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Abstract

Electrocardiogram (ECQG) is essentially a significant physiological signal required in the
diagnosis of cardiac disorders. For remote healthcare assistance, ECG signal along with
patient’s meta-data is communicated over the public network. During communication,
security and privacy of patient’s sensitive information is a major issue. Presently, a
common steganography technique is being applied on the entire ECG signal. Since
ECG signal consists of clinically more significant QRS regions as well as less significant
non-QRS regions and employing same steganography approach on both the regions is not
admissible. In this work, a hybrid approach is proposed for concealing the sensitive
information in 2-dimensional (2D) ECG. A fusion of integer wavelet transform and
modified least significant bit IWT-mLSB) approach is applied in the pivotal QRS
complex region; while pixel inverted pixel value differencing (PI-PVD) technique is
implemented in the non-QRS region to hide the confidential data. The performance of the
proposed algorithm is evaluated on standard as well as self-recorded database in terms of
statistical parameters, clinically critical metrics, heart rate variability (HRV) analysis,
embedding capacity (EC) and bit error rate (BER). The security of the proposed algorithm
is further evaluated in terms of key space and key sensitivity. A comparative analysis with
other state-of-the-art techniques exhibits the competency of the proposed technique.
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1 Introduction

Telemedicine is a significant tool in remote healthcare systems and is rapidly changing the
dynamics of conventional healthcare systems. The patient centric approaches provide reliable
emergency solutions to homebound patients and obtain expert opinions from globally avail-
able experienced healthcare providers. Biomedical signals such as electrocardiogram (ECG),
electroencephalogram (EEG), electromyogram (EMG) etc. are the commonly used signals in
tele-health services. To make this system more symptomatic, these signals are complimented
by annotations, patient’s medical biography and history. It raises the concern of security and
authentication of the sensitive information during its transmission and storage. Legal regula-
tions like U.S. health insurance portability and accountability act (HIPAA) [8], the personal
information protection and electronic document act, 2000 (PIPEDA) [42] and digital signature
laws in many countries also demanded security and confidentiality of the personal information.

This paper addresses these security related issues through information hiding technique
named steganography. In steganography, the confidential data is secured by concealing it
inside the host media without loss of its intelligent information [15]. Additionally, it provides
efficient memory utilization and also cuts the risk of mismatching between the patient’s
physiological signal and his personal details. Various medical images [1, 24, 29] and physi-
ological signals [27, 32, 37, 40] are observed in literature that were used as effective hosts to
conceal confidential information. ECG signal is the widely considered tool in diagnosing
cardiovascular diseases (CVD) as well as detecting and analysing issues related to autonomic
nervous system [3, 4, 38, 43]. In this work time-series ECG signal is used as the host signal for
concealing the patient’s confidential information.

1.1 Related work

Research has been carried out to perform steganography in multimedia applications, but its
implementation in biomedical applications particularly in ECG signal is still in its infancy. The
ECG data contains valuable diagnostic information and any alteration due to payload embed-
ding reduces the signal fidelity which may lead to wrong diagnosis. Hence it has to be taken
care that the diagnosability should not be lost while concealing data in these signals. Different
approaches of steganography in ECG signal are discussed in the literature. Most of these
techniques perform steganography in spatial domain [27, 28, 40, 45] and transform domain
[13, 14] however few researchers introduced hybrid approaches to conceal the secret data [11,
12, 19]. Pandey et al. [27] presented chaotic maps and sample value differencing (CMSaVD)
based spatial domain steganography. It has been found that embedding 21 kb in ECG signal of
20 mins duration results in percentage root mean square difference (PRD) of 0.26. In another
spatial domain approach, Soni et al. [40], adopted an optimum location selection (OLS)
algorithm based ECG steganography to select the embedding locations on the basis of
thresholded RR peak amplitude. The method achieved embedding capacity (EC) of 0.45 at
low PRD of 0.004. Yang [45] proposed lossy and lossless steganography techniques in spatial
domain using coefficient alignment. The approaches achieved EC of 0.25 and 0.49 at signal to
noise ratio (SNR) of 56.34 and 46.31 for lossless and lossy approaches respectively. In [11],
Ibaida et al. performed discrete wavelet transform (DWT) and least significant bit (LSB)
substitution based ECG steganography to embed encrypted secret bits in the selected subbands
of wavelet coefficients. The performance was evaluated on normal and abnormal (ventricular
tachycardia and ventricular fibrillation) ECG datasets. The author claimed the embedding of
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nearly 14 k bits in ECG segments of 10s and attained the average PRD o0f 0.47129, 0.2759 and
0.5671 in case of normal, ventricular tachycardia and ventricular fibrillation datasets respec-
tively. However, the amount of bit error rate (BER) occurred during extraction of secret
information was not discussed. In [12—14], numerous researchers explored inter and intra beat
correlations to formulate two-dimensional (2D) ECG arrays for steganography. In [12] Jero
et al. presented 2D hybrid approach using DWT and singular value decomposition (SVD) to
embed the secret information in the selected subband. The approach generates PRD of
0.0059 at very low EC of 0.0365 only. In [13], the same research group presented discrete
curvelet transform based 2D ECG steganography in which selected curvelet co-efficients are
modified according to 0 and 1 of secret bits. The PRD 0.0132 is achieved after embedding 350
bytes in test signal of 128 trains from normal sinus rhythm (NSR) database. Further they
proposed continuous ant colony optimization (CACO) based 2D ECG steganography tech-
nique [14] and identify multiple scaling factors that improves the trade-off between peak signal
to noise ratio (PSNR) and robustness. Kozat et al. [19] applied a blend of discrete Fourier
transform with spread spectrum approach to embed robust watermark and used least signifi-
cant bit (LSB) substitution to embed fragile watermark in an ECG signal. The method is robust
against any signal deformations but has very low embedding power of 0.04 at SNR of 20 dB.

Spatial domain techniques have high embedding capacity and good visual quality but are
prone to stego attacks whereas transform domain techniques are robust with limited EC [10].
In the above discussed methods, single steganography approach (either spatial or transform) is
applied on the entire ECG signal [13, 14, 27, 28, 40, 45]. Although in few cases hybrid (both
spatial and transform) approaches are formulated [11, 12, 19], but that too on the whole signal.
Since ECG signal consists of crucial QRS regions as well as less significant non-QRS regions
[34] and employing same steganography approach on both the regions is not admissible. The
proposed hybrid technique encourages feature specific integrated approach to hide information
in ECG signal. It has been observed in literature that DCT and DWT based steganography
methods are robust but show high PRD at low EC. The common reason for high PRD is the
reconstruction error that occurs due to the filter coefficients [21]. The analysis filters used to
decompose the signal into subbands generate floating point coefficients and synthesis filters
truncate these coefficients during reconstruction. Truncation of floating point numbers at any
level results in potential loss of information. One of the solutions to this problem is the use of
lifting scheme based integer wavelet transform (IWT) which decomposes the signal in integer
coefficients [5, 7, 20, 31]. It solves the problem of rounding error hence reduces PRD. Besides
PRD, it is also required to improve the EC while maintaining the perceptibility of the ECG
signal. Pixel value differencing (PVD) is a promising technique that ensures high EC in high
frequency regions [17, 36, 44]. Although the non-QRS region of ECG signal has nearly flat
surface but inverting adjacent sample in each pair converts the low frequency non-QRS region
into high frequency region and makes the region suitable to implement PVD scheme [27].
Thus according to the morphological features of the host ECG signal, IWT based modified
LSB (IWT-mLSB) steganography is applied in the sensitive QRS region of an ECG beat while
pixel inverted PVD (PI-PVD) based spatial domain steganography is performed in the non-
QRS region. The proposed hybrid approach recuperates the EC without distorting its visual as
well as clinical quality. Further, to intensify the security of the confidential information,
chaotic maps are employed. Chaotic maps are the non-linear equations used to generate
random sequences with very attractive properties of unpredictability, ergodicity and sensitivity
to initial conditions that makes them suitable for designing steganographic applications [9, 23,
46]. The steganography in medical data acutely demands minimum deterioration in its
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morphological features while accomplishing its other traits viz. EC and robustness. The
proposed technique is competent to accomplish all these attributes of steganography.

