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Abstract
Research on hash-based cross-modal retrieval has been a hotspot in the field of content-based
multimedia retrieval research. Most deep cross-modal hashing methods only consider inter-
modal loss that can remain local information of training data, and ignore the loss within data
samples of the same modality that can remain the global information of dataset. In addition,
they also ignore the factor that different scales of single modal data contain different semantic
information, which affects the representation of data features. In this paper, we propose a
semantics-preserving hashing method based on multi-scale fusion. More concretely, a multi-
scale fusion pooling model is proposed for both image feature training network and text
feature training network. Therefore, we can extract the multi-scale features of image dataset
and solve the sparsity problem of text BOW vectors. When constructing the loss function, we
consider intra-modal loss while considering inter-modal loss. Therefore, the output hash code
retains both global and local underlying semantic correlation when image and text feature
training network are trained. Experiment results on NUS-WIDE and MIRFlickr-25 K prove
that against other existing methods, our algorithm improves cross-modal retrieval accuracy.

Keywords Cross-modal retrieval . Multi-scale fusion . Hash learning . Semantics preserving .

Deep learning

1 Introduction

Development in information technology has led to explosive growth of multimedia data. At the
same time, people’s demand for information search to obtain diverse results is increasing.
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Therefore, there are more and more researches [18, 23, 33, 19, 31, 20, 32, 15] on multimedia data
analysis and cross-modal retrieval technology. Cross-modal retrieval is point to all relevant data of
other modalities are accurately and quickly retrieved through the data of one modal.

Hash learning is widely used in cross-modal retrieval models [27, 21, 29, 1], because of its
good low storage and efficient retrieval. In the past few decades of research, there are many
hash methods for single-modal retrieval [25, 22, 16, 14, 8, 13, 35]. However, these methods
are not suitable for cross-modal hash retrieval, because of the semantic gap between data in
different modalities. Most existing cross-modal retrieval hashing methods [34] solve semantic
gaps by mining the correlations of different modal data. The main cross-modal hashing
methods can be divided into two categories: deep cross-modal hashing methods [5, 30, 7,
17, 24] and shallow cross-modal hashing methods [28, 12, 3, 11, 4]. Shallow cross-modal
hashing methods mainly map each sample into a binary code based on hand-crafted features,
so as to learn the hash function. However, this hash function cannot express the underlying
features of samples and the retrieval efficiency is not ideal. Deep cross-modal hashing
methods, in contrast to shallow cross-modal hashing methods, using the feature extraction
capability of deep learning to learning effective representations of different modalities, which
solve the problem of limited hand-crafted features expression ability. In addition, this method
can also integrate feature learning into the process of hash code learning, ensuring the accuracy
of hash code to obtain better retrieval efficiency.

Up to now, there has been a lot of research on deep cross-modal hashing retrieval, but they
both ignore two attributes of cross-modal data. These two attributes contribute to retrieval
accuracy, which is also the motivation of this paper. First, different scales of single modal data
contain different semantic information; second, when judging the similarity between cross-modal
data, most deep cross-modal hashingmethods treat two cases in the sameway, where only one tag
is similar between different modal data and more than one tag is similar. They both ignore the fact
that the similarity between different modal data is related to the number of labels they share.

Taken together, this paper proposes a Semantic-Preserving Hashing based on Multi-scale
Fusion (SPHMF). The framework of SPHMF is shown in Fig. 1. First, Image Pooling Model
for Multi-scale Fusion (IPMSF) and Text Pooling Model for Multi-scale Fusion (TPMSF) are
used to extract multi-scale feature information of different modal data. Secondly, image-text
pairs label information is used to train self-supervise network [17], so as to better mine the
relevance between image and text. Finally, when we construct the loss function, we use multi-
level similarity information of image-text pairs to construct the intra-modal loss. In addition,
the loss function also includes pairwise loss and inter-modal loss.

The remaining paper is structured in the following manner. We summarize work related to
cross-modal retrieval (section 2), present the deep learning architecture proposed (section 3),
describe the construction of the loss function (section 4), discuss the results and experiments
(section 5), and draw a conclusion (section 6).

2 Related works

As mentioned above, our proposed method is SPHMF, which is a cross-modal hashing
retrieval method based on deep learning. Therefore, we conducted a series of researches on
the two types of shallow and deep cross-modal hashing methods.

