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Abstract
Facial image editing is one of the hot topics in recent years due to the great development in
deep generative models. Current models are either based on variational autoencoder(VAE)
or generative adversarial network(GAN). However, VAE-based models usually generate
oversmooth images, while GAN-based-only models cannot randomly generate images with
specific attributes and suffer from unstable training. To overcome these limitations, a novel
attribute-disentangled generative model based on the combination of VAE and GAN is pro-
posed for facial image editing by manipulating specific attributes and synthesizing facial
images conditioned on the specified attributes. In the encoder-decoder architecture of the
proposed model, the latent space mapped by the encoder is split into two subspaces: the
attribute-irrelevant space and the attribute-relevant space. The attribute-irrelevant space
characterizes the factors such as identity, position, background etc, which are expected to
be kept unchanged during the editing. The attribute-relevant space is used to represent the
attributes such as hair color, gender, age etc that we want to manipulate. We use the adver-
sarial training scheme to train the model, where images generated by the proposed model
are re-feeded to the encoder to ensure their distribution is close to the real data distribution
in the attribute-irrelevant subspace while they can be correctly classified in the attribute-
relevant subspace, without explicitly giving the discriminators such as in GANs. To evaluate
the performance of the proposed model, quantitative and qualitative comparisons between
the proposed model and other state-of-the-art algorithms were tesed on the CelebA dataset.
The evaluation results show that the proposed model can effectively generate high-quality
facial images with diverse specified attributes.

Keywords Adversarial Variational Autoencoders · Generative Adversarial Networks ·
Facial editing · Disentangled features

� Weifu Chen
chenwf26@mail.sysu.edu.cn

1 School of Mathematics, Sun Yat-sen University, Guangzhou, China
2 Guangdong Province Key Laboratory, Sun Yat-sen University, Guangzhou, China
3 School of Computer Science and Technology, Dongguan University of Technology, Dongguan,

China

Multimedia Tools and Applications (2021) 80: –49024881

Published online: 2 2020October

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-09858-7&domain=pdf
http://orcid.org/0000-0002-9375-2214
mailto: chenwf26@mail.sysu.edu.cn


1 Introduction

Facial image analysis, such as facial occlusions localization [52], 3D facial image analysis
[37], forensic person identification [7] is an important topic in computer vision and pattern
recognition. Recently, another facial analysis topic, image-to-image translation, has been
developing very fast due to the great success of deep neural networks. The goal of image-
to-image translation is to translate an image from one domain to another domain while
maintaining some invariant or consistency property which is corresponding to specific tasks
[20, 32, 46, 53, 60]. Facial image editing is one kind of image-to-image translation prob-
lems, in which we can manipulate the attributes of face images, i.e, with or without some
kinds of attributes. Here, the term attribute represents some high-level feature of a facial
image, e.g. expression, hair color, age and so on. We further denote the attribute value as a
specific value of an attribute, e.g. neutral/smiling for expression or black/blond/brown for
hair color or young/old for age, and domain as the images having the same attribute value.
The key challenge of facial image editing is that the transformation is ill-posed and the
training set is unpaired, that is, it is practically infeasible to collect images with arbitrarily
specified attributes for each person. The problem has aroused a lot of interest [9, 17, 29,
39, 56, 57]. In particular, researchers tried to use deep generative models such as Bayesian
inference [4, 14, 27, 41, 47], adversarial training [2, 13], variational autoencoders(VAEs)
[27, 41] to solve this problem and make significant progress. Among those algorithms, vari-
ational autoencoders(VAEs) [27] and generative adversarial networks(GANs) [13] are the
cornerstones.

To manipulate facial attributes given a facial image, many researches have been under-
taken [1, 48]. Liu et al. [32] and Lu et al. [35] learn pair-wise generators and discriminators
for every pair of image domains. Although these models handle well on the translation
between two different domains, they are inefficient or ineffective in multiple-attribute edit-
ing. Some works learn to disentangle attribute representation in the latent space and use
one block or one dimension of the latent vector to represent one attribute. Hence, feeding
to the generator by swapping the corresponding components of two images from dif-
ferent domains is expected to generate image with swapped attributes [25, 55, 56, 59].
However, they are complained about the complex training pipelines and model structures.
Larsen et al. [30], Radford et al. [40] and Upchurch et al. [51] compute the average
direction vector of one attribute in the latent space over a pair of image sets with con-
trary attributes, which points from the average latent variable of the set with (without)
that attribute to the average latent variable of the other set without (with) that attribute,
then input image can be added or removed the specified attribute by adding its latent
variable with the direction vector or subtracting the direction vector from its latent vari-
able. Those models can add or remove attributes easily, but it is reported that the average
direction vectors are not orthogonal and often contain highly correlated attributes which
make the generation tend to transfer images with unwanted attributes. Bao et al. [3], Choi
et al. [9], He et al. [17], Lample et al. [29], Perarnau et al. [39] and Yan et al. [57]
extend CVAE [45] or CGAN [38] and inject different attribute labels to conduct the image
generation.

Although these models success in generating new images, they still have one or several
of the following limitations:

– generated images are in low resolution or with lots of artifacts [39, 57];
– label-paired images in different domains are needed to train the model [20, 53];
– multiple attribute editing is infeasible [24, 32, 60];
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– the models combining VAEs and GANs, have more than three deep mappings, which
increases the training complexity [9, 17];

– some models cannot generate facial images randomly with specified attributes [9, 17,
29, 39, 57].