The rest of the paper includes: Section 2 discusses the preliminaries used in proposed
method. The proposed methodology describing the embedding and extraction processes is
detailed in section 3. Section 4 includes results and discussion. The proposed work is
concluded in section 5.

2 Preliminaries and materials

ECG signal is a quasi-periodic, non-stationary signal that can be characterized in terms of both
time and frequency. Wavelet transform is a mathematical tool that performs translation and
dilation of basic shapes (e.g. Fourier transformation) to build space—frequency relations in such
signals. In this work, lifting scheme based IWT is employed to exploit the correlation between
the neighbouring samples and frequencies to build a sparse approximation [5, 7].

2.1 Lifting scheme based integer wavelet transform

Lifting scheme is a flexible technique used to design wavelets through an iterative process of
predicting and updating a set of samples (subband) from an appropriate linear combination of the
other set (subband). The output of IWT consists of detailed coefficients (D) and approximate
coefficients (A). IWT can be expressed in three steps; split, predict and update as shown in Fig. 1.

Split: The input signal S = (Sy) xe,» Sk €R, is split up into two disjoint sets; even (S,) and odd
(S,) indexed samples [7].

Se = (S2t)iey
So = (S2k+1)key

Predict: Since the two sets are closely correlated, therefore it is possible to build a predictor
(Pr) for one set from the other set. As the predictor does not give the exact value, the difference
between the original value and predicted value is recorded. This difference forms the detailed
coefficients (D) and is calculated as.

D = S.—Pr(S,)

From D and the odd samples, even samples can be recovered as.

1
| |
1 1
1

]
1 Predict odd Unpdat Undp 1
el o | s | e o || g || e o
: ¢ even sequence 4 Update sequence sequence | = sjonal
1
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Fig. 1 Lifting scheme for level 1 in (a) Integer Wavelet Transform (b) Inverse Integer Wavelet Transform
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The simplest predictor (Pr) considered for an odd sample Sy ; is the average of its two even
neighbours, hence D is written as.

Dy = Sok+1—(Sak + Saxt2) /2

A good predictor generates negligible values of D. This process of computing predictor and
recording the difference is called as lifting.

Update: The lifting stage transforms the even and odd samples (S, S,) into (S, D). Since S,
is obtained by subsampling the signal, it causes serious aliasing problem. Therefore a second
lifting stage is required to replace the even samples with smoothed values by applying update
operator (U) to the detailed coefficients as [7].

A=5.4U (D)

The updated coefficients are called approximate coefficients. Given A and D, S, can be
recovered as.

S, = A-U(D)

The update operator restores the correct running average and reduces aliasing. Daubechies
et al. proposed that one-quarter of the wavelet coefficient (D;/4) has to be added to the even
samples as updated operation [7].

Ap = Sy + (Di-1 +Dy) /4

2.2 LSB steganography

LSB steganography is one of the simplest technique to hide secret data in the LSBs of the
signal samples [16]. Since, the human eye is imperceptible to the minor changes at LSB level,
hence it is an effective method of steganography. But embedding the secret bits directly at the
LSB positions are prone to stego attacks. In the proposed method, the secret data is embedded
in the LSBs of the transformed ECG coefficients that makes it invulnerable to stego attacks as
well as reduce the distortion to many folds.

2.3 Pixel value differencing (PVD)

PVD is a steganography technique originally implemented in images where the absolute
difference between the two consecutive pixels is explored to store the secret bits [17, 36,
44]. Higher the difference, more will be the payload capacity and vice versa. For instance,
higher number of data bits can be concealed at edges (high frequency) as compared to
smoother (low frequency) regions. Further, the number of bits embedded is calculated by
mapping the difference with the sub-range in the pre-defined range table. The table
consists of non-overlapping dyadic-ranges W;, j=1, 2.... . n such that each sub-range
(W) has a lower bound (/;), upper bound (u;) and the width (w;) [36] i.e.

W;=[l;,u], j=12...n
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where _
lf:{ 1’2«7'*1, jizll M
u; =2-1 (2)
wi=u;—l;+1 (3)

The procedure to embed long stream of secret bits using PVD approach is explained as:
Step 1. Partition the signal samples into non-overlapping pixel pairs.
If P,,is the i even sample, the pixel pair will be.

Popiyand Papi) 11 (4)
Step 2. Calculate absolute difference between sample values.
di = |Pap(iy=Pap(iy+1] (5)

Step 3. The number of secret bits that can be embedded in each pair varies and is decided by
the width of the sub-range to which d; belongs. For that, compute range W;=[[;, ;]
such that.
l;<d; && d;>u; and hence calculate w; (using (3)).

Step 4. Compute the hiding capacity of the pixel pair as [17].

7= Llogzwjj and k;
= Llogzrﬂ where k; is the number of secret bits to be concealed in W; (6)

[36]

| J represents the greatest integer factor.
Step 5. Select next &; bits from the secret bit stream and convert them into decimal value m;.
Step 6. Compute the extraction function F such that its value lies between (0, 77-1) [17, 36]

F(Papiiys Pop(iy 1) = (Pap(iy *(ri=1) + Pap(iy 1 *ri)mod r} (7)

Step 7. Based on the decimal value m;,the selected pixel pair of the cover media is modified to form
the stego-pixel pair (P, P'ap+1)- The secret data is embedded in the pixel pair such that the
overflow and underflow conditions are to be avoided. For that, the absolute difference (d;”) between
the stego pixel pair (P, P2+ 1) must lie in the same sub-range (W)) as that of the original pixel
pair(Pay), Py +1)- The embedding is done according to the following criteria:

if m; = F then the modified sample pairs

(P'2pay Plapy+1) = (Pap(iy Papiy+1)
elseif m; > F

P'ypay = Papay — (m; — F)mod ;

P @+ = Pop@+r t lm;_:FJ +(m; — F)mod 1
elsem; < F

PlZp(i) = PZp(L') + (F - mi)mod T

- mi] —(F —m;) mod

P’2p(i)+1 = PZp(i)+1 - l

T
end
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To extract the embedded information from the stego pixel pair (P, P+ 1)> compute d;,
wj, 1, ki and F in the similar way as computed during embedding. The value of F is the
extracted secret information from the stego-pair. The process of concealing and extraction of
secret information using PVD method is explained below with the help of an example.