Most existing shallow cross-modal hashing methods are independent of feature learning
and hash code learning, which leads to unsatisfactory retrieval results. This kind of typical
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methods include CVH [28], CCQ [12], CMSSH [3], SCM [11], and SePh [4]. CVH considers the
similarity of intra-view and inter-view. CCQ jointly learns related maximal maps and composite
quantizes. It converts multimedia data into binary code through an isomorphic potential space.
CMSSH is a supervised cross-modal hash, which models hash learning through an enhanced
classification paradigm. SCM uses tag information to build semantically similar matrices to learn
a hash function. SePh changes the semantic matrix to a probability distribution, which is
combined with the minimization of hamming spatial distribution to learn hamming space.

Deep cross-modal hashing methods use deep learning framework to study hash function. It
can effectively catch the non-linear correlation between cross-modal instances. This kind of
typical methods include CMNNH [5], DCMH [30], PRDH [29], A CMR [7], SSAH [17], and
MCSCH [24]. CMNNH learns the hash function in deep learning framework by maintaining
the relationship of intra-modal and the pairwise correspondence of inter-modal. DCMH
performs feature learning and hash function learning simultaneously. PRDH guides the
learning of hash codes by constructing different pairwise losses. ACMR differentiates the data
of different modes and learns binary hash codes by adversarial learning methods and classi-
fication methods. SSAH uses a self-supervised network to generate semantic information of
tags, as well as uses these information to guide the feature learning process of different modal
data. MCSCH proposes to use multi-scale features to guide sequence hash learning, enhance
the diversity of hash codes and promote the studying of hash functions.

Above related works achieved good results. Compared with unsupervised learning methods,
supervised learning has achieved better results. For supervised learning methods, the key is to use
limited training data and supervised information to learn semantic information with similar
neighbor relations of the original data. The self-supervised network in the SSAH can build
semantic association between multimedia data and find more information in labels. Therefore,
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our method also uses this label self-supervised network. Our approach of SPHMF is different
from the above methods in the following two ways: it extracts semantic information of different
scales from single modal data and integrates it into the feature learning process; we construct
intra-modal loss with multilevel semantic affinity matrix, inter-modal loss and pairwise loss.

3 Deep learning framework based on multi-scale fusion

As shown in Fig. 1, the overall network structure contains three parts, namely Image Feature
Training Network (IMFN), Text Feature Training Network (TEFN), and Semantic Tag
Generation Network (STGN). We use the output of STGN to guide training of IMFN and
TEFN. After IMFN and TEFN are trained, the respective hash functions of image dataset and
text dataset can be obtained. The hash function can be used to obtain the hash code of each
modal data, then by counting and sorting hamming distance to complete cross-modal retrieval.

3.1 Image pooling model for multi-scale fusion

The overall structure of IMFN proposed in this paper is shown in the upper part of Fig. 1.
Considering that features at different scales in image dataset represent different semantics, we
propose an Image PoolingModel forMulti-scale Fusion (IPMSF) for IMFN. The setting of IPMSF
is based on the idea of Spatial Pyramid Pooling [6] (SPP).We take the output of conv5 as the input
of each pooling layer in IPMSF. Different pooling layers perform maximum pooling operation
according to different scale regions, and then the output vectors of each pooling layer are
concatenated as the input of fc1 to complete the training of IMFN. Therefore, the problems of
limitation on size of input image in traditional CNN network and unreliable feature learning due to
some information loss are solved. The settings for IPMSF are shown in Table 1. Unlike SPP, SPP
directly connects the features of different scales, while IPMSF first merges the features of the same
scale, and then connects the features of different scales in series, thereby reducing the parameters of
the networkmodel. In section 5.4.5, it can be seen that the IPMSFmodel reduces the computational
overhead of the training process while maintaining the retrieval accuracy.

3.2 Text pooling model for multi-scale fusion

For text dataset, it is usually represented by a bag of words vector, which can easily lead to
sparsity. To solve this problem, we design a Text Pooling Model for Multi-scale Fusion
(TPMSF). First, the multi-scale features of text samples are extracted by pooling layer, and
then multiple features are fused through convolutional layer. This process can capture the
relevance among various words in text modal construction, and that is very useful for
semantic relevance. The overall setting of TPMSF is shown in Table 2, and c is the number
of class labels.