Due to its nice manifold representation and stable training mechanism, VAE is theo-
retically well-founded and more stable. However, VAE trends to generate blurry images
due to the limited representation ability of the inference distribution, the inherent over-
regularization induced by the Kullback-Leibler divergence term and imperfect reconstruc-
tion error [10, 49]. GAN [13] introduces a generator and a discriminator for adversarial
learning. When the network reaches the equilibrium, the fake (generated) images have the
same distribution as the real images, which makes the generated images look more realis-
tic. The emergence of GAN has attracted so many concerns that it makes other generative
models obsolete and becomes one of the dominant approaches for generating images with
surprising complexity and realism. One of the drawback of GAN is instability in training
optimization and easily leads to the model-collapse problem [42].

The motivation of our model is quite straightforward, that is, we want to propose a novel
model that inherits the advantages of VAE and GAN while abandons the disadvantages.
In addition, we want the novel model can do multiple attribute facial image editing rather
than we can only manipulate one attribute at a time. In order to achieve these goals, we
develop a novel framework that incorporates the ideas of VAE and GAN. We first divide the
latent space learned by the encoder into two independent subspaces, the attribute-irrelevant
subspace and the attribute-relevant subspace. The attribute-irrelevant subspace is used to
represent factors such as the identity, pose, illumination etc., while the attribute-relevant
subspace represents the attributes such as the hair color, the hair style, gender, age and so
forth that we can edit. Thus, each facial image can be represented in the latent space by an
identification vector together with an attribute vector where each component corresponds
to one attribute. During the editing, we want the identification vector keep unchanged, and
only need to manipulate the attribute vector to generate the specified attribute images. We
further show that without increasing the complexity of model or introducing additional deep
mappings, the adversarial training can be potentially implemented via the encoder and the
decoder. By viewing the KL divergence as a special form of reression and introducing clas-
sification loss on the attribute-relevant variables, the encoder can be treated not only as a
discriminator for real and generated samples but also as a classifier for attributes. Subse-
quently, adversarial training is introduced into the latent space to align the generated data
distribution to the real data distribution while the attributes of the generated images can be
classified correctly. We have compared the proposed model with state-of-the-art algorithms
for single-attribute and multiple-attribute facial editing. The quantitative and quantitative
results show that proposed model can produce impressive and high-quality images. To
summarize, the contributions of this paper include:

1. Based on the encoder-decoder architecture, the latent space of the proposed network is
split into two independent subspaces, the attribute-irrelevant subspace and the attribute-
relevant subspace;

2. Based on the combination of VAE and GAN, an attribute-disentangled generative
model is proposed, which involves only two deep mappings: the encoder and the
decoder;

3. Extensive experiments, including single-attribute and multiple-attribute facial image
editing, were designed to evaluate the performance of the proposed model.
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The remaining sections of the paper are organized as follows. Section 2 reviews the VAE
and GAN as well as other related works. The proposed model is introduced in Section 3.
Experimental results including quantitative and qualitative evaluation are presented in
Section 4, followed by the conclusion in Section 5.

2 Related works

2.1 Variational autoencoders

Variational autoencoders(VAEs) [27, 41] were proposed to estimate flexible deep gener-
ative models by variational inference methods. A standard VAE consists of an encoder
Enc and a decoder Dec. The encoder (also regarded as recognition model) maps an input
sample x to a distribution over latent variable z ∼ Enc(x) = qφ(z|x). The decoder
(also regarded as a generative model) maps from this latent space to a distribution over
images x̃ ∼ Dec(z) = pθ (x|z). VAE regularizes the encoder by imposing a prior over the
latent distribution pθ (z), which is typically chosen as the standard Gaussian distribution
N(0, I). The objective function of VAE is to maximize the evidence lower bound(ELBO) of
log-likelihood log pθ (x):

LV AE = Ez∼qφ(z|x)[log pθ (x|z)] − DKL(qφ(z|x) ‖ pθ (z))

� log pθ (x)
(1)

where DKL is the Kullback-Leibler divergence. The first term in Eq. 1 is a reconstruction
error. If we assume that the decoder predicts a Gaussian distribution at each pixel, then it
reduces to squared Euclidean error in the image space. The second term drives the recog-
nition distribution towards the prior distribution which acts as a regularizer. Both qφ(z|x)

and pθ (z) are commonly assumed to be Gaussian, in which case the KL divergence can be
computed analytically. Assume that mean μ(x) and covariance σ(x) of qφ(z|x) are outputs
of Enc(x) for a given input x, then the KL divergence can be derived as follows [3]:

LKL = 1
2 (μ(x)T μ(x) + sum(exp(σ(x)) − σ(x) − 1)) (2)

In addition, a reparameterization of the recognition distribution in terms of auxiliary
variables with fixed distributions is used so that the samples from the recognition model
are a deterministic function of the inputs and auxiliary variables. That is, a latent sample z

is drawn from qφ(z|x) as follows: a random noise vector (also an auxiliary variable) ε ∼
N(0, I ), for example, then z = gφ(ε, x) = μ(x) + σ(x) � ε, where μ(x) and σ(x) are
outputs of Enc(x) for a given input x and � signifies an element-wise product.

One of the major disadvantages of VAE is that, because of the injected noise and imper-
fect element-wise measures such as the squared error, the generated samples are often
blurry.

2.2 Generative adversarial networks

Generative Adversarial Networks (GANs) [13] consist of a generator G and a discriminator
D that compete in a two-player minimax game. The goal of GANs is to let the G learn a
distribution pg(x) that matches the real data distribution pdata(x) via an adversarial process.
D tries to distinguish a real image x from a synthetic one G(z), where z is a input noise
variable sampled from a prior distribution pz(z), and G tries to synthesize realistic-looking
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images that can fool D. Concretely, D and G play the game with a value function V (D, G):

min
G

max
D

V (D, G) = Ex∼pdata(x)[logD(x)]
+Ez∼pz(z)[log(1 − D(G(z)))]. (3)

It is proved that this minimax game has a global optimum when the distribution pg of
the synthetic samples and the distribution pdata of the training samples are the same. Under
mild conditions (e.g., G and D have enough capacity), pg converges to pdata .