Assume Py, Poy(iy 11 = (945,-944)
d; = |Pypiy=Pop(iy+1] = 945—(—944) = 1889

Sub-range to which difference d; belongs is
W; = [1;,u;] = (1024,2047)

Width of the sub-range w;=u;—/[;+ 1 =(2047 - 1024 + 1) = 1024
The number of secret bits to be selected for embedding is

ri = |log,w;| = |log,1024] =10
ki = Llogzr?J = Uog2102J =6
Let the first six secret data bits are
m; = (110110),

And its decimal equivalent is 54,
The extraction function F is calculated as

F(Pap(iy, Popiy 1) = (Pap(iy *(ri=1) + Pap(iy 11 *ri) mod 17
— mod((945 * 9 + (~944) * 10),100) = 65

Because m; < F

Plzp(,-) = P2p(i) + (F—m,-)mod ri = 945 + 1’IlOC1((65_54-)7 10) = 946

F*m,-

1

J—(F—m,-) mod r; — (~944) {%J “mod((65-54), 10) — ~946

Py = Pzp(i)+1—{

Hence pixel pair (945,-944) is modified to (946,-946) after embedding.
During extraction of secret bits from the pixel pair (946, —946)
Compute di=946-(—946) = 1892
Sub-range to which d; belongs to is

W; = [1j,u;] = (1024,2047)
And hence w; = u;—1; + 1 = (2047-1024 + 1) = 1024
ri = Llogzwjj =10
ki = Uogzrﬂ =6
mi = F(Py(y, Papiiye1) = (Popi *(ri1) + Pop(o1 *ri) mod 1}
= mod( 946*9 + (—946)*10), 102) =54

This 54 is converted into binary format to obtain the secret message bits.

@ Springer



8512 Multimedia Tools and Applications (2021) 80:8505-8540

2.4 Chaotic maps

In an effort to provide intense security to patient’s confidential information, chaos
theory is introduced. The chaotic systems produce random yet deterministic signals
that are much suitable for steganographic applications [23, 27, 40]. Various algorithms
have been developed to produce N-dimensional chaotic sequences however, in this
work the focus is on 1D combined logistic-sine (CLS) chaotic map. Individually
logistic and sine maps exhibits chaotic properties in limited range only [9, 23, 46].
To overcome this drawback, these seed maps are combined linearly to generate a new
1D chaotic sequence that displays excellent behaviour over the entire range within
(0,4] as illustrated through the bifurcation diagram in Fig. 2. The mathematical
expression to generate CLS based chaotic sequence [40] is given as:

H(x,, Yo, 0): Xy = (yoxn(l—xn) + (4 —yo)sin(ﬂTx"))modl (8)

where y, is the control parameter that lies within (0, 4] and x,, , ; and x,, are the (n + 1)th and nth
states of chaotic sequence respectively. In order to generate random integer values from the
sequence H, it is sorted and the original indices of the sorted sequence are preserved and used
as chaotic sequence (X) with integer values as [40]

(V,X) = int_sort(H) 9)

where array V contains the sorted magnitudes of / while array X contains the original positions
of these magnitudes. The random sequence X consists of integer values and is used to conceal
secret bits in ECG signal.

2.5 ECG database

Standard databases available online [25] are used to evaluate and compare the performance of
the proposed algorithm with the existing ECG steganography techniques. The databases used
have the following specifications:

1. Massachusetts Institute of Technology-Beth Isracl Hospital (MIT-BIH) Arrhythmia data-
base: The two-channel ambulatory ECG recordings of 47 subjects (both normal and

(®)
Fig. 2 The bifurcation diagrams of (a) logistic (b) sine and (¢) CLS maps
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abnormal) are approximately 30 min long. Each ECG signal is recorded at sampling
frequency of 360 Hz per channel with 11-bit resolution over 10 mV range. The results are
evaluated on the first channel of all the 48 records of 5 min duration.

2. MIT-BIH Normal Sinus Rhythm (MIT-BIH NSR) database: This database in-
cludes 18 long term recordings of 5 males aged 26 to 45 and 13 females aged
20 to 50 that have no significant arrhythmias. The performance is evaluated on all
18 records of 5 min duration.

3. Beth Israel Deaconess Medical Centre Congestive Heart Failure (BIDMC-CHF)
database is used to test the proposed algorithm on recordings with acute abnor-
mality. The database comprises of 15 ECG recordings that includes 11 men aged
22 to 71 and 4 women aged 54 to 63 suffered with stern cardiac failure. The
recordings contain two ECG signals; each of about 20 h long duration and
sampled at 250 Hz, 12-bit resolution over a range of £10 mV. Results are
evaluated on all 15 recordings of duration 1.5 min.

4. Self-recorded database: This database consists of ECG signals recorded in the
Biomedical Signal Processing laboratory at Department of Electronics and Com-
munication Engineering, Dr. B.R. Ambedkar National Institute of Technology,
Jalandhar, India on lead II using BIOPAC® MP150. The signals were recorded
from the local population under standard conditions in a quiet room, at comfort-
able light and temperature levels and sampled at 500 Hz, 12-bit resolution. The
written consent from 20 different subjects was taken prior to the recording.

3 Proposed methodology

The steganography technique proposed in this work explores both transform and
spatial domain approaches to embed confidential information in 2D ECG (/m). The
2D ECG is divided into three non-overlapping fragments such that the side fragments
occupies the pivotal QRS region while the intermediate part comprises relatively less
significant non-QRS region of ECG signal. Different embedding algorithms are
designed to conceal information in these fragments. The secret bits are embedded in
the order of first, second and then third block respectively as per their maximum
embedding capacities. The proposed methodology involves the following steps 1) Pre-
processing of ECG signal 2) Conversion of 1D ECG signal into 2D ECG matrix (/m)
3) Generation of chaotic sequences 4) Encryption of patient’s personal information. 5)
Embedding process 6) Reconvert 2D stego-ECG (sim) back to 1D stego-ECG (sECG)
signal which is then transmitted over the channel. The embedded information is
extracted at the receiver following the reverse procedure. The detailed diagram to
demonstrate the process of embedding and retrieving the secret information is shown
in Fig. 3.

3.1 Pre-processing of input ECG signal
The ECG signals available at standard databases are already processed to filter the
noises and artefacts induced during acquisition whereas the self-recorded ECG signals

are corrupted with different noises like; baseline drift, electrode contact noise,
powerline interference muscle contractions, electrosurgical noise, instrumentation noise
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nqrs

eqrs]
> <

A4
A

Fig. 4 Illustration of vertical stacking of beats to form 2D ECG matrix of 1 min duration of record 100 from
MIT-BIH database

etc. These noises are attenuated from the ECG signal using different filters prior to
embedding the secret information [4].