Table 1 Parameter settings for IPMSF model

Layers Input Pool Kernel size Stride

Pool1 The output of conv5 Max pooling 1 × 13 1 × 13
Pool2 The output of conv5 Max pooling 1 × 7 1 × 5
Pool3 The output of conv5 Max pooling 1 × 5 1 × 4
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The output of the TPMSF model is used as the input of TEFN. The model architecture for
TEFN is shown in bottom part of Fig. 1.

3.3 Semantic tag generation network

In this paper, STGN is used to extract label semantic information of text-image pairs, and
guide training of IMFN and TEFN. The overall setting of STGN is shown in the middle part of
the Fig. 1.

The STGN is trained through the class label information and the neighbor relationship
matrix S. After the training of STGN is completed, the label semantic hash code H(s) and label
semantic features F(s) can be obtained through this network to guide training of IMFN and
TEFN. In the training process, the inner product between the vectors is used to represent the
correlation between any two output features or two hash codes. And in the meanwhile, the
likelihood function is used to represent the inner product value between outputs under S
supervision, as shown in formula (1):

p SjHð Þ ¼ sig θij
� �

; Sij ¼ 1
1−sig θi j

� �
; Sij ¼ 0

� �
ð1Þ

where sig () represents the sigmoid function, θij = 1/2 < Hi, Hj>, Hi, Hj represents the hash code
of a set of samples output by the hash layer, and Sij = 1 indicates that the two sample vectors
are similar, Sij = 0 means dissimilar.

Maximizing the likelihood function by minimizing the form of the negative log-likelihood
function yields:

minR ¼ −logp SjHð Þ ¼ −∑Sij Hi;H j
� �

−log 1þ e Hi;H jh i� 	
ð2Þ

If all parameters in the STGN are set to θ, then formula (2) can be used to represent all samples
in F(s), H(s):

min
θ

Js ¼ − ∑
n

i; j¼1
Sij Fi; F j
� �

−log 1þ e Fi;F jh i� 	� 	
− ∑

n

i; j¼1
Sij Hi;H j
� �

−log 1þ e Hi;H jh i� 	� 	

ð3Þ
where Fi, Fj, Hi, Hj represent the features of the ith and jth groups and the hash codes of the ith
and jth groups, respectively.

Table 2 Parameter settings for TPMSF model

Layers Input Pool Kernel size Stride

Pool1 BoW vector Average pooling 1 × 50 1 × 50
Pool2 BoW vector Average pooling 1 × 30 1 × 50
Pool3 BoW vector Average pooling 1 × 15 1 × 50
Pool4 BoW vector Average pooling 1 × 10 1 × 50
Pool5 BoW vector Average pooling 1 × 5 1 × 50
Conv1 BoW vector None 1 × 1 × 512 × c 1 × 1
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Since the hash code is lost from output to quantization into a binary hash code, a
quantization error is added to the function, as follows:

α Hi−sign Hið Þk k2F ð4Þ

So, the final objective function is:

min
θ

Js ¼ − ∑
n

i; j¼1
Sij Fi; F j
� �

−log 1þ e Fi;F jh i� 	� 	
− ∑

n

i; j¼1
Sij Hi;H j
� �

−log 1þ e Hi;H jh i� 	� 	

þ α Hi−sign Hið Þk k2F
ð5Þ

In this paper, the parameter θ of STGN is studied by stochastic gradient descent and back
propagation.

4 Learning cross-modal hash functions

Suppose there are n sets of training data points, each set of training data is composed of pairs of
text-image, X = {xi}ni = 1 represents high-dimensional original image dataset, Y = {yj}nj = 1

represents the text dataset descripting image. Each pair of training data has a class label vector
li = {li1, li2, …, lic}, c is the number of dataset categories. In the label semantic information
learning part, the class label information Ln*c (l1, l2,…, ln) can be obtained from the text-image
pairs (li represents a c-dimensional binary vector) to construct a similarity matrix S, Sij = 1
means xi is similar to yj, Sij = 0 means that they are not similar. In the hash function part, we
specify the length of the output hash code as m.