When trained on image dataset, GANs can produce visually sharp and compelling sample
images. However, it is also complained about instabilities in optimization that leads to the
problem of mode-collapse [42], which means that samples generated from GANs don’t
reflect the diversity of the underlying data distribution.

Many works have tried to improve the stability of training and the quality of generated
images from different perspectives. DCGAN [40] which adopts deconvolutional and con-
volutional neural networks to implement G and D, respectively, is the first GAN model to
learn to generate high resolution images in a single shot. Many GANs are at least loosely
based on the DCGAN architecture. WGAN [2] and WGAN-GP [15] which use the Wasser-
stein distance instead of the Jensen-Shannon distance to form a new objective for training
GANs, have provided a powerful theoretical proof and illustrated that they can make the
GAN training process more stable.

2.3 Variants of combination of VAEs and GANs

Due to both VAEs and GANs having their own advantages and disadvantages, several
recent works have looked for hybrid approaches to enable both sampling and inference
like VAEs or autoencoders(AEs), while producing samples of quality comparable to GANs.
Typically this is achieved by training an autoencoder(AE) jointly with one or more adver-
sarial discriminators whose purpose is to improve the alignment of distributions in the latent
space(AAE [36], IAN [6], AGE [50]), the data space(MRGAN [8], VAE/GAN [30]) or in
the joint (product) latent-data space(BiGAN [11], ALI [12]). These algorithms have been
demonstrated their power in generating excellent quantitative and visual results. However,
while compounding autoencoding and adversarial training do improve VAEs and GANs,
it is at the cost of adding complexity. In particular, these systems usually involve at least
three [11, 12, 29, 30, 36] or four [17] deep mappings: an encoder for encoding representa-
tion, a decoder/generator for generating samples, a discriminator for discriminating real or
generated samples and a classifier for classifying the attributes of samples.

By introducing additional conditionality, VAEs and GANs can also be trained to conduct
conditional generation, e.g., CVAE [45] and CGAN [38]. CGAN [38] modified GAN from
unsupervised learning into semi-supervised learning by feeding the conditional variable
(e.g., the class label) into the data. CVAE-GAN [3] combines CVAE and CGAN for fine-
grained category image generation.

AGE [50], which directly sets up an adversarial training between the encoder and the
decoder of an AE and constrains the real and the generated data distribution to be the prior
distribution in the latent space. IntroVAE [19] uses VAE to replace AE in AGE, and pre-
serves the advantages of VAEs, such as stable training and nice latent manifold. Our work
is partially inspired by AGE and IntroVAE, but the difference is that our model extends
the latent structure of VAE and jointly trains with CGAN combining perceptual loss, which
makes our model can not only achieve better reconstruction effect but can also synthesize
photo-realistic images with specified attributes.
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2.4 Image to image translation

The model pix2pix [20] was trained by combining cGAN with a L1 loss in a supervised
manner, which means requiring paired training data. However, obtaining such data is usu-
ally expensive. DTN [46] presents a baseline formulation for unsupervised cross-domain
image translation and trains an image-conditional generator including a pre-trained func-
tion as an encoder and enforces the translated image is close to the original image in the
latent space. CoGAN [33] learns a joint distribution of images in two different domains
by enforcing a weight-sharing constraint to the layers of a pair of GANs, each of which is
responsible for synthesizing images in one domain. UNIT [32] extends CoGAN framework
with VAEs and assumes that two different domains can be mapped to a shared-latent space.
CycleGAN [60] and DiscoGAN [24] train two mapping functions that are inverse to each
other between two image domains by employing the cycle consistency loss and two domain-
specific discriminators to distinguish between the domains by employing the adversarial
loss.

2.5 Facial attribute editing

The work disCVAE [57] learns the disentangled latent variable which is split into a fore-
ground part and a background part by training with CVAE [45] to improve the generation
quality and diversity. AD-VAE [16] trains VAEs by splitting the latent variables into dif-
ferent groups to learn a representation disentangled model. IcGAN [39] separately trains
a cGAN [38] and an encoder which is the inverse of the mapping of the cGAN. DIAT
[31] is presented as a deep identity-aware attribute transfer model to modify an attribute
of a face image via adversarial learning. Shen and Liu [43] adopt the dual residual learn-
ing strategy to simultaneously train two generators for respectively adding and removing
a specific attribute. To tackle the task of attribute transfer from an exemplar image with
targeted attribute, Kim et al. [25], GeneGAN [59], DNA-GAN [55] and ELEGANT [56]
encode a source image and an exemplar image to their respective latent variables and swap
attribute-relevant latent code as representations of the “crossbreed” (residual) images to
achieve (multiple) attribute transfer.

Recently, several works have been proposed for multiple facial attribute editing simulta-
neously with capability of high-quality image generation using one model by only training
one time with images from different domains. Fader Networks [29] employs the adversarial
learning on the latent representation of an autoencoder to learn attribute invariant represen-
tation. StarGAN [9] performs image-to-image translations for multiple domains using one
single GAN model with a cycle consistency loss. AttGAN [17] uses an encoder-decoder
architecture together with an attribute classifier and a discriminator and applies an attribute
classification constraint to guarantee the generated images can be correctly changed with
desired attributes. All these three models can handle multiple face attributes transfer and
generate sharp images, but they are not able to generate facial images given by randomly
specified attributes.

3 Latent space adversarial variational autoencoder

We denote the training datasetD = {
(xi, yi)

}
, which consists of m pairs (image, attribute),

where xi is the i-th image and yi = {0, 1}n is the corresponding attribute vector of xi

with n dimensions. Each component yi
k in yi(we use the subscript k to refer to the k-th
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attribute) represents the k-th attribute value, which indicates whether xi has certain
attribute or not.

