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Abstract
Due to current security situations around the globe, iris biometric technology is highly
preferred for both overt and covert applications. A typical iris biometric system includes
image acquisition, iris segmentation, features extraction, and matching and recognition
modules. Amongst these modules, iris segmentation plays a decisive role because it
segments the valid iris part in an input eyeimage. It includes two tasks: iris localization
and noise (e.g., eyelids) removal. Notably, the overall performance of an iris biometric
system strongly relies on the iris localization task, because it demarcates the actual iris
contours. Some contemporary iris localization schemes search over a three-dimensional
(3D) space while marking iris boundaries, which is a time-consuming process if not
optimized properly. Besides, some schemes also resort to the fixed and/or crude
thresholding-based techniques for pupil localization. Notably, such schemes may perform
poorly if image data do not maintain quality. To address these issues, this study proposes
a robust iris localization scheme maintaining both speed and accuracy. It includes
preprocessing the input eyeimage using an order statistic-filter and the bilinear interpo-
lation scheme, extracting an adaptive threshold using the image’s histogram, processing
binary image via the morphological operators, extracting pupil’s center and radius based
on the centroid and geometry concepts, marking iris outer boundary using the Circular
Hough transform (CHT) and refining coarse iris boundaries through the Fourier series.
The proposed scheme exhibits relatively better experimental results compared with some
contemporary iris localization schemes on the public iris databases: IITD V1.0, CASIA-
Iris-Interval and MMU V1.0.
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1 Introduction

The Information technology (IT) has been passed through tremendous advances over the last
few decades. Both hardware and software platforms have been improved significantly. Due to
these advances, the research community has actively been engaged in developing new
software applications, hardware gadgets, and IT-based solutions to numerous applications
such as health and care, e-commerce, smart cities, etc. Due to current delicate security
situations, the research community around the globe has also focused on the secure and
reliable applications of the Biometric technology [2, 12, 15, 22]. In this concern, researchers
have been working on improving the performance, scale and usability of this technology. For
example, the India AADHAR program has been focused on its scale, the Apple Touch ID
program focuses on its usability, the NIT DOCOMOmobile iris recognition aims on the user’s
convenience and the UAE border control program is targeted on its performance evaluation
[22]. Literature [22] reveals that market for the biometric systems expects to grow from an
estimated 10 billion USD in 2015 to 25 billion USD by 2020. Due to these facts, the biometric
technology has immense potential to be used for both covert and overt applications, e.g.,
border control, surveillance, law enforcement, service industry, military, robotics, smart cities
and smart offices.

1.1 Iris biometric

Biometric technology is capable to recognize humans from their physical (e.g., ear, face
and iris) and/or physiological (e.g., voice, smell and gait) traits using the pattern recog-
nition techniques [2, 11, 12, 15, 22]. Biometric traits such as fingerprint, face and voice
have long been in the field, however these traits do not remain stable with the passage of
time [11, 13]. For example, the performance of a Fingerprint biometric system is highly
susceptible to the scars, dirt, etc. [16]. Similarly, a Face biometric system is also prone to
the beard, scars and aging affects [16]. Literature [5, 31] reveals that iris is relatively a
stable and robust biometric trait compared with its other counterparts just mentioned. For
this this reason, the relevant research community has constantly been working on devising
resilient iris biometric systems for both overt (e.g., citizen registration) and covert (e.g.,
monitoring criminals) applications [2, 5, 22].

As shown in Fig. 1, iris is an externally visible organ protected by the cornea. It is an
annulus sandwiched between the pupil and sclera. In specific, it is consisted of the muscle
tissue that are made up of a sphincter and a group of dilator muscles [22]. The sphincter and
dilator cause the pupil to contract and dilate, respectively. The exterior iris surface comprises
two parts: inner pupillary and outer ciliary zones. These zones are separated by the collarette (a
sinuous structure). The crypts (oval like structure) around collarette allows the fluids to enter
and/or exit iris quickly while pupil is dilating or contracting. As shown in Fig. 1a, a group of
streaks caused by the bands of connective tissue enclosing crypts becomes wavy and straighten
when pupil dilates and contracts, respectively. Moreover, the concentric lines associated near
the outer ciliary zone go deeper when pupil dilates. This act causes the iris to fold.