3.2 Conversion of 1D ECG signal into 2D ECG matrix

ECG signal has both inter-beat and intra-beat correlation properties and based on
these properties 1D ECG signal is converted into 2D ECG matrix. The samples
between two consecutive R-peaks of ECG are considered as one segment and all
such segments are cut and aligned vertically to form 2D ECG (/m). Among several
methods reported in the literature to detect R-peaks [26, 33, 39], k-NN method of
QRS detection is used to remove noises and to identify R-peaks [33]. The length of
each segment is normalised with zero padding [6]. The resultant 2D ECG formed with
1 min of ECG record 100 of MIT-BIH database is illustrated in Fig. 4.

3.3 Generation of chaotic sequences

Chaotic sequences are employed in the proposed steganography approach for two
reasons; (i) to cipher the confidential information and (ii) to generate randomness in
the selection process of ciphered bits embedding. For this, three sets of initial
conditions (xg;, ¥o;), (Xp2 yo2) and (xp3 yg3;) are used to generate chaotic sequences
H;, H, and H; respectively using (8). Further these sequences are sorted to generate
random sequences with integer values using (9). The initialization values and control
parameters used to generate different chaotic sequences are mentioned in Table 1.

Table 1 List of initialization values and control parameters used to generate chaotic sequences

Chaotic Sequence Sorted chaotic sequence Initial value (x,) Control parameter (y,)
H(xo1, vor) X, = int_sort(H,) xp7=0.897655762990 Vo1 =3.9953461356011
HZ()C()Q, y()g) XZ = int_sort(Hg) )C()Z:()933453564978 Yo2= 3.886954532619
H;3(xp3, v03) X; = int_sort(Hs) xp3=0.994357334262 V93=3.973256778521
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3.4 Encryption of confidential information into ciphertext

Though steganography secures patient’s personal information from illegitimate access
but to strengthen the security of the information, the confidential information (C) is
initially converted into cipher text (E£) before entrenching into ECG signal. The
encryption process involves the XOR operation between chaotic sequence (X;) and
C. The process of converting confidential information into cipher text is explained in
algorithm 1

Algorithm 1: Conversion of confidential information into ciphertext
L.: Length of confidential information

Input: confidential information (C), initialization values of x,; and y,; as mentioned in Table 1
Output: Cipher text (E)

Generate H, (xp; yo1, L.) using (8)

X; < int_sort (H))

l=log,Lc]

bts<—1

for n=1:L.
E(bts:bts+(I-1))¢— binary(X;(n), ) ® binary(C(X;(n)), I)
bts<— bts+1

end for

3.5 Embedding process

The focus of the proposed technique is to improve the payload capacity without disturbing the
diagnosability of an ECG signal. To accomplish this aim, QRS and non-QRS regions of 2D
ECG are segregated into three non-overlapping blocks and specific steganography technique is
applied in each block. The embedding is performed in two steps:

i) Disintegration of 2D ECG in three non-overlapping blocks

2D ECG (Im) is partitioned into three fragments; 851, Onqrs and Bgr» Where Oy and Oy
comprises of R-peaks of crucial QRS complex region while 8, holds the non-QRS region of
Im as shown in Fig. 5. The number of samples embodying QRS region (S,,,) depends on the
sampling frequency (f;) of the signal and duration of QRS complex (¢,,,) which is calculated as

Sqrs = |st >l<l‘qrs—|

Samples occupied by R-peaks each in blocks 0 and 0, are

Sg=18,5/21// QRS complex region is divided in two equal parts

The duration of normal QRS complex lies in range of 0.08 s to 0.12 s [34], but in case of
pathological disorders it can be widened or narrowed. For experimentation, QRS complex of
0.15 s is considered in this work. This duration is wide enough to include cases of abnormal
ECGs. The proposed approach has been analysed on both normal (MIT-BIH NSR) and
abnormal (MIT-BIH arrhythmia, BIDMC-CHF) databases. None of the evaluated signals have
QRS complex wider than 0.15 s. But if any abnormal case with QRS complex wider than
0.15 s is observed, then that QRS complex can be excluded from data embedding.
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Fig. 5 Tllustration of embedding regions in three fragments of an ECG image formed from 1 min of samples of
record 100 of MIT-BIH arrhythmia database

Further to avoid any deviation in amplitude of R-peaks, Or samples ( [2 % of f;1 ) that
includes these peaks are excluded from the embedding portions. Finally, the fragments in 2D
ECG used for hiding the ciphered bits are organised as:

Fragment I (0°¢1): Or + 1 to S

(0’ ngrs): Sg + 110 iy - Or // Ly, is the index of the shortest beat in /m.

(0’ 4rs2): Lwin + 1 to (end” - Or) // end’ depicts that each row has variable number of ECG
samples and 0y, varies according to the length of individual beat.

[T represents the least integer function

Figure 5 displays the embedding regions (0’gyi, 0’hgrs and 0’go) of 2D ECG
formed from record 100 of MIT-BIH arrhythmia database of 1 min duration. The
ECG record is sampled at f; of 360 Hz, accordingly Sy is calculated as (360*0.15/2)
i.e. 27. Og is 8 and the shortest peak (/,;,) determined in /m lies at 236. Hence the
first two fragments; 0 and 0,4, suitable for embedding the secret bits lies from 9
to 27 and 28 to 229 respectively whereas in third fragment i.e. 0’», the embedding
region varies from beat to beat depending upon number of ECG samples left in each
beat after excluding Og.

ii) Blockwise embedding of encrypted data and side information

As displayed in Fig. 5 the image is fragmented on the basis of morphological features of an
ECG signal and hence assorted approaches are applied in these fragments to embed secret data.

Case 1: IWT based modified-LSB (m-LSB) steganography in €’y

This segment of /m consists of subtle information and afford minimal deviation only.
Hence LSB based IWT steganography is pragmatic in this section. The approximate
coefficients (A) are obtained by applying first level 2D-IWT on 0’y with db4 as the
mother wavelet. The LSBs of the chaotically selected approximate coefficients are
replaced with the ciphered bits using m-LSB steganography approach as discussed in
algorithm 2.
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Algorithm 2: Embedding process in 6°qrs1 region

Z,: Maximum number of binary bits required to represent the largest coefficient in 4,
r;: shifting factor, where 1<, <Z, initialize r; =5;

b: number of bits embedded in each coefficient; initialize b =2,

E: Ciphered bits

N: length of ciphered bits

ny;: n;th value of E; initialize n,=1;

sA;: approximate coefficients with stego values

Initialize x5, o1, X2 Vo2 with values mentioned in Table 1

Input: 0’y Ciphered bits (E), 74, b, Xo1, Yo1» Xo2, Vo2
Output: stego-0"g.; (50’41
[4, D,]= TWT2 (0’41, db4)
u, v, number of rows and columns in 4 J
largest_App_coeff= maximum (4,)
Z, = length (binary (largest_App_coeff)) // find maximum number of bits required to convert
largest approximate coefficient into binary
M=Z-r
Using (8), generate two chaotic sequences H, (xXgs, yos, u;) and H(xpz, Yoz, v2)
X, =int_sort(Hy)
X, = int_sort(H,)
fori=1tou,
Sfor j=1tov,
Selected_coff'= A4, (X (i), X,(j))
Bin_ Selected coff = binary (Selected_coff)
Bin_ Selected_coff (LSB,,: LSB.;)) <= Bin_Selected_coff(M,-(b-1)):M,) @ E(n;: n;+(b-1))
Stego_A, = decimal (Bin_ Selected_coff)
sA(X,(D), X,(7))= Stego_A,
l:fl’l] <N
n/=n;+b;
end if
end for
end for
Take inverse IWT to generate s0’ g
50’ qs1= iIWT(s4, D,, db4)