Our model is based on the encoder-decoder architecture. Concretely, the latent space
mapped by the encoder is split into the attribute-irrelevant subspaceZ (assume the prior dis-
tribution on this space is p(z) = N (0, I )) and the attribute-relevant subspaceA (denote the
prior distribution on this space is p(a)). The former represents attribute-irrelevant factors,
such as identity, position and background, etc. The latter represents attributes, such as hair
color, gender, with or without glasses, etc. The decoder maps these subspaces together back
to the data space. Denote qφ(z|x) and qφ(a|x) as the approximation posterior distributions
and assume that p(z) and p(a) are independent, then the ELBO can be rewritten as:

log pθ (x) � Eqφ(a|x)qφ(z|x)

[
log

pθ (x,z,a)
qφ(z|x)qφ(a|x)

]

= Eqφ(a|x)qφ(z|x)

[
log

pθ (x|a,z)p(a)p(z)
qφ(z|x)qφ(a|x)

]

= −DKL(qφ(a|x) ‖ p(a)) − DKL(qφ(z|x) ‖ p(z))

+Eqφ(a|x),qφ(z|x)log pθ (x|a, z)

= LELBO,

(4)

where qφ(z|x), qφ(a|x) and pθ (x|a, z) are assumed to be multivariate Gaussian distribu-
tions. Further, we choose a conditional distribution p(a|y) as the prior of a instead, and
p(ai |yi) ∼ N(yi, σ ), where yi resfers to i-th binary attribute and σ is the standard deviation
of p(a|y). Thus the training objective can be rewritten as

min
φ,θ

− LELBO =
n∑

i

DKL(qφ(ai |x) ‖ p(ai |yi))

+αDKL(qφ(z|x) ‖ p(z))

−βEqφ(a|x),qφ(z|x)log pθ (x|a, z),

(5)

where α, β are hyper-parameters to control the relative importance of different terms. The
training pipeline of our model consists of two training phases: reconstruction training phase
and adversarial training phase.

In reconstruction training phase , since we specify the mean of prior p(a|y) to be the
binary attribute label y of the input image, the first term in Eq. 5 is discriminative. Hence
qφ(a|x) also can serve as a classifier for facial attributes, here we adopt binary cross entropy
loss:

Lattr real = −
n∑

i=1
yi log ai + (1 − yi) log (1 − ai), (6)

where ai indicates the predicted value for the i-th attribute. The third term in Eq. 5 is
the reconstruction term. In order to overcome shortcomings of pixel-wise �2 loss, we use
perceptual loss to measure the similarity between the input image and its reconstruction.
Perceptual loss is widely used to measure the content difference between different images.

Denote 	(x)l is the lth hidden layer with Cl channels and size of Wl × Hl when x is
fed to the VGG-19 [44] pre-trained model 	. Then, the feature perceptual loss for this layer
between the input image x and its reconstruction image x̄ is defined as

L	,l
rec = 1

2ClWlH l

∥∥∥	(xi)l − 	(x̄i)l
∥∥∥
2

2
. (7)
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Then the total feature perceptual loss is defined as a weighted feature perceptual loss
based on some layers of 	

Lrec =
∑

l

ωlL	,l
rec, (8)

where ωl is the weight for the lth hidden layer. We can rewrite loss function of the
reconstruction training phase as

Lir = Lattr real + αLkl real + βLrec, (9)

where Lkl real is the second term in Eq. 5 and α, β are hyper-parameters for balancing the
losses.

In Adversarial training phase, as KL divergence statistics DKL(qφ(z | x) ‖ p(z))

which computes a single number can serve as a special form of regression, the encoder Enc

can be regarded as a discriminator and a classifier.In addition, as a generator, the decoder
Dec can generate two types of different fake images:

(1) fake image x̃, which is generated by feedingDec with random variables z̃ and ỹ drawn
from p(z) and p(y),

(2) fake image x̂, which is generated by feeding Dec with the attribute-irrelevant latent
variable ẑ of the input image x and another attribute latent variables ŷ drawn from p(y),
that is different from the real attribute.

Hence, we end up with the following two objectives for adversarial training alternately:

– For training the encoder which is also a discriminator:

min
φ

Lenc = γ1Lkl real + γ2Lattr real

+max(0, m − γ3Lkl f ake),
(10)

where m is a positive margin and

Lkl f ake = Lkl x̃ + Lkl x̂ , (11)

Lkl x̃ = DKL(qφ(z|x̃)||p(z)), (12)

Lkl x̂ = DKL(qφ(z|x̂)||p(z)), (13)

where x̃ is the random generated sample from pθ (x|ỹ, z̃), ỹ and z̃ are samples from
p(y) and p(z), respectively, and x̂ is the generated sample from pθ (x|ŷ, ẑ), ŷ is ran-
domly sampled from p(y), ẑ is the attribute-irrelevant latent variable of the input
image.

– For training the decoder which is also a generator:

min
θ

Ldec = γ4Lkl f ake + γ5Lattr f ake, (14)

where Lkl f ake is the same as in Eq. 11 and

Lattr f ake = Lattr x̃ + Lattr x̂ , (15)

Lattr x̃ = −
L∑

i=1

ỹi log ãi + (1 − ỹi ) log (1 − ãi ), (16)

Lattr x̂ = −
L∑

i=1

ŷi log âi + (1 − ŷi ) log (1 − âi ), (17)
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where ã and â are the latent attribute variables of x̃ and x̂, respectively.