Given the image data, text data and the similarity matrix S, the target of SPHMF is to study
a hash code B that retains similarity. When constructing the entire objective function, the
features of image and text and the semantic feature F(s) are used to construct pairwise loss to
convey the neighborhood relationship in the label. Hash code of modal data construct inter-
modal and intra-modal losses to preserve global and local semantic structure. Therefore, the
overall objective function is:

J ¼ J se þ ηJ inter þ βJ intra ð6Þ
where Jse is the pairwise loss, Jinter is the inter-modal loss, and Jintra is the intra-modal loss. ŋ
and ß are used for balance the impacts of each term.

4.1 Pairwise loss

For the feature of image and text modal data, the inner product method is used to represent the
similarity relationship, and the pairwise loss is used to transfer the nearest neighbor relation-
ship of F(s), as shown in formula (7), (8):

min
θx

J xse ¼ − ∑
n

i; j¼1
Sij < F sð Þ

i ; Zx
j > −log 1þ e< F sð Þ

i ;Zx
j>

� 	� 	
ð7Þ
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min
θy

J yse ¼ − ∑
n

i; j¼1
Sij < F sð Þ

i ; Zy
j > −log 1þ e< F sð Þ

i ;Zy
j>

� 	� 	
ð8Þ

where Jsex represent the pairwise loss for image samples, Jsey represent the pairwise loss for text
samples, <Fi(s), Zy

j>, <Fi(s), Zx
j > represent the inner product of two vectors, respectively. They

are used to weigh the similarity between text, image features and semantic retention features.
Zx

j, Zy
j represent the feature representations of the jth group of image samples and text

samples, respectively. θx, θy represent the parameters of image net and text net.

4.2 Inter-modal loss

The hash codes of the image and text are respectively constructed with the hash codes of label
to construct the cross-entropy loss, that is, the inter-modal loss, to study the hash function, so
that the label information can be inset in the modal data and make hash codes closer to the
ideal hash codes.

min
θx;θy

J inter ¼ −
1

n
∑
n

i; j¼1
H sð Þlog σ H xð Þ

� 	� 	
þ 1−H sð Þ
� 	

log 1−σ H xð Þ
� 	� 	� 	

−
1

n
∑
n

i; j¼1
H sð Þlog σ H yð Þ

� 	� 	
þ 1−H sð Þ
� 	

log 1−σ H yð Þ
� 	� 	� 	

ð9Þ

where σ () represents the sigmoid function, n represents the number of training samples, H(s)

represent the label semantic hash code and H(x) and H(y) represent the hash codes output by
IMFN and TEFN. Because IMFN and TEFN are separate training, so you need to add a cross-
modal adaptive constraint, as shown in the following formula:

min
θx;θy ;B

‖B xð Þ−H xð Þ‖2F þ ‖B yð Þ−H yð Þ‖2F
��

ð10Þ

Among them, B(x) and B(y) are the binary hash codes from images and text, so that information
loss caused by the quantization of the hash code can be reduced. In addition, in order to obtain
better performance, we set B =B(x) =B(y), so:

min
θx;θy;B

B−H xð Þ

 

2
F þ B−H yð Þ

 

2

F

� 	
ð11Þ

Therefore, the inter-modal loss function is formula (12), where γ is used for balance the
impacts of the term of cross-modal adaptive constraint.

min
θx;θy;B

J inter ¼ −
1

n
∑
n

i; j¼1
H sð Þlog σ H xð Þ

� 	� 	
þ 1−H sð Þ
� 	

log 1−σ H xð Þ
� 	� 	� 	

−
1

n
∑
n

i; j¼1
H sð Þlog σ H yð Þ

� 	� 	
þ 1−H sð Þ
� 	

log 1−σ H yð Þ
� 	� 	� 	

þ γ B−H xð Þ

 

 2
F

þ 2
F
þ










B−H xð Þ 2

F






� �

ð12Þ

17305Multimedia Tools and Applications (2021) 80:17299–17314



4.3 Intra-modal loss

The global semantic similarity matrix A of the training instance is used as supervision
information to study each mode of the global semantic retention hash code, that is, the intra-
modal loss. The element Aij is defined as:

Aij ¼ lTi l j ð13Þ

According to formula (13), we can obtain the complete matrix A, thereby obtaining the joint
probability distribution P. The element Pij is:

pij ¼
Aij

∑n
i¼1∑

n
j¼1; j≠iAij

ð14Þ

The hamming distance between the hashing codes B(x) (B(y)) of the network output is extracted
by the image (text) feature to calculate the probability distribution Qx (Qy) in the image (text)
mode. Use qijx represent the similarity between two image instances, and qijy represent the
similarity between two text instances:

qxij ¼
e−dH bxi ;b

x
jð Þ

∑
n

k¼1
∑
n

m¼1;m≠k
e−dH bxk ;b

x
mð Þ ð15Þ

qyij ¼
e−dH byi ;b

y
jð Þ

∑
n

k¼1
∑
n

m¼1;m≠k
e−dH byk ;b

y
mð Þ ð16Þ

where dH() represent the hamming distance of two instances, bix and bjx indicate binary code
for two image data, biy and bjy indicate binary code for two text data.

Here, we use the KL divergence to measure the similarity of the two probability distribu-
tions, P and Qx (Qy), to represent the intra-modal loss for image (text). As shown in the
following formula:

min
θx ;B

J xintra ¼ KL P‖Qx
� 	

¼ ∑
n

i¼1
∑
n

j¼1; j≠i
pijlog

pij
qxij

ð17Þ

min
θy ;B

J yintra ¼ KL P‖Qy
� 	

¼ ∑
n

i¼1
∑
n

j¼1; j≠i
pijlog

pij
qyij

ð18Þ

min
θx;θy;B

J intra ¼ min
θx;θy;B

J intrax þ J yintra
� � ð19Þ
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We use the same method as in STGN network to optimize the object function to train image
and text networks. The algorithm process as shown in Algorithm 1.

5 Experiments

5.1 Datasets

In this paper, two standard cross-modal data sets are selected to complete cross-modal
retrieval between text and image data, namely NUS-WIDE [2] data set and MIRFlickr-25 K
[10] dataset.
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NUS-WIDE contains 269,648 samples that is associated with text markup web images. We
choose 10 frequent concepts, including 186,577 image-text pairs, and randomly select 105,000
examples for training set and 81,577 examples for test set.

MIRFlickr-25 K contains 25,000 image-text pairs. In our experiments, we select those
samples that they are tagged by 20 text at least, and finally we have 20,015 image-text pairs.
We randomly extract 15,000 pairs of image-text pairs for training set, and 5015 pairs for test set.

5.2 Implementation details

We choose five shallow cross-modal hashing methods CCQ [12], CVH [28], SCM_seq [11],
CMSSH [3], SePh [4] and DCMH [30] of deep cross-modal hashing method to evaluate the
performance of SPHMF. For the text network, we convert text samples into a 1000-dimensional
word bag vector as input of the text network. As for the image network, we use deep features
extracted from pretrained VGG-Net [9] on the ImageNet [26] as image input in all shallow cross-
modal methods, and we use images of the same size as input of all deep cross-modal methods.

For the proposed method SPHMF, we use the pretrained VGG-Net model to initialize the
first five convolutional networks in the image feature part. The hyper-parameters γ, , ß in
SPHMF are empirically set as 1,1,10−4, respectively, and they will be discussed in part 5.4.1
For the selection of learning rate of network, choose from 10−4 to 10−8 for network training. Set
the network’s batch training size to 128.

5.3 Evaluation protocol

We use mean accuracy precision (MAP) and precision-recall (PR) curves to evaluate the
performance of all algorithm.

MAP:MAP represents the average value of the accuracy rate (AP) of each query. The value of
MAP is positively correlated with the performance of the algorithm. AP is calculated as follows:

AP ¼ 1

R
∑n

k¼1

k

n
*relk ð20Þ

where n represents the total number returned by the query, R is the number of related items in the
retrieval set, Rk is the first k targets in the returned related targets, and relk indicates whether the k-
th sample is a related sample. relk = 1 means it is a relevant sample, and relk = 0 means it is not
relevant.

Fig. 2 MAP values with different hyper-parameters
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Precision-Recall: precision reflects the retrieval accuracy. Recall reflects the comprehen-
siveness of the search. PR curves are often used in information retrieval to evaluate search
efficiency.