As clear from Fig. 1, iris has quite complex structure. It includes features such as crypts,
ridges, freckles, corona, furrows, and the arching ligaments. Notably, it is observed experi-
mentally that the irises of any two individuals are not identical [11]. Most importantly, the left
and right irises of the same individual also do not exhibit similarity. Literature [2, 11] reveals
that iris of a person remains stable over his/hers entire life, except some minor changes

Multimedia Tools and Applications (2021) 80:4579 4605–4580



occurring in the early life stages. Experimentations performed at large scale reveals that iris is a
stable, unique, and non-invasive biometric trait [2, 5, 31]. Due to these facts, iris as a biometric
is a suitable candidate for tremendous applications, e.g., border control, criminal investigation,
citizen registration, banking, health and care, access to a desktop PC and network-based
systems, etc.

1.2 Literature review

A typical Daugman-type [5] iris biometric system comprises four basic modules: (i)
eyeimage acquisition, (ii) iris segmentation, (iii) feature extraction and (iv) matching
and recognition. No doubt, each of these modules plays an essential role in the overall
system’s performance. However, performance of the last two modules strongly rely on
quality of the first two modules. Literature [2, 5, 31] reveals that quality of the first module
is generally maintained while acquiring the image data from an individual through an
audio and/or a visual aid and imposing some strict constraints on the involved person. For
example, a subject is asked to stand at a very short distance from the image acquisition
setup, glare directly into the camera view, do not breath for a while, etc. [2, 5, 31]. On
other hand, maintaining quality of an iris segmentation is always a challenge for the
research community. It is mainly because of the noise such as eyelids occlusion, eyebrows,
eyelashes, wrinkles and hair, which generally surrounds iris in a human eyeimage (see
Fig. 2). Iris segmentation comprises two tasks: (i) Iris boundaries demarcation and (ii)
Noise removal. Though each task plays a crucial role, but iris localization plays a more
decisive role in the overall system’s performance. It is because this task is responsible to
demarcate the valid iris outer/inner contours in a human eyeimage. Literature [5, 29, 31]
reveals around 60% valid-part of an iris is generally sufficient for the secure recognition of
humans through their iris textures using the pattern recognition techniques. Due to various
challenges inherited in iris localization, it is still a potential research area [27].

Both Daugman [5] and Wildes [31] pioneered the iris biometric systems, which are parallel
of each other. Daugman devised a well-known Integro-differential operator (IDO) to localize

Fig. 1 a and (b) Internal and external anatomy of iris, respectively [22]
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the iris contours and eyelids’ occlusion in the iris region [5]. This operator is often applied for
iris segmentation. Though IDO has been reported with great precision in literature [5], it may
take relatively longer if applied inefficiently [2, 11]. For example, Labati and Scotti in [7]
offered an iris localization technique. First, this scheme used IDO to localize coarse iris
boundaries. Next, it marked the true boundary-points in each linearized strip. Then, it
regularized iris boundaries using the Fourier series [6]. This algorithm exhibited good results
on some datasets. However, its main demerit lies is its computational cost. On the average, it
consumed around 3 minutes to segment an iris in human eyeimage. It is observed that IDO
consumed around 98% of the total-time while segmenting iris, which is mainly because of its
inefficient application.