The overall training loss function can be summarized as

Ltotal = Lir + Lenc + Ldec, (18)

where the exact forms of each term are presented in Eqs. 9, 10 and 14, respectively. Figure 1
summarizes the reconstruction training and the adversarial training phases of our model.
The training procedure is presented in Algorithm 1. We name the proposed model Latent
Space Adversarial Variational Autoencoder (LSA-VAE).
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Fig. 1 Overview of our model. The meaning of each notation refers to the corresponding text part

4 Experiments

4.1 Dataset

We evaluated the proposed model on the CelebA dataset [34], which contains 202599
celebrity images and each of them is annotated with or without 40 binary attributes.
We select 13 attributes, including “Bald”, “Bangs”, “Black Hair”, “Blond Hair”, “Brown
Hair”, “Bushy Eyebrows”, “Eyeglasses”, “Male”, “Mouth Slightly Open”, “Mustache”, “No
Beard”, “Pale Skin” and “Young”, due to that they are more distinctive in appearance. Offi-
cially, CelebA is separated into training set, validation set and testing set. We used the
training set and validation set together to train our model while using the testing set for eval-
uation. In our experiment, all the images were cropped in the central 170 × 170 region and
scaled down to 128 × 128 pixels and normalized to [−1, 1].

4.2 Network architecture

The details of the network architectures of LSA-VAE are shown in Tables 1, 2 and 3. Both
the encoder and the decoder networks are mainly based on residual blocks whose configura-
tion is shown in Table 3. Like the other VAEs, mean μ(x) and covariance σ(x) in Eq. 2 are
output by the encoder of our model to compute the KL divergence loss and used for compute
the attribute-irrelevant latent variable z. In addition, attribute-relevant latent variable a is
output by another branch of the encoder. For the decoder, instead of standard zero-padding,
we used replication padding, i.e., feature map of an input was padded with the replication of
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Table 1 The architecture of the encoder in LSA-VAE

Encoder Layer Output Size

Conv(64,5,1,2), BN, Leaky ReLU, AvgPool(2) 64 × 64 × 64

ResBlock(64,128), AvgPool(2) 128 × 32 × 32

ResBlock(128,256), AvgPool(2) 256 × 16 × 16

ResBlock(256,512), AvgPool(2) 512 × 8 × 8

ResBlock(512,512), AvgPool(2) 512 × 4 × 4

ResBlock(512,512) 512 × 4 × 4

Output Branch 1: FC(8192,512) 512

Output Branch 2: FC(8192,512) 512

Output Branch 3: FC(8192,1024) Leaky ReLU, FC(1024, 13) 13

the input boundary. We also used the nearest neighbor method by a scale of 2 to replace with
fractional-strode convolutions for upsampling. The meanings of the notations in Tables 1, 2
and 3 are as follows: Conv(d,k,s,p) denotes the convolutional layer with d as the dimension,
k as the kernel size, s as the stride and p as the padding, BN denotes the batch normalization,
FC denotes a fully-connected layer, ResBlock(I,O) denotes a residual block with I and O as
the numbers of input feature maps and output feature maps respectively, and AvgPool(w)
denotes the average pooling with w as size of the window.

4.3 Training details

As illustrated in Algorithm 1, the reconstruction training phase and the adversarial training
phase were trained iteratively using the ADAM optimizer [26] (β1 = 0.5, β2 = 0.999)
with a batch size of 32 and a fixed learning rate of 0.0002. We set the dimensions of the
attribute-irrelevant subspace and the attribute-relevant subspace to 512 and 13, respectively.
The marginal m in Eq. 10 was set to 1500. We used a combination of relu1 1, relu2 1 and
relu3 1 layer of VGG-19 pre-trained model to compute feature perceptual loss. Each ωl was
set to 0.5 in Eq. 8. α and β in Eq. 9 were set to 1 and 0.5, respectively. γ1, γ2, γ3, γ4 and γ5
were set to 0.5, 0.5, 1, 1, 100, respectively. It is suggested to train the model with 10 epochs
in the reconstruction training phase as initial weights before performing the adversarial
training phase iteratively.

Our experiments were conducted on a computer with a GTX TitanX GPU of 12GB
memory.
Table 2 The architecture of the decoder in LSA-VAE

Decoder Layer Output Size

FC(525, 8192), ReLU 512 × 4 × 4

ResBlock(512,512) 512 × 8 × 8

ResBlock(512,512), Upsample 512 × 16 × 16

ResBlock(512,256), Upsample 256 × 32 × 32

ResBlock(256,128), Upsample 128 × 64× 64

ResBlock(128,64), Upsample 64 × 128 × 128

ResBlock(64,64) 64 × 128 × 128

Conv(64,5,1,2), BN, Leaky ReLU 3 × 128 × 128
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Table 3 The structure of the ReBlock in LSA-VAE

Module Structure

ResBlock(I,O) Residual Block:Conv(I,3,1,1), BN, Leaky ReLU

Conv(O,3,1,1), BN, Leaky ReLU

4.4 Baselinemodels

As our baseline models, we compared LSA-VAE with state-of-the-art algorithms includ-
ing IcGAN [39], StarGAN [9] and AttGAN [17], which were reported that achieved the
best performance for facial editing and were capable to manipulate images conditioned on
multiple attributes with a single generator. The results were evaluated on quantitative com-
parison and qualitative comparison on single-attribute editing and multiple-attribute editing.
For fair comparison, all the baselines were retrained on CelebA dataset by the authors’
released codes using thirteen attributes mentioned above. We briefly introduce these models
in following:

IcGAN combines an encoder with a cGAN model, where cGAN learns the mapping
G : {z, c} → x that generates an image x conditioned on both the random noise z and
the conditional representation c. Training on the random samples of z and c and their cor-
responding synthesized image x generated by the cGAN, an encoder learns the inverse
mappings Ez : x → z and Ec : x → c . This allows to synthesize images conditioned on
arbitrary conditional representation.

