 1−ηð Þjpi; j−pi−1; jj

� �
ð4Þ

Te ¼ ∑
H

j¼2
∑
W

i¼2
jpi; j−pi; j−1j þ jpi; j−pi−1; jj þ jpi; j−pi−1; j−1j

� �
ð5Þ

where W represents the width of the CTU, H represents the height of the CTU,pi, j represents
the current pixel, pi, j − 1 represents the upper pixel, pi − 1, j represents the left pixel, pi − 1, j − 1 is
the upper left pixel, η ¼ h=bH , h is the ordinate value of the upper left corner of each CTU, andbH is the height of the image. The value of h is defined as 0 at both ends of the image and 100
in the middle. Since the ERP projection format has the feature that the latitude increases as the
image is stretched and deformed, it is necessary to make a distinction between tropical area and
polar area. Equations (4) and (5) are used to calculate the CTU complexity in polar area and
tropical area, respectively. In Eq. (4), the closer CTU is to polar area, the smaller η value is and
the smaller its reference value to the upper pixel is; the larger 1 − η value is, the more important
the reference value is to the left pixel. Equation (5) is used for tropical area. In tropical area, the
horizontal stretch becomes smaller, and the correlation between the current pixel and the left
pixel is reduced. Increasing the upper left reference pixel helps to make the calculation result
reflect the fluctuations in the block better.

The CTUs obtained from the three video sequences (GasLamp, Landing2, Harbor) is
illustrated in Fig. 3. Their corresponding texture complexity is (a) 9965, (b) 112,277, (c)
916, (d) 155,668, (e) 351, (f) 119,680. From the subjective evaluation and data, Eqs. (4) and
(5) can accurately reflect the texture complexity of each CTU. Flat CTU has a low texture
complexity value, such as (c), (e). These areas are single in color and have no obvious ups and
downs, which are mostly used as a fixed background in video images. From the pixel point of
view, these areas have similar pixel values, and most of them are the same. Relatively the CTU
with complex texture and with edges has higher Tp and Te values, such as (b), (d), (f). These
areas are mostly detailed areas in the video image, and the content is richer. The adjacent pixel
values are quite different, and some pixels in the entire complex area are greatly different. In
addition, areas with simple textures, like (a), are also well represented in terms of texture
complexity values and are not treated as flat blocks. This is because there is a big difference
between the texture part of the pixel and the adjacent pixel. This shows that Tp and Te can

(a) The original image                       (b) The gradient map

Fig. 2 DrivingInCountry (a) The original image (b) The gradient map
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reflect the texture of the block completely. In turn, it provides a guarantee for the accuracy of
CTU categories classification.

3.2 CTU categories classification based on CTU complexity

The larger part of the 360-degree video picture is the areas with simple texture, such as the sky
and the ground. Nevertheless, the human eye pays more attention to the moving things and the
more complicated texture areas [5]. Therefore, it is not enough to divide it into flat and
complex parts. The entire image needs to be further classified into multiple parts. Usually, the
number of gray levels that a person can distinguish with the naked eye is about 16 levels.
Therefore, the CTU is first classified into 16 categories for experimental testing. On the
premise that the performance of the algorithm is basically unchanged, the classification
intervals are merged.

Equations (4), (5) are used to acquire the texture complexity of each CTU texture for all three
frames of the test sequence. The data is screened, a small amount of non-universal data is
excluded tomake the overall distribution of data more regular and coherent. The total amount of
data is 334,770 in this paper. The polynomial function is used to fit the processed data and get
the fitting curve [6]. The data distribution statistical chart is shown in Fig. 4. After the fitting, a
small number of extreme values were discarded. Data curve becomes linear and continuous,
with a more intuitive trend. As shown in Fig. 4, a large number of CTUs have low complexity.
As the complexity of the texture increases, the number of CTUs is gradually decreasing.