Case 2: Embedding in 0’ using pixel inverted-PVD (PI-PVD) technique

As discussed in section 2, PVD is suitable in high frequency regions where the difference between
the pixel pair is large enough to proliferate the EC. In the proposed method, this approach is applied
on less sensitive non-QRS (0,q) section of ECG beats. This section is like a flat terrain that
consists of low frequencies only. To apply PVD in this region, high frequency region is created by
inverting the amplitude of every alternate ECG pixel in this fragment. It increases the difference
between adjacent samples and hence improves embedding capacity [27]. The secret bits are stored
at chaotically chosen even pixel pairs (S,,) in order to fully utilize the EC. PI-PVD is applied row-
wise in 0’54 and to generate randomness, both rows as well as sample pairs are selected
chaotically. The implementation process is explained in algorithm 3 that follows the same
procedure as discussed in section 2 The table consists of 12 dyadic-ranges varying between 2°
and 22 with lower (/= 2/"/) and upper (1; =2/-1) bounds for the sub ranges are given as

W= [l,u];j=0,1,2.....12
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The width w; for range W; is same as /; [27, 36]. The procedure to embed secret information (£)
using PI-PVD approach is explained in algorithm 3.

Algorithm 3: To embed secret bits in 0’4, using PI-PVD technique

Initialize x5, Y02, X03, Y03 with values mentioned in Table 1

S: sample pairs (S, S,)

d: absolute difference between sample values

ny: (n+1)" value of N ciphered bits (E) // first n; values are stored in 0’ region
u,, v;: rows and columns of 0’ respectively

Il'lpllt: ECG samples in G’nqrs, N X2, Y025 X03 V03
Output: stego-0yg: (50 grs)
Generate two chaotic sequences; H; (X, Vo2, u) and Hs(Xg3, Vo3, V2) using (8)
X, =int_sort (H,)
X, =int_sort(H;)
Sfori=1:u,
for j=1:v,

S:[Sl S2]; Si= 9’nqrs (X2(Z): X3(/)) , So= e’nqrs(/YZ(i): X3(/) +1)

if S S, = +ve

S, =5

end if

d=[S; — S|

W =[] if |, <d&&d > u

s= [logzw]-]

k= |log,s?|

m= decimal(E (n, to n, + k))

F = (S, *(s—1)+ S, *s)mod s?

ifm=F
(stegoS,, stegoS,) = (51, S2)
elseif m > F
stego S; = S; — (m—F)mod s

stego S, = S, + lm%FJ+ (m—F)mod s
elseif m < F
stego S; = S; + (F—m)mod s
stego S, = S, — lF_TmJ -(F—m)mod s
end if

Verify the underflow and overflow condition
if ;< (stego S))> u; || ;< (stego S;) >u;

stegoS = [stego S, stego S, |
n2=n2+k
end if
end for
e’nqrs (Xg(l), X3(])): stego Sl
ejnqrs(XZ‘(i): X3(]) +1): StEQOSz
end for
Se’nqrs = e’nqrs

| | represents the greatest integer function || signifies the logical OR operation
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Case 3: m-LSB based embedding in 0’y

ECG signal being quasi periodic, the duration is different for every heart beat and so are the
number of ECG samples. Therefore in fragment 0° ., of /m, 1D IWT embedding is performed
row-wise on the chaotically selected row and m-LSB based embedding is done at the LSBs of
randomly chosen approximate coefficients. The embedding process is explained in algorithm 4

Algorithm 4: Row wise embedding in 0’ using m-LSB method

Z,: Maximum number of binary bits required to convert the largest coefficient in A3;
ry: shifting factor where 1< r, <Z,, r,=5;
ns: (n 2+1)lh value of N ciphered bits (First n, bits of E are embedded in fragments 0’y and
6’nqrs
b: number of bits embedded in each coefficient; b =2;
R: vector contains count of the number of ECG samples in each row of 0’
Initialize x;3, Yo3, Xo1, Yo with values mentioned in Table 1
Input: e’qrsz, Ciphered bits E(}’l_; to N), X03 Y03 Xon, Yoi, 12
Output: stego-6’q: (s6°grs2)
u3: number of rows in 0’y
Generate chaotic sequence Hj(xy; Vo3, u3) using (8)
X, =int_sort(H3)
for i=1tou;
no_samples= R(X;(7))

M,= Zyi— 12
row_selected= 0’y (X3(i), 1: no_samples)
[43; D3;]= IWT (row_selected, db4) // apply 1D IWT on each row separately

v;;: number of columns in 43,
Generate chaotic sequence H; (xy;, ¥o;, v3;) using (8)
X, =int_sort(Hy)
forj=1tov;
Selected coff = A3(Xi()))
Bin_Selected coff = binary (Selected _coff)
Bin_Selected coff (LSBy: LSBy.;) <— Bin_Selected coff (M,:M,(b-1)) @ E(ns: ny+(b-1))
As;{X;(j)) = decimal (Bin_ Selected_coff)
lrf}‘l»; <N
nz= nztb;
end if
end for
80’ grs2 (row_selected)= ilWT(sA3;, D3;, db4)
end for

3.6 Reconstruction of stego-image and stego-ECG

The stego-blocks (S0’ g1, 807 nqrs and s0’gy) are arranged back to their locations to obtain the
complete 2D stego-ECG (s/m) which is further converted into 1D stego-ECG (sECG) and
finally transmitted over the channel.

sIm = [$0gs1 Onqrs $Ogrs2
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3.7 Receiver side

At receiver, the stego-ECG signal is received and forwarded to the concerned doctor for
diagnosis while the administrative personnel who has the key (section 4.4.1), extracts the
hidden information. The extraction process at receiver follows the reverse procedure as

demonstrated in Fig. 3(b). Following steps are used to extract the hidden information:

Step 1:  Convert sECG into 2D stego ECG (sim).
Step 2:  Divide s/m into blocks $8qs, S05qrs and s8r as was done on transmitter side.

Step 3: Apply similar methodology on s0’yy, $0’,qr and s0’y to extract the hidden
information from respective fragments as implemented at transmitter but in reverse
order. The complete procedures followed to obtain secret bits are well explained in

algorithms 5, 6 and 7.