5.4 Cross-modal retrieval results

5.4.1 Parameters sensitivity evaluation results

We study the effect of hyper-parameter ŋ, ß and γ on retrieval results on MIRFlickr-25 K with
the hash length being 64-bits. Figure 2 (a) show the effect of the hyper-parameter ŋ with the
value between 0.0001 and 2. Figure 2 (b) show the effect of the hyper-parameter ß with the
value between 0.0001 and 2. Figure 2 (c) show the influence of hyper-parameter γ with the
value between 0.0001 and 2. It can be found that SPHMF is sensitive to the hyper-parameter ŋ.
Furthermore, SPHMF can get the best retrieval result when the hyper-parameter ŋ = 1, ß = 1,
γ = 10−4.

5.4.2 Hash retrieval task

In the experiment, the first step is to train STGN, and then we can obtain the semantic retention
features F(s) and semantic retention hash codes H(s) of training data. We evaluate H(s) in NUS-

Table 3 The MAP values of the label semantic hash code in different bits

Dataset 16bits 32bits 64bits

NUS-WIDE 0.9028 0.9558 0.9917
MIRFlickr-25 K 0.9718 0.9878 0.9951

Table 4 Comparison of MAP values of I→T and T→ I on MIRFlickr-25 K dataset

Task Method The length of hash code

16 bits 32 bits 64 bits

I→T SPHMF 0.7352 0.7450 0.7501
CCQ 0.6492 0.6513 0.6513
CVH 0.6135 0.5983 0.5891
SCM_seq 0.6482 0.6523 0.6533
CMSSH 0.6227 0.6135 0.6105
SePh 0.7012 0.7120 0.7191
DCMH 0.7248 0.7330 0.7364

T→ I SPHMF 0.7764 0.7835 0.7845
CCQ 0.6357 0.6357 0.6296
CVH 0.6145 0.5983 0.588
SCM_seq 0.6691 0.6721 0.6762
CMSSH 0.6195 0.6114 0.6105
SePh 0.6421 0.6525 0.5658
DCMH 0.7634 0.7685 0.7787
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WIDE and MIRFlickr-25 K datasets, and calculate the MAP values under different bits, as
shown in Table 3. By comparison, 64bits hash code can be considered ideal Hash code.

We use F(s) and H(s) to guide the training of IMFN and TEFN. After completing the training
of IMFN and TEFN, we calculate the MAP values and PR curves for two retrieval tasks:
image retrieval text (I→ T) and text retrieval image (T→ I) on two datasets. As shown in
Tables 4 and 5, SPHMF increases the MAP value from 0.7364 to 0.7501 and 0.6297 to 0.6391
in I→ T task based on 64bits hash code. In T→ I task, the MAP value increased from 0.7787
to 0.7845, and from 0.6089 to 0.6152 based on 64bits hash code.

The corresponding precision-recall curves on two datasets are plotted in Figs. 3 and 4. We
can see from the Figs. 3 and 4, the algorithm proposed in this paper achieves higher accuracy
at most recall levels than comparison methods.

It can be seen from the above analysis that SPHMF has significant advantages. Compared
with the unsupervised methods, we use label information for supervised training, and these
label information can provide the original relationship of data for hash code learning. Com-
pared with the supervised methods, we consider the complementary information and correla-
tion among multi-scale features, make the most of the multi-scale information of image and
work out the sparsity of text BOW vectors. In addition, the construction of inter-modal loss in
the loss function can provide more accurate judgment of similarity or dissimilarity for two data

Table 5 Comparison of MAP values of I→T and T→ I on NUS-WIDE dataset

Task Method The length of hash code

16bits 32bits 64bits

I→T SPHMF 0.6218 0.6276 0.6391
CCQ 0.5137 0.5147 0.5157
CVH 0.3886 0.3822 0.3769
SCM_seq 0.5270 0.5238 0.5279
CMSSH 0.49397 0.4765 0.4609
SePh 0.6175 0.6246 0.6297
DCMH 0.5230 0.5230 0.5323

T→ I SPHMF 0.5991 0.5887 0.6152
CCQ 0.5051 0.5021 0.4980
CVH 0.3640 0.3628 0.3601
SCM_seq 0.5243 0.5162 0.5233
CMSSH 0.4209 0.3803 0.3728
SePh 0.5676 0.5737 0.5967
DCMH 0.5887 0.5964 0.6089

(a) I→T  (b) T I

Fig. 3 Precision-Recall curves (MIRFlickr-25 K dataset 64bits hash)
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of different modes, and the construction of intra-modal loss can make the hash code of model
output have global potential semantic correlation. Thus, the accuracy of retrieval is improved
to some extent.