Wildes in [31] proposed the Hough transform for iris and eyelids demarcation. It is
often applied in the machine vision applications to detect and mark boundaries of the two-
dimensional (2D) binary objects, e.g., circle, parabola and ellipse. Literature [14] reveals
that this transform is relatively non-sensitive to the broken contours of 2D objects in the
binary image. It also exhibited relatively better results for iris localization [11]. It is
evident from literature [2, 11], it may also take relatively longer for iris localization if
applied inefficiently. For example, authors in Ref. [27] implemented the Masek iris
localization scheme [18] and tested it on the CASIS-Iris-Interval V3.0 dataset [4]. On
the average, it took around 20 s to demarcate the iris contours. Notably, this much
localization time is generally a hurdle for contemporary schemes to be used for real-
time applications such as immigrants registration at the Airports [2, 11]. It is evident from
literature [2], researchers also devised the counterparts of Wildes and Daugman iris
localization approaches. For this purpose, most researchers resorted towards the histogram
and/or thresholding based techniques [16], which take relatively shorter as compared with
the CHD/IDO based methods [2, 11]. Unfortunately, most thresholding-based schemes are
not much flexible and thus perform well for the good quality images. It is mainly because
of the flaws inherited in selecting a threshold for the purpose of binarizing input eyeimage
[1, 16, 27]. In this concern, most authors applied a fixed threshold while binarizing input
eyeimages, which generally results in poor performance when the image’s quality is not
fair. For example, authors in [28] used a fixed threshold of 127. This act greatly boasted up

Fig. 2 A human eyeimage showing various eye-parts [21]
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the overall localization process, but it may perform poorly when image data has poor
quality, e.g., low contrast, non-uniform illumination and excessive light reflections.

Ma et al. [17] published an iris localization method based on the Conformal geometric-
algebra (CGA). It works as follows. First, authors extracted 2-thresholds using a histogram
method based on the gray-level statistics of input eyeimage. Using these thresholds, they
transformed input image to a 3-level image. Next, they obtained the edgemap of resultant
image via the Sobel-gradient operator. Then, they applied a CGA-based circle for demarcating
the iris inner/outer boundaries. To perform this, they applied the Priori-information of human-
eye’s structure. However, they employed the CGA inner-product to finalize whether an edge-
pixel from the candidate’s contour belong to the circle or not. This scheme has also used a
defect-ratio, which indicates the completeness of each candidate-contour. Finally, boundaries
with minimum defect-ratio were declared as iris contours. This scheme was validated on IITD
V1.0 [9], MMU V1.0 [21] and CASIA-IrisV3-Interval [4]. This scheme has demonstrated
satisfactory results on a set of 200-eyeimages chosen arbitrarily from each database. However,
following are some flaws of this scheme. First, authors utilized a very rough scheme when
computing two threshold values. In fact, they used the bimodal-property of the image’s
histogram when extracting thresholds, which is unreliable. It is because in eyeimages where
pupil is contaminated and/or surrounded by the eyebrows, eyelashes or black hairs-strips; then
the corresponding edgemap may not be relatively useful. Secondly, it did not offer any scheme
for noise removal. Finally, authors localized iris boundaries with a circle approximation. With
this approximation, the localized iris part may contain some unwanted iris pixels or exclude
some valid iris part.

Wan et al. [30] presented an iris segmentation scheme, which is centered on the Anisotropic
diffusion. The anisotropic diffusion has been derived from the Partial-differential equation.
The main objective of this article is to segment iris in the non-ideal eyeimages via a circular
approximation. In this article, authors demarcate iris in two steps as follows. In the first phase,
authors first used the Laplacian pyramid (LP) to reduce the size of input image. Next, they
suppressed specular reflections, eyelashes and eyebrows using a combination of the morpho-
logical operators and anisotropic diffusion. After that, they computed the center of pupil using
the concept of centroid in a binary image obtained via the Sobel gradient operator. Following
that, a small image centered on pupil’s center is transformed to its polar-form where authors
localized the iris inner boundary via an edge-detecting scheme. In the second phase, authors
first transformed a selected region containing iris outer boundary to its polar form. Next, they
enhanced contrast of the boundary between the sclera and iris using median filter. After that,
they utilized a region-based curve-evolution scheme to demarcate iris outer boundary. This
scheme was validated on the CASIA-IrisV3-Interval, CASIA-IrisV3-Lamp, MMU V1.0 and
UBIRIS V1.0. The weak points of this article are as follows. The anisotropic diffusion scheme
does not suppress reflections effectively; small dots could still be seen in the pupil center. Iris
contours are localized with circular approximation. Moreover, no noise removal scheme is
used to mark eyelids in localized irises.