Algorithm 5: Extraction of embedded bits from s0’

Z,: Maximum number of binary bits required to represent the largest coefficient in 54,
r;: shifting factor where 1< r; <Z, initialize r; =5;

b: number of bits embedded in each coefficient; initialize b =2,

Initialize xy;, Yor, Xo2 Y02 with values mentioned in Table 1

Input: sO’ g1, 77, b, Xo1, Yo, Xo2, Yoo
Output: Extracted bitsl (Ex_1)

Using (8), generate two chaotic sequences H, (Xg;, yo;, u,) and H,(xpz, Y2, v,)
X, =int_sort(Hy)
X, =int_sort(H,)

[s4; sD;]=TWT2 (50’41, db4)
u;, v;: number of rows and columns in s4;
M;: Z;-r;
Bl
Sfor i=1tou,
for j=1tov,;
Selected coff = sA; (X;(i), Xo()))
Bin_ Selected_coff = binary (Selected_coff)
Ex_1(B:B+(b-1)) < Bin_Selected_coff (M,-(b-1):M,) ® Bin_Selected coff (LSB:LSB+(b-1))
B=B+b
end for
end for

Algorithm 6: Extraction of embedded bits from s0’,
Initialize xg2, Y02, X03 Y03 with values mentioned in Table 1
Input: $0’ 4, X02, Y02, X03, Vo3

Output: Extracted bits2 (Ex_2)
u5, v;: rows and columns of s6°,q, respectively
Generate two chaotic sequences; /1, (Xg2, o2, 12) and Hs(xy3, yy3, V) using (8)
X, = int_sort(H,)
X, =int_sort(Hs)
Cel
fori=1tou,
Follow algorithm 3 to find S, d, s, k and F
Ex_2(C : (C+k)-1)= binary (F, k)
C=C+k
end for
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Algorithm 7: Extraction of embedded bits from s0’,,

Z,: Maximum number of binary bits required to convert the largest coefficient in A3
R: vector containing count of number of ECG samples in each row of 6’
Initialize xg3, yo3, Xo1, yo; With values mentioned in Table 1.

72: shifting factor where 1< r, <Z, initialize r, =5;

b: number of bits embedded in each coefficient; initialize b =2,

Input: s0° g, 7, X03, Vo3, Xo1, Yoi
Output: Extracted bits (Ex_3)

uz: number of rows in s0’ ¢
Generate chaotic sequence Hs(Xy3, Vo3, U3) using (8)
X;=int_sort(Hs)
Sori=1tou;
no_samples= R(X;(i))
row_selected= s0’ g, (X;(i), 1: no_samples) .

[sA43; sD3]= IWT (row_selected, db4)

v3;: number of columns in s43;

Generate chaotic sequence H, (xy;, Vs, v3;) using (8)

X, =int_sort(H,)

rri=maximum(sAs;)

Z,~= length (binary (rr;)) // find number of bits required to convert largest
approximate coefficient in a row into binary

My Z;-ry

D¢l

forj=1tov,
Selected_coff = sA3(X (j))
Bin_ coff' = binary (Selected_coff, L)
Ex_3(D:D-(b-1)) <= Bin_ coff (My;: My~(b-1) @ Bin_ coff (LSBy: LSB4.1))
D= D +b;
end for
end for

Step 4:  Extracted bits=[Ex_[ Ex 2 Ex_3]

4 Results and discussion

The technique proposed in this work has successfully achieved the prime goals of steganog-
raphy viz. imperceptibility, robustness and payload capacity. Although steganography causes
irreparable loss to the ECG signal but the proposed technique aims to restrain the loss to its
minimal. This is evidently demonstrated in Fig. 6 that the amount of error occurred in the stego
ECG is trivial even after embedding secret information to their maximum capacity (4996 bits)
in 3000 samples of record 100 of MIT-BIH arrhythmia database. The proposed steganography
approach is blend of both spatial and transform domain techniques and shows impeccable
performance with high embedding capacity and minimal deterioration in signal quality.
Various statistical parameters such as PRD, PRD1024, normalised PRD (PRDN), mean square
error (MSE), root mean square error (RMS), SNR, PSNR, kullback leibler divergence (KL-
Divergence) [27, 40] are computed to analyse its efficacy. Clinically critical metrics such as
weighted percentage root mean square difference (WWPRD) [2] and wavelet energy based
diagnostic distortion (WEDD) [22] are also measured to evaluate the performance of the

@ Springer



Multimedia Tools and Applications (2021) 80:8505-8540 8523

1200 T T T T T -

1150 - 1
» 1100 - .
]
2
3, 1050 - b
g

1000 1

950 MMMMWM

900 e ! | -

1500 2500 3000
ECG samples
T T T T T T
1200 b
—— Original ECG ——Stego ECG |

1150 - T
o 1100
=}
£
= 1050
g

1000

950

00 el T

1 1 [ o= I | 1
350 400 450 500 550 600 650
ECG samples

Fig. 6 Original and stego ECG signals alongwith the amount of error occurred when embedding secret
information to their maximum capacity in 3000 samples of record 100 of MIT-BIH arrhythmia database

proposed technique. The results are computed with two bits embedded at the LSB positions of
the approximate coefficients obtained from IWT in blocks 0’y and 0’y while PI-PVD
based steganography is applied in 0’ region. The overall results in terms of statistical and
diagnostic errors as well as measures regarding the payload capacity and BER on all 48
records of MIT-BIH arrhythmia database of 5 mins duration, 18 records of MIT-BIH NSR
database of 5 mins duration, 15 records of BIDMC-CHF of 1.5 mins duration and 20 records
of self-recorded data of 5 mins duration are displayed in Tables 2, 3, 4 and 5 respectively.
Average PRD, PRD1024, PRDN, SNR, PSNR, KL-Divergence, WWPRD and WEDD
obtained in case of MIT-BIH arrhythmia database of 5 mins duration are 4.32 x 1073,
4.52x1072, 0.066, 48.27, 51.51, 9.42x 107, 0.152 and 0.042 respectively at EC of 1.58
and zero BER; in MIT-BIH NSR database 1.8 x 1072,4.8 x 1073, 0.0628,35.28, 44.71, 2.2 x
1074, 0.062 and 0.051 respectively at EC of 1.69 and zero BER; in BIDMC-CHF database
1.77 x 1072, 7.5 x 1073, 0.073, 37.53, 44.174, 3.37 x 107, 0.1595, 0.044 respectively at EC of
1.38 and zero BER and in self-recorded database 8.63 x 1073, 0.01046, 0.02563, 41.5497,
52.10,4.15x 1073, 0.06588 and 0.01623 respectively with average EC calculated as 1.9572 at
zero BER.

4.1 Effect of ECG duration on the performance metrics
The effect of ECG duration on the performance of the proposed algorithm is studied. Table 6

shows the average of performance metrics when determined on all 48 records of MIT-BIH
arrhythmia database at varying durations. An average PRD, PSNR, KL-Divergence,
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WWPRD, WEDD and EC when measured for ECG signal of (i) short duration (5 mins) are
4.32x1073,51.515,9.42 x 1076, 0.152, 0.0429 and 1.5869 (ii) medium duration (20 mins) are
4.12 x 1073, 50.06, 9.43 x 1076, 0.1409, 0.0438 and 1.5632 (iii) long duration (30mins) are
4.32x 103, 51.065, 9.77 x 107°, 0.154, 0.0423 and 1.573 respectively. It has been observed
that the performance is nearly same for ECG signals of all durations which shows that the
increase in length of ECG signal increases the number of bits embedded in the signal while the
impact is minimal on other parameters. Based on the amount of secret data to be embedded,
the minimum length of the ECG signal required can be decided in advance.