StarGAN trains a single generator G that learns mappings among multiple domains
and introduces an auxiliary classifier that allows a single discriminator to control multi-
ple domains. That is, G translates an input image x into an output image y conditioned
on the target domain label c, G : {x, c} → y. The discriminator produces probability
distributions over both sources and domain labels, D : x → {Dsrc(x),Dcls(x)}, which
means D can not only discriminate real or fake images, but also can classify domain
labels. In addition, in order to preserve the content of its input images while changing
only the domain-related part of the inputs, StarGAN applies a cycle consistency loss to
the generator,||x − G(G(x, c), c′)||1, where c and c′ are target label and original label,
respectively.

AttGAN employs an encoder-decoder architecture and models the relation between the
latent representation and the attributes, which are different from StarGAN. On the one hand,
the encoder encodes input xa into the latent representation z and the decoder receives z and
original attribute a as input to be trained to reconstruct xa. On the other hand, the decoder
receives z and target attribute b as inputs to be trained to generate target image x̂b, which
is expected to be with target attributes while identity-preserving. AttGAN also applies the
attribute-classification constraint on the generated image to guarantee the correct change of
the attributes.

4.5 Qualitative analysis

4.5.1 Single facial attribute editing

In this section, we compared the proposed model with the baselines in terms of sin-
gle facial attribute editing. We presented qualitative results in Figs. 2 and 3, where eight
attributes were chosen to show the ability of these models on the task of editing single

Multimedia Tools and Applications (2021) 80: –490248814892



Fig. 2 Results of single facial attributes editing. The first and second columns from the left are ground truth
and its reconstruction images, respectively. For each ground truth image, every row demonstrates results of
single facial attributes editing by different models. The rows from top to bottom are generated by IcGAN,
StarGAN, AttGAN and our model, respectively

attribute. As shown in the figures, IcGAN produced blurry images, and the reconstruction
ability of IcGAN is very limited. StarGAN could generate sharper images than IcGAN,
but the results of StarGAN contained some artifacts. In general, StarGAN, AttGAN and
our model could edit attributes correctly. Both AttGAN and our model could recon-
struct the original image much better than other algorithms and generate more realistic
results. For “Pale Skin” attribute, StarGAN tended to generate less natural skin color. For
“Bangs” attribute, the results of AttGAN seems to be less distinct. For global attribute
like “Gender”, both StarGAN and AttGAN tended to change male to female by putting
makeup and wearing lipstick, while our model attempted to change eye shapes and
facial lines.

In summary, the proposed model could manipulate the attribute correctly and generate
images with high visual quality, and performed well on all the attribute testings, which is
mainly due to the superior design of the architecture of the proposed network.

Fig. 3 Results of single facial attributes editing. The first and second columns from the left are ground truth
and its reconstruction images, respectively. For each ground truth image, every row demonstrate results of
single facial attributes editing by different models. The rows from top to bottom were generated by IcGAN,
StarGAN, AttGAN and our model, respectively
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Fig. 4 Comparison results of IcGAN, StarGAN, AttGAN and LSA-VAE, with multiple-attribute facial
editing. The first row from top is ground truth. Zoom in for better resolution

4.5.2 Multiple facial attribute editing

For more comprehensive comparison, we evaluated these four models in term of multiple-
attribute facial editing. The comparison results are shown in Fig. 4. Similar to single-
attribute editing, images generated by IcGAN were in distortion of facial details and seemed

Fig. 5 Examples of attribute-conditioned image progression on adding or removing eyeglasses, opening or
closing mouth and changing age, respectively. Zoom in for better resolution
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Fig. 6 Examples of attribute-conditional random image generation with our model. Images in each row were
generated by feeding into the decoder with variables of noise and fixed attributes listed in the left

more blurry. For StarGAN, it can edit attributes accurately. However, some of its results
look unnatural and it didn’t perform as well as AttGAN and our model in terms of iden-
tity preserving. As for AttGAN, when we tried to manipulate the gender and the hair color
simultaneously (see row 5, column 6 and row 6, column 5 in Fig. 4), it also tended to change
the hair style such as making it short hair when changing female to male with mustache, or
making it long hair when changing male to female with blond hair. By contrast, our model
can generate more natural and realistic images and handle the task of multiple-attribute
facial editing much better.

Fig. 7 More examples of attribute-conditional random image generation. All of them were synthesized by
random attributes. Zoom in for better resolution
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Table 4 Quantitative comparison results of the baseline models and the proposed model, evaluated by PSNR,
SSIM, LPIPS and FID. The number of the parameters of each models is also listed in the last column

Model PSNR SSIM LPIPS FID # of params

IcGAN 15.19 0.44 0.17 42.3 67.9M

StarGAN 22.47 0.78 0.092 30.13 53.6M

AttGAN 31.67 0.93 0.024 16.41 88.1M

LSA-VAE 26.28 0.83 0.055 30.02 47.9M

4.5.3 Attribute-conditioned image progression

Although our model was trained with discrete binary attribute values (0 or 1), we found
that it is compatible with continuous attribute value in the testing phase and can generate a
progression process of attribute intensity. In order to demonstrate this attributed-condition
progression, we manipulated the value of one dimension in the attribute variable by modi-
fying it from 0 to 1 smoothly and keeping all other latent variables fixed. As we can see in
Fig. 5, samples generated by progression are visually consistent with attribute description.
By changing value of attribute like “Mouth Open” or “Eyeglasses” and “Age”, respectively,
attribute intensity was strengthened or weakened smoothly, and other visual appearances
irrelevant to the attribute of interest remained unchanged. In particular, the identity-related
visual appearance was well preserved.

4.6 Random image generation

Comparing with those baselines, our model is also capable of synthesizing diverse and real-
istic facial images given specific attributes. With this unique property, our model can not
only generate realistic facial images from random noise as recent works [5, 21–23], but it
can also control the attributes that we want the images to possess.