Sardar et al. [25] presented an algorithm to localize iris in non-ideal eyeimages. To brief,
this scheme strongly relies on a combination of the circular sector analysis (CSA) and rough
entropy. In this article, authors applied the morphological operators supplemented with the
rough-set theory while marking the iris inner contour. Next, they used the CSA-based scheme
to mark the iris outer contour involving an image-patch being converted to polar form. Authors
tested this scheme on IITD V1.0, MMU V1.0 and CASIA-IrisV3-Interval. It demonstrated
good results on a set of 100-eyeimages chosen arbitrarily from each database. However, it has
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some drawbacks: (i) It was not validated on a big set of eyeimages, (ii) On average, it took
more than one second while localizing iris in input eyeimage, (iii) It offers no noise removal
scheme and (iv) Finally, the iris contours were demarcated with circle approximation only. In
addition, some contemporary authors also applied the active contour models (also called
snakes) to localize the actual non-circular iris boundaries [2, 23, 26]. Active contour models
are often applied in the machine vision applications to segment objects, e.g., brain-tumors.
These schemes exhibit good performance when segmenting objects having irregular shapes,
however they may perform poorly if edges of a target object are relatively week; it may happen
due to low contrast. It is because of the stopping criterion of the active contour model. Due to
week edges, the process of active contours evaluation may not cease at the actual boundary
and would thus result in the over segmentation. No doubt, this act may significantly affect the
overall system’s performance [27].

Soliman et al. [27] proposed an efficient scheme for iris localization. First, authors
reduced the effects of eyelashes using the morphological closing-operation. Next, they
binarized the resultant eyeimage through a crude adaptive threshold. After that, they filled
holes in the binary image caused by reflections. Following that, they considered a binary
object with maximum area as the pupil object and then obtained it center’s coordinates
using the centroid. Finally, authors applied IDO in a small region centered at pupil to mark
iris inner/outer contours. This scheme was tested on CASIA-IrisV3-Interval [4]. The
results are satisfactory, but it performed poorly for some relatively good quality
eyeimages. It is mainly because of the flaws inherited in computing a threshold for image
binarization. Authors computed this threshold as follows: (i) if the sum of pixels in the
histogram-bins: 0 ~ 100 of a target image was greater than 30% of the total pixel in that
image, then they assumed a fixed value of 50 as an adaptive threshold or ii) if sum of
pixels in histogram-bins: 150 ~ 255 was greater than 75% of total pixel, then they took 115
as an adaptive threshold. Otherwise, they considered 85 as an adaptive threshold. It is
evident, this scheme is robust, but it may be trapped easily when image data is contam-
inated with noise, e.g., non-uniform illumination, hair and eyeglasses. Besides, it took
around 240 m-seconds (on the average) when localizing iris in a human eyeimage.

To address the above-mentioned issues, this study proposes a robust iris localization
scheme. First, it preprocesses the input eyeimage using an order statistic-filter to soothe down
the effect of eyelashes and sharp gray-level intensities if any. Next, it suppresses the specular
reflections in resultant image using an effective scheme involving bilinear interpolation.
Literature [14] reveals that IDO generally saturates at reflections. Besides, reflections can also
cause spurious pixel/edges in the edgemap of the concerned input eyeimage. Notably, these
spurious edges/pixels may result in more voting in the Hough transform accumulator while
detecting a circle [2, 27, 31]. Consequently, the CHT-based iris localization schemes may take
relatively longer if not used efficiently. After that, it extracts an adaptive-threshold from the
histogram to binarize resultant eyeimage Following that, it processes resultant image using the
morphological operators and extracts the pupil center and radius using the concept of centroid
and 2D geometry. Following that, it marks the iris outer boundary using the CHT and an
edgemap of a decimated version of the preprocessed eyeimage. For fast processing, edges
inside the pupil and belonging to its boundary are removed. Finally, it extracts the non-circular
iris boundaries through the Fourier series.