4.2 Impact of embedding on ECG signal with unique approaches

The proposed approach applies ECG feature specific steganography techniques on clini-
cally separated QRS and non-QRS region based ECG blocks, possessing different embed-
ding capacities. Table 7 displays the number of bits embedded in individual blocks of all 48
records of MIT-BIH arrhythmia database of 5 min duration when 2-bits are embedded in
each coefficient obtained in regions 0’y and 0’y using IWT-mLSB approach and
embedding multiple secret bits in all the possible ECG sample pairs obtained in 0’4
region using PI-PVD approach. The average number of bits embedded in blocks 0y,
0’ ngrs and 0’y are 3448.5, 118,884.6 and 49,057.42 respectively with average total bits
embedded in the complete signals are 171,390.5. The influence of applying integrated
approaches on the ECG signal is demonstrated in Fig. 7. The amplitudes of original and
stego-ECG of record 100 after embedding 2-LSB bits in approximate coefficients of
regions 0’y and 0’ y» and embedding multiple bits in all possible ECG sample pairs in
region 0’45 of 2D ECG image are analysed. It has been found that IWT-LSB approach
efficaciously hides the secret bits with negligible distortion, however embedding in non-
QRS region through PI-PVD technique improves the EC to manifolds. To further extend
this analysis, the performance evaluation metrics are computed for variable embedding
techniques. For this, the number of LSB bits embedded in QRS regions (0’ and 6’ g;0)
with IWT-mLSB approach and the percentage of possible ECG pairs selected to embed
secret bits in non-QRS region (0°,) are varied. The bar graphs in Fig. 8 displays the
amount of variation occured in EC, number of bits embedded, PRD, PSNR, KL-Diver-
gence, WWPRD and WEDD when LSB bits of approximate coefficients in blocks 0’ g
and 0’y vary as 1-bit, 2-bits, 3-bits and 4-bits and the percentage of possible ECG sample
pairs selected to embed secret bits in 0,4, block vary from 25% to 100% of possible
sample pairs with an increment of 25%. It is found that increase in percentage of embedding
in non-QRS region has huge impact on the embedding capacity and other parameters also.

4.3 HRV analysis of original and stego-ECG

HRYV is an important parameter that provides meaningful information about the cardiovascular
system [41]. The impact of embedding the secret information on the HRV is analysed in terms
of time domain (standard deviation of NN-interval (SDNN), standard deviation of the averages
NN interval for Smins segment (SDANN), root mean square of successive RR-interval
differences (RMSSD), NN50 and percentage of successive RR intervals that differ by more
than 50 ms (pNN50) and non-linear measurements (SD1, SD2 and SD1/SD2) [18, 35]. Table 8
shows the aggregated time scale parameters when measured on all the 48 original and stego-
ECG records of MIT-BIH arrhythmia database. The percentage error is calculated as the

@ Springer



8531

Multimedia Tools and Applications (2021) 80:8505-8540

‘uorgor S g ur ojduwres
Aue Suiaea] Jnogim sdefiono T g pue 18P g suoigor o Jer [rews oS St [RUSIS Oy UI 18IQ 1SAMOYS A Jey sandw /(7 PuB 80T ‘YO SPr0oa1 DDF ur suordar S g ur Surppaquio oN

96€°TS 0071 9LET WHLLY as TIVLS 08298 096€ TSOLYT 10T
WLSO6Y 9'p88°8I1 S8PPE  S06EILI dSerony 7S€°s8 TEH6 906€ 06986 00T
906°€1 982°60C 8STH 0S€°L2T eT 061°8T 81H00C 897C 90606 Tl
16599 9L'8y 299 81001 €€T ¥S0°LT 8TLOT 4544 895'9€T €Tl
9¢0' 061°1€1 9%9C TLS'LLY (454 08L°1C 01120T 86LE 889°LTT 14!
TTLLY 8TI'9L 879T 8LY9P1 1€C 86HE1 9Lt*SET 81LT 69°IST 1Tl
0£8°LT T6LYL $95¢€ 981°90C 0£C 881°CS 91801 pe6e 8E6'SLT 611
0SL6L 765°€€ 891€ TIS9IT 87T Pr19€ 850°191 85T€ 09+°00C  SI1
89165 78T°€6 009¢ 0S£°951 %44 0LT01 026°9ST 0STT ovr69T  LII
0S€€T 0LT‘P81 Y6CE 718°01¢C (444 799°Ly 86€°LTI1 96¢ $29°8L1 911l
LS TTT66 #59¢ 8rS°LST 1ee 962°1C 089°30C 8T 078'c€T  SII
8EL Yy 8L 0V 981¢ 709881 0ze 0196 0SHe b6ET pSH00L  PI1
995°T§ 297911 0zre SYTILI 61T 09t°95 099801 65T TILLOT €11
YLy WLl 86¢C¢ YTLLLY LI1T TILT1 9€S5°€TT 7S8¢ 001°0¥C 48
09€%S 919%L 605 0L0FET S1T 9€7°0C ¥66°€0C pIIE vreLze 101
8T%9 9€5°C8 0zre YOT0ST are 0L8°LT 0ST191 888¢€ 800°€61 601
798°c¢ 8 THI 056t 0S1°181 €1T 81806 0 966€ PISH6 801
¥99C 979°CLI 8STH ¥ 10T zIT 20€°8T PIy €81 891€ ¥88PIT  LOT
169°99 8€6°19 8L6E 019°C€1 01¢C 0165 61°€6 0L6T TLS'SST 901
016k 001701 pLEY P8EPSI 60T 61°SS $00°86 bhLE ovTLST SOl
9g€'ey 8TS'LIT pSSH 81L°591 80T 096°C6 0 99€€ 97€96  $OI
LIY6 0 891¢ 0vEL6 L0T 8€6°CT 81€°861 981¢ e €01
89549 TET0S 980t 98L°811 s0T #10°95 8YT €01 Y6TE 955791 T01
0£0°98 At 8Th 209°¢6 €0T Pre1s 26661 8L0€E PIFROL 101
96£°CS 00LCT1 9LET TLY'LLY 20T 88y 89L°9T1 0€ee 96 ELT 001
@b g yoolq sbu g yo01q 18P g yoojq  Pappaquuid @b g yoolq sbu g yoolq 18P g yo0[q  Pappaquid

UL pOpPqUId S UT POPPIqUId S UI POPPAqUID SN SHQ B0 PIOOSY U POPPOQUID SN Ul POPPAqUId SIg I POPPOQUID ST SNQ [B10L,  PI00y

SUIW G JO dSEqeIeP PILIAYLE HIF-LIN JO SPI003I g [[¢ JO SYO0[q [ENPIAIPUI Ul PAPPIQUID $}Iq JO Junowy £ djqe]

prlnger

AR



8532 Multimedia Tools and Applications (2021) 80:8505-8540

T T T
1150 Original ECG
Stego-ECG
1100
3 e~ S A————A
2
= 1050 H
£
T ’
- 1000 - Sgﬂrsl 56 ngrs Saqr‘sl
050 1 M%WWWMW‘/ ﬂ“‘"\w
1 1 1 1 1
0 50 100 150 200 250
ECG samples

Fig. 7 Impact of embedding secret bits in blocks 8’41 and 0’4 of row 2 of original and stego 2D ECG using
IWT-LSB and PI-PVD approaches respectively

difference between the parameters obtained from the original and stego-ECG divided by the
original average and is given as:

__ original—stego

Error(%) x 100

original
As observed in Table 8, the amount of error caused in the ECG signal due to embedding is
inconsequential to affect the diagnosis [18].