5.4.3 Comparison of training time

We conduct a comparative experiment between DCMH and SPHMF on MIRFlickr-25 K
dataset to assess the training efficiency of SPHMF. We can observe that SPHMF trains faster
than DCMH, and the value of the MAP on the retrieval task is better from Fig. 5.

5.4.4 Impact analysis of each loss function

The objective function is composed of three parts, namely intra-modal loss, inter-modal loss
and pairwise loss. In order to find out the influence of each loss function on the final search
results, we conduct experiments. Therefore, we divide the experiment into the following three
situations: the objective function includes intra-modal loss and inter-modal loss (SPHMF-1);
the total function includes intra-modal loss and pairwise loss (SPHMF-2); the objective
function includes inter-modal loss and pairwise loss (SPHMF-3).

The experimental results of different methods on two datasets are shown in Table 6. We can
find out that the order of the MAP values of the experimental results from large to small is:

(a) I T)b(T I

Fig. 4 Precision-Recall curves (NUS-WIDE dataset 64bits hash code)

(a)Image→Text@64 bits     (b) Text→Image@64 bits

Fig. 5 Training efficiency of SPHMF and DCMH
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SPHMF, SPHMF-3, SPHMF-1, and SPHMF-2. Therefore, we know that inter-modal loss has
the greatest influence on the final retrieval results, followed by pairwise loss, and finally intra-
modal loss. However, the retrieval effect of combining these three loss functions is the best.

5.4.5 Compare IPMSF pooling and SPP pooling

In order to prove the effectiveness of IPMSF, the IPMSF model in the network structure
shown in Fig. 1 is replaced with the SPP model, and other network settings are the same, and
comparative experiments are performed. Table 7 is the result of experimental comparison.

Table 7 shows that the using the IPMSF model can slightly improve retrieval performance
compared to the SPP model, but it is not much different. However, from Table 8 can be seen
that the IPMSF-based network model uses less space than the SPP-based network model in
space utilization. This is because the IPMSF model reduces the parameters of the network
model compared with SPP model.

6 Conclusions

This paper proposes a semantics-preserving hashing method based on multi-scale fusion for
cross-modal retrieval, called SPHMF. SPHMF supervises both image feature training network
and text feature training network by using cross-modal label information. For image feature
training network and text feature training network, multi-scale fusion pooling model is
proposed to extract multi-scale information of data; We construct intra-modal loss with
multilevel semantic affinity matrix, inter-modal loss and pairwise loss. Therefore, the hash

Table 6 The impact of different loss on MAP values (MIRFlickr-25 K dataset and NUS-WIDE dataset 64 bits)

Task Method Datasets

MIRFlickr-25 K NUS-WIDE

I→T SPHMF 0.7501 0.6391
SPHMF-1 0.6994 0.5771
SPHMF-2 0.6891 0.5714
SPHMF-3 0.7482 0.6273

T→ I SPHMF 0.7845 0.6152
SPHMF-1 0.7687 0.5634
SPHMF-2 0.7434 0.5154
SPHMF-3 0.7837 0.5932

Table 7 Comparison of MAP values of different pooling methods (MIRFlickr-25 K dataset and NUS-WIDE
dataset 64 bits)

Task Method Datasets

MIRFlickr-25 K NUS-WIDE

I→T IPMSF 0.7501 0.6391
SPP 0.7467 0.6361

T→ I IPMSF 0.7845 0.6152
SPP 0.7768 0.6127
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code learned by SPHMF can better retain the original information of modal data. The NUS -
WIDE and MIRFlickr-25 K datasets verify the validity of SPHMF. But this article only
explores retrieval method between image and text. In the later work, we will further improve
our retrieval algorithm and apply it to multimedia data of more modalities, including image,
text, audio and video.
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