The rest of the paper is organized as follows. Section 2 presents some related work for the
comfort of common readers. In this concern, it explains two pioneered iris localization
schemes from the iris biometric paradigm. Section 3 explains the proposed iris localization
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scheme in explicit details. Section 4 elaborates the experimental results and discussion. Finally,
Section 5 concludes the proposed work.

2 Related work

Literature [2] on the iris biometric systems reveals two pioneered iris localization schemes,
which are proposed by the Daugman [5] and Wildes [31]. The following text details these
schemes.

2.1 Daugman iris localization

Assuming the iris inner (pupillary) and outer (limbic) boundaries as two non-concentric circles
(Fig. 3a), Daugman proposed the following well-known Integro-differential operator (IDO) for
iris localization [5].

max
xo;yo;rð Þ

Gσ rð Þ* δ
δr

∮ xo;yo;rð Þ
I x; yð Þ
2πr

ds
����

����; ð1Þ

where Gσ(r) represents a smoothing-function (e.g., Gaussian-filter) with scale σ. The symbol *
represents the convolution operator. This operator searches over the entire image domain (x, y)
to find the maximum blurred partial-derivative with respect to increasing radius r of the
normalized contour integral of input eyeimage I(x, y) along a circular arc ds centered at (xo,
yo, r). Here, r and (xo, yo) denote the radius and center of the circular arc, respectively. For iris
localization, this scheme first applies IDO to mark the coarse limbic boundary. To avoid
eyelids, it biased IDO for the horizontal direction. Next, it uses IDO to localize pupillary
boundary within a small region centered at the coarsely marked iris. For this step, it biased
IDO for the upper 270∘ cone. Notably, this act is done to avoid the specular reflections, which
are generally superimposed in the lower 90∘ iris cone by an illuminator located beneath the

Fig. 3 a Iris boundaries and eyelids localized with the circular and line versions of IDO, respectively. (b) Iris
boundaries and eyelids localized with the circular and parabolic versions of Hough transform, respectively
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camera. Then, it reuses IDO to demarcate the fine limbic boundary in a local region centered at
pupil. Finally, it applies a line version of IDO to mark eyelids within localized iris (Fig. 3a).

2.2 Wildes iris localization

Wildes proposed a new scheme to localize iris in I(x, y). This scheme uses a combination of the
edgemap of I(x, y) and Hough transform to localize iris boundaries and eyelids if any. First, it
extracts an edgemap E(x, y) from I(x, y) by thresholding the magnitude of image intensity
gradient defined as

∇G x; yð Þ*I
�
x; y

���� ���: ð2Þ

Here, G(x, y) denotes a 2D Gaussian filter centered at (xo, yo), with standard deviation σ. This
filter soothes down sharp gray-level contents in I(x,y), which results in the blurring of I(x,y) [8].

Similarly, ∇ represents a 2D gradient operator defined as ∇≡ δ
�
δx;

δ
�
δy

� �
.

For optimal results, Wildes suggested the biasing of ∇ in some specific directions while
computing E(x, y). For example, he biased it in the vertical direction for localizing limbic
boundary and in horizontal direction for the eyelid localization, assuming the subject’s head in
upright position. After obtaining E(x, y), he used CHT to localize pupillary and limbic
boundaries assuming them as two non-concentric circles.

Hough transform: It is often applied in the machine vision application to detect 2D objects,
e.g., parabola, circle and ellipse. [2, 11, 22]. Literature [2] reveals that this transform is
relatively tolerant to the broken contours of binary objects. For a circle centered at (xc, yc)
and having radius (rc), its CHT accumulator (Hc) is defined as

Hc xc; yc; rcð Þ ¼ ∑
n

k¼1
H xk ; yk ; xc; yc; rcð Þ; ð3Þ

where n denotes the total number of edge-pixels in E(x, y) and:

H xk ; yk ; xc; yc; rcð Þ ¼ 1; if ht xk ; yk ; xc; yc; rcð Þ ¼ 0
0; otherwise:

�
; ð4Þ

with ht(xk, yk, xc, yc, rc) = (xk − xc)2 + (yk − yc)2 − rc2. For each edge-pixel located at (xk, yk), k = 1,
2, 3, …, n, votes are polled in Hc for a circle radii-range (r1 : r2). Here, r1 and r2 denote the
lower and upper radii-limits of (xc, yc, rc), respectively [11]. This radii-range is always required
for circle localization using CHT [2, 31]. If a target pixel falls on circle described by (xc, yc, rc),
then ht(xk, yk, xc, yc, rc)← 1 else zero. Finally, a location described by (xc, yc, rc) for which Hc

gets maximum votes is decided as a parameter vector of the desired circle. Similarly, Wildes
demarcates eyelids occlusion in iris using a parabolic version of the Hough transform.
Figure 3b shows a typical iris being localized through this scheme.

3 Proposed scheme

This section presents the proposed iris localization scheme. It comprises the following steps:

& Preprocessing,
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& Marking coarse pupil region,
& Extracting coarse iris contours, and
& Refining iris contours

The following text explains these modules.

3.1 Preprocessing

In machine vision applications, preprocessing is often considered as a preliminary step. It
is because it makes an input image ready for the targeted processing. In iris localization,
the main objective is to mark the actual iris inner and outer contours in a fast way but with
precision. Literature [2, 16, 28] reveals this task is not straight forward and offers
numerous challenges to researchers. For example, iris in an eyeimage may be contami-
nated with the light reflections. Besides, it may contain occlusions from the eyelids,
eyelashes, hair, contact lenses and/or eyeglasses. Besides, eye of an individual in her/his
acquired eyeimages may also be oriented vertically, which may trap the iris localization
schemes biased for horizontal direction only [16, 28]. Moreover, non-uniform illumination
and poor contrast may also offer hurdles in the way of iris localization schemes. The
following steps preprocess the input eyeimage I(x, y) efficiently.

3.1.1 Bilinear interpolation

In this section, the proposed iris localization scheme first complements the input eyeimage I(x,
y). Next, it fills holes in the resultant image through the bilinear interpolation scheme [8]. A
hole is a region of the dark-pixels surrounded by light-pixels [26]. Then, it complements again
the resultant image. Literature [24] reveals that bilinear interpolation finds many applications
in image processing. For example, it is used in the texture mapping, resampling, and image
scaling. This process computes the gray-level value for a target pixel having modified gray-
level value (e.g., original value contaminated with reflection) in a digital image by utilizing the
known values of its 4 nearest neighbors. Notably, this computation process is subjected to the
distances between the target pixel and its neighbors. Bilinear interpolation works as follows.
Considering Fig. 4, suppose I(xo, yo) (red) represents a target pixel in a digital image whose
gray-level intensity needs to be interpolated from its neighbors (green). First, this scheme
computes the gray-level values I(x1, yo) (top-yellow) and I(x2, yo) (bottom-yellow) as

I x1; yoð Þ ¼ y2−y1ð Þ−1 y2−yoð ÞI x1; y1ð Þ þ yo−y1ð ÞI x1; y2ð Þ½ �; ð5Þ

I x2; yoð Þ ¼ y2−y1ð Þ−1 y2−yoð ÞI x2; y1ð Þ þ yo−y1ð ÞI x2; y2ð Þ½ �: ð6Þ
Then, it computes I(xo, yo) as

I xo; yoð Þ ¼ x2−x1ð Þ−1 x2−xoð ÞI x1; yoð Þ þ xo−x1ð ÞI x2; yoð Þ½ �: ð7Þ
Figure 5a and b illustrates an original eyeimage I(x, y) taken from the CASIA-IrisV3-Interval
[4] and the resultant image I″(x, y) after suppressing reflections through bilinear process,
respectively. Reflections are suppressed effectively.
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3.1.2 Order statistic filter