4.4 Security analysis
4.4.1 Key space

The length of the key is an important parameter that makes the system invulnerable to stego
attacks. Therefore in the proposed steganography approach, the key length is kept sufficiently
large to curtail the risk of illicit access of sensitive information by intruders. The key consists
of the three sets of initial parameters (xp;, Vo1, X02, V02> X03» Vo3) used to generate three chaotic
maps used in the steganography technique, length of confidential information L. and values of
shifting factors (r; and r,) used in regions 0’y and 0’yy. The format of key is shown in
Fig. 9. If the initial parameters are set to precision of 14 decimals then as per IEEE 754
standard of converting decimal numbers into binary [30], the length of the key is calculated as
264%6+16+3*2 = 2406 bits which is sufficiently large to avoid any malicious attack.

4.4.2 Key sensitivity

Key sensitivity is another security parameter that measures the strength of the key. It shows the
amount of variation occur in the secret information when extracted with the wrong key. The key
space in the proposed algorithm consists of initial and control parameters of three chaotic maps,
length of the confidential information and shifting factors. The chaotic maps are so sensitive to
initial conditions that even a small change at 14th decimal point alter the whole chaotic sequence. It
results in wrong selection of embedded locations at the receiver and hence extraction of erroneous
secret information. It is demonstrated in Fig. 10 that extraction with correct key results in correct
information retrieval whereas a small change in value of y,; at 14th decimal place results in

@ Springer
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Fig. 8 Bar graph plots of (a) EC (b) Bits Embedded (c) PRD (d) PSNR (e) KL-Divergence (f) WWPRD (g)
WEDD with varying amount of selected sample pair in 6’4 region and number of bits selected for embedding
in 0’41 and 0’y regions of all the 48 records of MIT-BIH arrhythmia database of 5 mins
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Table 8 Average of time scale HRV parameters and percentage error over all the 48 ECG records of MIT-BIH
arrhythmia database of Smins duration

Parameters Original ECG Stego-ECG Error (%)
Time Domain Measurement SDNN 39.58791 39.75903 0.4323
SDANN 1.32x 10712 1.28 x 10712 3.03x 10714
RMSSD 55.34523 55.35972 2.618x107*
NNS50 67.44444 6731111 1.97x 1073
PNN350 0.169317 0.168926 2.362x1073
Non-linear measurement SD1 38.54997 38.8162 6.906 x 1073
SD2 38.20965 38.21682 1.876x 107
SDI1 /SD2 0.912464 0.909939 2.76 x 1073

extraction of corrupted information. However the impact of varying the key is insignificant on the
stego ECG.

For example as per the key space, structure the correct (Y;) and incorrect keys (Y,) are

Correct key Y;:

{0.897655762990, 3.9953461356011, 0.933453564978, 3.886954532619,
0.994357334262, 3.973256778521, 5000, 5, 5}

Incorrect key Y):

{0.897655762990, 3.9953461356018, 0.933453564978, 3.886954532619,
0.994357334262, 3.973256778521, 5000, 5, 5}

4.5 Comparative analysis of the proposed work

The efficacy of the proposed work is evaluated by comparing its results with the state of the art
techniques. In comparison to the outcomes shown by the currently published papers, the
proposed technique surpasses in terms of payload capacity and PSNR at very low PRD, KL-
Divergence, WWPRD and WEDD. The figures in Table 9 evidently show that the PRD and KL-
Divergence of 4.2 x 1073 and 8.95 x 1070 respectively achieved in proposed method are too low
at payload capacity of 11.2 k bits as compared to PRD and KL-Divergence of 5.9 x 1073 and 0.15
respectively achieved in [12] at payload capacity of 2800 bits. The PRD, KL-Divergence and
PSNR computed in [13] are 0.0132, 0.144 and 43.44 respectively for 4016 bits embedded as
compared to 0.017, 2.28 x 107 and 44.85 respectively after embedding 28.6 k bits by proposed
algorithm. Besides, the relative amount of error occurred in proposed method is trivial as
compared to the techniques discussed in [27, 28] for considerable difference in their ECs.
Therefore, from the comprehensive analysis it is apparent that the proposed algorithm is much
competent as compared to the recently published state of the art techniques.

5 Conclusion

In comparison to the existing techniques in which single common approach of steganography
is applied over the complete ECG signal, a feature specific hybrid approach for data hiding in

X01 Yoi X02 Yo2 X03 Yo3 L. ry r2

(64 bits)|(64 bits)|(64 bits)|(64 bits)|(64 bits)|(64 bits)|(16 bits)| (3 bits) | (3 bits)
Fig. 9 Structure of key space
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Fig. 10 (a) Extraction of patient’s confidential information with correct and incorrect keys (b) Original ECG
signal (c) stego-signal recovered with correct key (d) stego-signal recovered with incorrect key

2D ECG is proposed. An integration of IWT and modified LSB technique is applied to embed
information in the pivotal QRS regions whereas PI-PVD method is used to incorporate secret
information in the non-QRS region. The blend of spatial and transform domain approaches
used in the proposed algorithm significantly outperforms other ECG steganography techniques
by achieving low PRD, PRD1024, PRDN,KL-Divergence, WWPRD and WEDD at high EC.
An average PRD, PRD1024, PRDN, SNR, PSNR, KL-Divergence, WWPRD and WEDD
evaluated on typically Smins duration of ECG signal of MIT-BIH arrhythmia database are
4.32x1073, 0.0452, 0.066, 48.27, 51.51, 9.42 x 107, 0.152 and 0.042 respectively. The
number of bits embedded and EC achieved for the same set of data are 1.58 and 171,390.5
respectively at zero BER which is exorbitantly high as compared to the techniques reported in
literature. Further, the efficiency of the proposed algorithm is measured on both normal (MIT-
BIH NSR) and abnormal (BIDMC-CHF) ECG databases as well as on self-recorded data of 20
subjects. In addition to statistical and clinical parameters, the impact of steganography is
measured on HRV in which both time domain and non-linear parameters are analysed. The
results show negligible error in HRVs of original and stego ECG. The performance is studied
for different durations with variable number of bits embedded in QRS regions at varying
percentage of data embedded in the non QRS regions. The performance is evaluated with
maximum QRS complex duration of 0.15 s. The limitation of the proposed technique is that if
the duration of any QRS complex exceeds this value then that QRS complex has to be
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excluded from embedding to avoid error. The effect of excluding the QRS region is however
minimal on the overall performance of the proposed technique. To ensure the security of the
embedded information, chaotic maps are incorporated that provides sufficiently large key
space and high key sensitivity. The comprehensive analysis of the proposed approach of
feature based data hiding in ECG signal yields excellent results and recommended as a
proficient and authentic approach for ECG steganography. The program code can be shared
with the reader on request to the corresponding author.
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