To examine this important property of our model, we evaluated it on the task of attribute-
conditional random image generation. To synthesize facial images with specific attributes,
we generated these samples in Fig. 6 through the following process: firstly, noise vari-
ables were randomly sampled from unit isotropic Gaussian distribution; secondly, the noise
variables and specific attribute variables with values 1 or 0 were fed into the generator of
LSA-VAE. As shown in Fig. 6, the four groups of facial images, synthesized with four

Table 5 Network architecture of the encoder in LSA-VAE-CNN, which is an invariant of LSA-VAE based
on convolutional networks

Encoder Layer Output Size

Conv(32,4,2,1), BN, Leaky ReLU 32 × 64 × 64

Conv(64,4,2,1), BN, Leaky ReLU 64 × 32 × 32

Conv(128,4,2,1), BN, Leaky ReLU 128 × 16 × 16

Conv(256,4,2,1), BN, Leaky ReLU 256 × 8 × 8

Conv(256,4,2,1), BN, Leaky ReLU 512 × 4 × 4

Output Branch 1: FC(8192,512) 512

Output Branch 2: FC(8192,512) 512

Output Branch 3: FC(8192, 13) 13
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Table 6 Network architecture of the decoder in LSA-VAE-CNN, which is an invariant of LSA-VAE based
on convolutional networks

Decoder Layer Output Size

FC(140, 8192), LeakyReLU 512 × 4 × 4

Upsample, Conv(256,3,1,0), BN, ReLU 256 × 8 × 8

Upsample, Conv(128,3,1,0), BN, ReLU 128× 16× 16

Upsample, Conv(64,3,1,0), BN, ReLU 64× 32× 32

Upsample, Conv(32,3,1,0), BN, ReLU 32× 64× 64

Upsample, Conv(3,3,1,0) 3× 128× 128

groups of attributes which are ‘Black Hair/ Male/ Young’, ‘Blond Hair/ Female/ Young’,
‘Brown Hair/ Female/ Mouth Open/ Young’ and ‘Bale/ Male/ Old’, look photo-realistic
with vivid texture. In each group, the faces were different with several view points. Those
results imply that the proposed model is capable of generating facial images with randomly
specified attributes without retraining the model using label-wise samples.

More results of random image generation are shown in Fig. 7 and all of them were
synthesized by random attributes sampled from the thirteen attributes. For instance, the
image in second row and fifth column was generated by feeding attributes of “Black Hair”,
“Bushy Eyebrows”, “Mouth Open”, “Pale Skin”, “Female” and “Young”.

4.7 Quantitative analysis

In this section, we performed two kinds of quantitative analysis on similarity between source
images and their reconstructed images and quality of generated images. For fair comparison,
10,000 images from testing set were randomly selected as the source image set, and their
reconstructed images and transformed images with 13 attributes which were generated by
each model were formed as the reconstruction set and the transformation set. We evaluated
the abilities of the models using four metrics.

Identity preserving is an important factor in facial image editing. We evaluated the sim-
ilarity between source images and the reconstructed images for each model. Three metrics
were adopted, which are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) [54] and Learned Perceptual Image Patch Similarity (LPIPS) [58]. For
PSNR and SSIM, the higher value means more similar between source image and its recon-
structed image. For LPIPS, which evaluates similarity on deep features of images by feeding
them to the pre-trained network, such as VGG [44] or AlexNet [28], the lower value means
the more similar. To evaluate the quality of generated images, we used Fréchet Inception
distance (FID) [18]. FID calculates the Fréchet distance also known as Wasserstein-2 dis-
tance between the source images and the generated images in the feature space of Inception

Fig. 8 Comparison between LSA-VAE-CNN and LSA-VAE on the task of single-attribute facial editing
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Fig. 9 Comparison between LSA-VAE-CNN and LSA-VAE on the task of multiple-attribute facial editing

Net. FID has been shown to be consistent with human judgement and robust to noise. Lower
FID value means the distribution of the generated images is of closer distance to the distri-
bution of the source images. In addition, the number of parameters of each model is also a
key point needed to be compared with. A model with more parameters means it needs more
time and memory to train the model. Thus, it is useful to compare the number of parameters
of each model (in unit of a million).

All these comparison results are shown in Table 4. From which it can be seen that
AttGAN achieved the best scores in terms of PSNR, SSIM, LPIPS and FID, and our model
took the second place. IcGAN produced the poorest evaluation results, which further con-
firms the conclusion observed from Figs. 2, 3 and 4. Note that although evaluation vales of
our model were a little weaker than those of AttGAN, the number of parameters of the pro-
posed model is much fewer than the number of AttGAN, which implies that our model is
more efficient and less complex.

4.8 Ablation study

To study the function of each part in the proposed model, we did the ablation study in this
section. We established two different variants of our model: one based on convolutional

Fig. 10 Examples of attribute-conditional random image generation based on LSA-VAE-CNN
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Fig. 11 Examples of attribute-conditional random image generation with LSA-VAE without performing the
adversarial training phase

network and one without performing the adversarial training phase, which were named
LSA-VAE-CNN and LSA-VAE-part, respectively.