In order to classify CTU scientifically, the abscissa of the fitted curve is chosen at equal
intervals, and the corresponding ordinate value is used as the threshold for the initial
partitioning interval. After selecting the initial threshold, all video sequences are tested
repeatedly, and adjusted the threshold interval according to the effect of each experiment.
When setting equal intervals, many low complexity CTUs are classified into medium com-
plexity intervals. The number of CTUs in the high complexity interval is extremely small. This

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 3 64 × 64 CTU example
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situation leads to unreasonable quantification. In the actual experiment process, CTU is
gradually classified into appropriate intervals, and the partitioning intervals are gradually
combined to reduce the complexity under the premise of not affecting the algorithm effect
to a large extent. Finally, all CTUs are classified into five categories in the intra image to
reflect the importance of CTU. The threshold of the best partition interval is obtained
according to the texture. CTU categories classification interval and the number of CTUs in
the corresponding interval is shown in Table 1. As shown in the table, the number of CTUs in

(a) 4K

(b) 6K

(c) 8K

Fig. 4 CTU complexity data
distribution chart
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the final debugged range is roughly the same as the curve in the graph. This reflects the
rationality of interval classification.

As seen in Fig. 5, CTU classified image and ERP weight map are compared. In order to
better reflect the CTU categories grading situation, here is the rendering of the initial 16
categories. In the CTU classified image, 16 Gy scales represent the complexity of CTU. High
brightness indicates high complexity. It can be clearly seen that ERP weight maps only focus
on latitude changes, which is shown in the following aspects: video content is highly
concerned for tropical area, and the distortion should be minimized through QP negative
compensation to reduce the quantization step size; the video content is less concerned for polar
area, and the QP is positively compensated to increase the quantization step size. Therefore,
ERP weight maps cannot adapt to the situation of flat block in tropical area or complex block
in polar area. However, the CTU classified image can reflect the CTU categories of different
complexity. At the same latitude, CTUs of different complexity can be distinguished, solving
the problem that many algorithms cannot adapt to the situation of flat block in tropical area or
complex block in polar area.

3.3 QP offset selection based on CTU category

Since the adjustment of QP directly affects the quality of the reconstructed video, in order to
improve the image quality of the visually sensitive area, more code streams should be allocated

Table 1 CTU categories classification interval and number

Class CTU category Classification interval Number of CTUs

4 K 5 [0, 33,750) 41,170
4 [33,750, 45,000) 10,150
3 [45,000, 67,500) 10,130
2 [67,500, 112,500) 10,100
1 [112,500, 150,000) 10,290

6 K 5 [0, 45,000) 42,550
4 [45,000, 67,500) 10,040
3 [67,500, 112,500) 10,320
2 [112,500, 157,500) 10,020
1 [157,500, 200,000) 9850

8 K 5 [0, 45,000) 110,390
4 [45,000, 90,000) 33,830
3 [90,000, 112,500) 11,550
2 [112,500, 202,500) 11,420
1 [202,500, 250,000) 11,960

(a) CTU classified image                      (b) ERP weight map

Fig. 5 Image area classification comparison (a) CTU classified image (b) ERP weight map
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[25]. The visually sensitive areas have different levels of complexity and should distinguish the
QP offset value. Through subjective evaluation, comparing a large number of CTUs and their
corresponding complexity calculation results, it can be observed that there is no obvious
texture in the CTU of category 5, basically pure color blocks, or small fluctuations in the
block, while textures appear in the CTU of category 4, and the pixels produce large fluctua-
tions. Therefore, the category 4 and above are set as the visually sensitive area. The proposed
algorithm allocates the continuous QP offset value for different categories, which enables the
CTU in the visually sensitive area to carry out fine quantification. The continuous QP offset
value also avoids the block effect between different categories. The initial QP offset values are
set for the experiment. Corresponding to QPbase= 22, 27, 32, 37, the category 4 is set to
QPoffset= − 1, −2, −3, −4, the category 3 is set to QPoffset= − 2, −3, −4, −5, the category 2 is set
to QPoffset= − 3, −4, −5, −6, the category 1 is set to QPoffset= − 4, −5, −6, −7. The QP offset
values are adjusted by testing all video sequences multiple times. The final QP offset selection
for visually sensitive areas is shown in Table 2.