The network architectures of LSA-VAE-CNN are shown in Tables 5 and 6. Both encoder
and decoder network were based on deep convolutional neural network. Since the only dif-
ference between LSA-VAE and LSA-VAE-CNN is the network architecture, we can analyze
the effect of different network architectures on the quality of generated images. In addi-
tion, due to the different network structure to that of LSA-VAE, different parameter settings
were adopted for training LSA-VAE-CNN. Specifically, LSA-VAE-CNN was trained by
the ADAM optimizer [26] (β1 = 0.5, β2 = 0.999) with the learning rate of 0.0005. The
marginal m in Eq. 10 was set to 10. α and β in Eq. 9 were set to 0.5 and 100, respectively.
γ1, γ2, γ3, γ4 and γ5 were set to 0.01,100, 1, 100, 10, respectively. We performed com-
parison experiments between LSA-VAE-CNN and LSA-VAE on the task of single-attribute
editing and multiple-attribute editing. The results are shown in Figs. 8 and 9. As we can see,
LSA-VAE-CNN could change image attribute accurately, but generated more blurry images
than LSA-VAE, and the images generated by LSA-VAE-CNN lack details of skin and hair
texture. Moreover, LSA-VAE-CNN could not preserve the facial identity like LSA-VAE.
We also performed random images generation with LSA-VAE-CNN to look into whether it
can synthesize realistic images given specific attributes. As shown in Fig. 10, LSA-VAE-
CNN can synthesize acceptable facial images, but the oversmooth face and checker texture
in hair area make them not look like real faces. In a word, LSA-VAE can generate much
sharper and realistic images than LSA-VAE-CNN. We suggest the reason is that, the skip
connection in residual block is helpful to enhance image quality of editing result.
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LSA-VAE-part employs the same network architecture as mentioned in Tables 1 and 2,
but only performs the reconstruction training phase without the adversarial training. In
this case, we investigated the role of adversarial training in random image generation.
As shown in Fig. 11, the images generated by LSA-VAE-part with specific attributes are
blurry and distorted seriously, comparing with results in Figs. 6 and 7, which demon-
strates that the adversarial training plays an important role in the success of image
synthesis.

5 Conclusion

This paper proposed a novel attribute-disentangled generative model for facial image editing
conditioned on arbitrarily specified attributes by combining the advantages of variational
autoencoders and generative adversarial networks. In the proposed model, the latent space is
split into two independent subspaces. By introducing the adversarial training strategy on the
latent space, the generated data distribution is trained to approach the real data distribution
in the latent space and meanwhile the generated images are used to trained the encoder
like a discriminator. We evaluated our model by attribute manipulation and random images
generation experiments. The experimental results demonstrated our proposed model could
learn attribute-disentangled representations of facial images and generate face images with
rich details and high visual quality.
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11. Donahue J, Krähenbühl P, Darrell T (2016) Adversarial feature learning. arXiv:1605.09782
12. Dumoulin V, Belghazi I, Poole B, Lamb A, Arjovsky M, Mastropietro O, Courville A (2016)

Adversarially learned inference. arXiv:1606.00704
13. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Ben-

gio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems,
pp 2672–2680

14. Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D (2015) Draw: a recurrent neural network for
image generation

15. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC (2017) Improved training of wasserstein
gans. In: Advances in neural information processing systems, pp 5767–5777

16. Guo Q, Zhu C, Xia Z, Wang Z, Liu Y (2017) Attribute-controlled face photo synthesis from simple line
drawing. arXiv:1702.02805

17. He Z, Zuo W, Kan M, Shan S, Chen X (2019) Attgan: Facial attribute editing by only changing what
you want. IEEE Trans Image Process 28(11):5464–5478

18. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) Gans trained by a two time-
scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing
Systems, pp 6626–6637

19. Huang H, He R, Sun Z, Tan T et al (2018) Introvae: Introspective variational autoencoders for
photographic image synthesis. In: Advances in neural information processing systems, pp 52–63

20. Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversar-
ial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 1125–1134

21. Karras T, Aila T, Laine S, Lehtinen J (2018) Progressive growing of GANs for improved quality, sta-
bility, and variation. In: International Conference on Learning Representations. https://openreview.net/
forum?id=Hk99zCeAb

22. Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp 4401–4410

23. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T (2019) Analyzing and improving the image
quality of stylegan. arXiv:1912.04958

24. Kim T, Cha M, Kim H, Lee JK, Kim J (2017) Learning to discover cross-domain relations with genera-
tive adversarial networks, JMLR. org. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp 1857–1865

25. Kim T, Kim B, Cha M, Kim J (2017) Unsupervised visual attribute transfer with reconfigurable
generative adversarial networks Computer Vision and Pattern Recognition

26. Kingma DP, Ba JL (2015) Adam: A method for stochastic optimization, international conference on
learning representations

27. Kingma DP,Welling M (2014) Auto-encoding variational bayes. In: international conference on learning
representations

28. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Advances in neural information processing systems, pp 1097–1105

29. Lample G, Zeghidour N, Usunier N, Bordes A, Denoyer L, Ranzato M (2017) Fader networks:
Manipulating images by sliding attributes. In: Advances in Neural Information Processing Systems,
pp 5967–5976

30. Larsen ABL, Sønderby SK, Larochelle H,Winther O (2016) Autoencoding beyond pixels using a learned
similarity metric International Conference on Machine Learning, pp 1558–1566

31. Li M, Zuo W, Zhang D (2016) Deep identity-aware transfer of facial attributes. arXiv:1610.05586
32. Liu M, Breuel TM, Kautz J (2017) Unsupervised image-to-image translation networks
33. Liu M, Tuzel O (2016) Coupled generative adversarial networks
34. Liu Z, Luo P, Wang X, Tang X (2016) Deep learning face attributes in the wild. In: IEEE International

Conference on Computer Vision, pp 3730–3738
35. Lu Y, Tai Y-W, Tang C-K (2018) Attribute-guided face generation using conditional cyclegan. In:

Proceedings of the European conference on computer vision (ECCV), pp 282–297
36. Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2015) Adversarial autoencoders, Computer

Science
37. Marcolin F, Vezzetti E (2017) Novel descriptors for geometrical 3d face analysis. Multimedia Tools and

Applications 76:13805–13834
38. Mirza M, Osindero S (2014) Conditional generative adversarial nets
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