For non-visually sensitive area (CTU of category 5), different selection methods are
performed. After the spherical surface is projected into the ERP plane, since different latitudes
adopt different degrees of pixel sampling, different pixel regions in different rectangular planes
have different pixel redundancy. The degree of pixel redundancy at different heights in ERP
can be measured by 1/ cos θ, θ ∈ [−π/2, π/2], indicating image area. The range of the upper and
lower parts corresponds to ±π/2. The 1/ cos θ at the low latitude has a small value, which
means that the pixel redundancy is small, corresponding to the smaller quantization step size;
the 1/ cos θ at the high latitude has a large value, the pixel redundancy is larger, and the large
quantization step size is set. Therefore, the quantization step Qstep is a function of 1/ cos θ [22].
Adjusting Qstep requires indirect adjustment of QP. If a global QP is set through the config-
uration file, there is a QPoffset at different latitudes relative to tropical area. Setting the QPoffset

ensures similar quantization at each latitude distortion. The relationship between the two in
HEVC and its transformation is as follows:

Qstep ¼ 2
QP−4
6 ð6Þ

QQP ¼ 4þ 6log2 Qstep

� �
ð7Þ

Referring to Eq. (7), setting QPoffset as the logarithm function of 1/ cos θ, Eq. (8) is proposed
for QP offset selection of non-visually sensitive area:

QPoffset ¼ around 4þ 2log1=2 cos θð Þ½ �
n o

;

11;

(
2log1=2 cos θð Þ½ � < 11

others
ð8Þ

Table 2 QP offset selection for the visually sensitive area

CTU category QPbase=22 QPbase=27 QPbase=32 QPbase=37

1 −4 −5 −7 −8
2 −3 −4 −6 −7
3 −1 −2 −4 −5
4 0 −1 −3 −4
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Where around(⋅) indicates rounding. Considering that setting too large QPoffset will seriously
affect subjective quality, QPoffset should be set less than 11 through repeated experiment
adjustments. For the CTU of category 5, QPoffset increases as cosθ decreases. The QP offset
selection for non-visually sensitive areas is complete.

3.4 Algorithm flow

The algorithm flow is shown in Fig. 6. The main steps are as follows:

(1) Get the current CTU pixel value, and calculate the complexity according to the Eqs. (4)
and (5).

(2) Classify CTUs according to the complexity and determine CTU category.
(3) Determine QP selection method according to CTU category: the QP offset selection for

visually sensitive areas (category 1, 2, 3, 4) is shown in Table 2. The QP offset value for
non-visually sensitive area (category 5) is calculated by Eq. (8).

4 Experimental results and discussion

The proposed algorithm is integrated into HM16.20 and 360Lib-4.0 to test the coding
performance and video image quality. The hardware platform for the experiment is set to

Start quantifying CTU

Calculate CTU complexity

Classify CTU category

category 5

Compensate QPoffset value

for QPbase.

Y N

End quantifying CTU

According to equation  

(8), calculate QPoffset 

value

According to Table 2, 

get QPoffset value

Fig. 6 Algorithm flowchart
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Intel(R) Xeon(R) CPU E5–2640 v4, and the memory is 64.0GB. The main coding parameters
are all I frame coding mode (All Intra Main10, AI-Main10), each sequence is encoded in 100
frames, and the initial QP is set to 22, 27, 32, 37 respectively. In order to evaluate the
comprehensive coding performance of the proposed algorithm, BD-rate is calculated from
the Excel table provided by JVET to measure the relationship between bitrate and image
quality [19]. If ΔBD-rate is negative, it means the overall coding performance is improved, and
image quality is measured in WS-PSNR which is defined by WMSE as follows:

WS‐PSNR ¼ 10log
MAX 2

WMSE

� �
ð9Þ

WMSE ¼ ∑
width−1

i¼0
∑

height−1

j¼0
y i; jð Þ−y0 i; jð Þ

� �2
⋅W i; jð Þ ð10Þ

W i; jð Þ ¼ w i; jð Þ
∑width−1

i¼0 ∑height−1
j¼0 w i; jð Þ ð11Þ

Where MAX is the maximum value of the image pixel, y(i, j) and y ' (i, j) represent the original
pixel value and the reconstructed pixel value, respectively, W(i, j) is the weight scale factor of
the normalized sphere. The calculation of the weight scale factor for different projection
formats is different, and the weight scale factor for ERP projections is mentioned above.
The calculation of ΔWS-PSNR is as follows:

ΔWS‐PSNR ¼ WS‐PSNRproposed−WS‐PSNRHM16:20 ð12Þ
And the calculation of ΔTime is as follows:

ΔTime ¼ Tproposed−THM16:20

THM16:20
� 100% ð13Þ

This article uses sixteen standard test sequences recommended by GoPro [1], InterDigital [3],
Nokia [16] and Letin VR [17]. For the accuracy of the quality assessment, the sequences are
converted to low-resolution ERP videos before encoding. The encoding size is 4096 × 2048
for 8 K and 6 K videos and the encoding size is 3328 × 1664 for 4 K videos. The experimental
data is shown in Table 3.

In Table 3, the experimental results show that compared with the standard algorithm, the
WS-PSNR is increased by 0.40 dB, the BD-rate is reduced by 1.99% on average, and the
coding time is increased by only 4.04%. The coding performance of the Gaslamp video test
sequence, the SkateboardInLot video test sequence, the SkateboardTrick video test sequence,
and the Harbor video test sequence are improved. This is because the video content is
characterized by the existence of large texture complexes in the above five sequences. The
lower-level regions account for the majority of the entire video content, while the regions with
higher texture complexity are extremely complex. The CTUs of these regions belong to
category 1 or 2. In this way, after a large number of CTUs with low texture complexity are
compensated by QP, the code rate is greatly reduced, and some details of the image are lost,
the distortion is enhanced, and the quality is degraded. However, since these regions are flat,
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there is less impact on the evaluation of the reconstructed video quality. However it has the
effect of reducing the bitrate, while the CTU with less texture complexity is significantly
compensated by the large QP negative offset selection. In addition, the quality of reconstructed
video has been significantly improved. In contrast, the coding performance of the Trolley
video test sequence, the Landing2 video test sequence, and the DrivingInCity video test
sequence is improved slightly. One important reason is that there are a large number of areas
with high texture complexity in all parts of the above three sequences, which are greatly
compensated by QP. Another reason is that the code rate is too large and cannot be balanced
well. Figure 7 shows the RD curve comparisons of different sequences.

It is observed that the proposed algorithm outperforms the coding framework HM16.20 at
both high bitrate and low bitrate, indicating that the reconstructed video quality can be
improved by using the presented algorithm which researches the characteristics of 360-
degree video. Smaller QP is set for the CTU of category 1–4 which is complex in texture to
perform fine processing and larger QP is set for the CTU of category 5 which is simple in
texture to perform rough processing. Compared to setting fixed QP value or strip QP to
quantize, 360-degree video content can be quantified reasonably by this method.

To further evaluate the performance of the proposed algorithm, the algorithm proposed
in this paper is compared with [13, 24], and the results are shown in Tables 4 and 5. It can
be found that the algorithm proposed in this paper is superior to the reference algorithms in
WS-PSNR and BD-rate for the same sequence, and can obtain better coding performance.
This is due to that, compared with the algorithms in [13, 24], the proposed algorithm is
more flexible to identify the plain block in tropical area and the complex block in polar
area using CTU complexity.

As described above, the presented algorithm can signally improve the quality of the visually
sensitive area in the image. In this part, several frames are intercepted to show subjective
quality, and the details are enlarged to compare carefully. As seen in Figs. 8 and 9, the decoded
images of the 8th frame of KiteFlite and the 4th frame of DrivingInCity are shown. Compared
with the HM16.20, the presented algorithm can improve the block effect that exists in the

Table 3 Comparison results of proposed method and HM16.20

Class Sequence ΔWS-PSNR(dB) ΔBD-rate(%) ΔTime(%)

4 K AerialCity 0.24 −2.14 2.63
DrivingInCity 0.19 −1.54 0.32
PoleVault_le 0.48 −2.21 2.70
DrivingInCountry 0.47 −1.68 1.62

6 K Balboa 0.35 −1.73 4.38
BranCastle2 0.58 −1.90 6.73
Broadway 0.31 −2.09 4.61
Landing2 0.31 −1.46 4.43

8 K ChairliftRide 0.37 −0.44 6.92
Gaslamp 0.27 −3.82 4.10
Harbor 0.32 −2.61 3.83
KiteFlite 0.54 −1.55 5.57
SkateboardInLot 0.35 −3.06 3.32
SkateboardTrick 0.41 −2.70 3.62
Train_le 0.58 −2.30 3.70
Trolley 0.67 −0.67 6.13

Average 0.40 −1.99 4.04

Multimedia Tools and Applications (2021) 80:4183–42014194



image and result in clearer edge and detail. Although the objective quality improvement of the
KiteFlite sequence is not obvious from the comprehensive data, the visual perception of the
human eye is better. Since the visually sensitive areas are more refined, such as the text and
graphics on billboard, the overall quality of the image has been improved from subjective

(a) Gaslamp

(b) SkateboardInLot

Fig. 7 RD curves for the proposed algorithm and the HM16.20 (a) Gaslamp (b) SkateboardInLot

Table 4 Comparison of the proposed method and ref. [13]

Sequence ΔBD-rate(%)

Harbor 1.0
SkateboardInLot −0.1
SkateboardTrick −2.3
Train_le −1.7
Average −0.8
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evaluation. In Fig. 9, since the camera and the cars are moving, the complex areas of the
texture are further distorted. The text on the red bus glass is completely blurry and has a

Table 5 Comparison of the proposed method and ref. [24]

Class Sequence ΔWS-PSNR(dB) ΔBD-rate(%)

4 K AerialCity 0.19 −2.34
PoleVault_le 0.44 −0.51

6 K Balboa 0.24 −3.03
BranCastle2 0.57 −0.70
Broadway 0.27 −3.59
Landing2 0.29 −1.96

8 K ChairliftRide 0.41 0.46
Gaslamp 0.24 −4.72
Harbor 0.31 −2.01
KiteFlite 0.54 −0.35
SkateboardInLot 0.30 −2.16
Trolley 0.67 0.73

Average 0.37 −1.68

(a) KiteFlite(HM16.20)

(b) KiteFlite(proposed)

Fig. 8 Subjective Quality Comparison of KiteFlite (a) KiteFlite (HM16.20) (b) KiteFlite (proposed)
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significant block effect in HM16.20. However, the text details can still be faintly recognized
and the picture of block is smooth in the proposed algorithm.

In addition, the presented algorithm which is used for most test sequences outperforms the
HM16.20 substantially in the higher bitrate segment, but the performance improvement is
small in the lower bitrate segment. This shows that the proposed adaptive QP offset selection
algorithm in this paper works better when optimizing video with higher bitrate.

5 Conclusions

In this paper, an adaptive QP offset selection algorithm based on CTU complexity is proposed.
The proposed algorithm can achieve better quantization through fine processing of complex
texture region and rough processing of simple texture region, and solves the problems of non-
uniformity ERP sampling and the limitations of many QP offset selection algorithms. The
algorithm mainly includes three parts: (1) Gradient is used to calculate the texture complexity
of a CTU; (2) each CTU is classified into one of the five categories according to its

(a) DrivingInCity(HM16.20)

(b) DrivingInCity(proposed)

Fig. 9 Subjective Quality Comparison of DrivingInCity (a) DrivingInCity (HM16.20) (b) DrivingInCity
(proposed)
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complexity; (3) different QP offset value is determined for each category. Smaller QP is set for
the CTU of category 1–4 which is complex in texture to perform fine processing and larger QP
is set for the CTU of category 5 which is simple in texture to perform rough processing. The
experimental results show that compared with the HM16.20, the WS-PSNR increases by
0.40 dB, the BD-rate reduces by 1.99%, the time only increases by 4.04%, and the quality of
visually sensitive areas has improved significantly.
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