Order statistic filters are non-linear filters. First, these filters order (ranking) the pixels present in an
image area encompassed by a relevant filter. Then, they replace the value of the center pixel with
value that is determined from ranking results [8]. The best-known example of this class is the
Median filter. It replaces the value of a target pixel by the median of pixels in its neighborhood;
value of the target pixel is also considered while computing a new value. Literature [8] reveals that
median filters offer excellent noise reduction abilities, with considerably less blurring than the
linear smoothing filters having same window size. Median filter removes an object (replaces with
median values) whose area is smaller than one-half of the filter’s window area. For better results,
pass I″(x, y) through a one-dimensional (1D) median filter (windows size [1 × 15] pixel) three
times. It is observed experimentally that passing an image repeatedly through amedian filter results
in relatively better performance compared with first time processing. The resultant image I⌢ x; yð Þ is
shown in Fig. 5b. It is evident that eyelashes have been suppressed significantly.

3.1.3 Contrast stretching

If the contrast of an eyeimage is poor, then it may also hurdle in the iris localization process.
For this reason, the proposed iris localization scheme also stretches contrast of I⌢ x; yð Þ to its full
dynamic range [0 255] if already not. It is performed as

o x; yð Þ ¼ 255⋅
I⌢ x; yð Þ−I⌢ x; yð Þmin

I⌢ x; yð Þmax−I
⌢ x; yð Þmin

� �
; ð8Þ

where I⌢ x; yð Þmin and I⌢ x; yð Þmax are the minimum and maximum pixel intensities in I⌢ x; yð Þ,
respectively.

3.2 Marking coarse pupil

In this section, the proposed iris localization scheme computes an adaptive threshold (λ) from
the histogram of the unprocessed original image I(x, y) as follows:

Fig. 4 A typical Bilinear interpolation for a single pixel

Multimedia Tools and Applications (2021) 80:4579 4605–4588



a) First, it extracts the histogram (ϕ) of I(x, y).
b) Next, it records a set of gray-level values of the starting 70 successive bins from ϕ into an

array (B). This act subjects to the following constraint: frequency of the starting bin needs
to be at least greater than 5. This act ensures the rejection of spurious pixels caused by
noise such as salt and pepper noise, hair threads, etc.

c) After that, it computes λ as

λ ¼ 1

n

	 

∑
n

i¼1
B ið Þ; ð9Þ

Where n represents the number of bins in B. Basically, Eq. (9) assigns the average gray-level
intensity of the recorded bins to λ. Since for every new image these bins may carry different
gray-level values, therefore λ can truly be called an adaptive parameter, because it may vary
from the image to image according to the image gray-level statistics. Figure 6 shows the
histogram of I(x, y). It is evident from this figure that λ belongs to the first ellipse that
corresponds to the pupil region.

Fig. 5 aOriginal I(x, y). Resultant image I″(x, y) after passing through bilinear interpolation. c Image I⌢ x; yð Þ after
median-filter. d Preprocessed image O(x, y)
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d) Following that, it binarizes O(x, y) using λ as

b x; yð Þ ¼ 1; o x; yð Þ≤λ
0; otherwise

�
: ð10Þ

Equation (10) works as follows. If the gray-level value of a pixel in O(x, y) is less λ, then it
assigns one to b(x, y) else zero.

e) Now, it applies the morphological operators (e.g., erode followed by dilate) to remove the
spurious pixels in b(x, y). Besides, it also uses the holes-filling morphological operators to
fill holes in b(x, y). Next, it labels the number of objects in b(x, y) using the concept of 8-
connected procedure [8]. After that, it searches b(x, y) for a binary object having relatively

large circular area. Finally, it extracts the center coordinates x
0
p; y

0
p

� �
of this object (pupil)

using the concept of centroid [27], see Fig. 7. In addition, it computes the coarse radius
(rp) of pupil object by taking average of the one-half of its length and one-half of its width.

3.3 Marking coarse iris contours

After localizing pupillary boundary, the next turn comes to localize limbic boundary. Litera-
ture [2, 16] reveals that this task also offers numerous challenges to contemporary iris
localization algorithms. For example, its contrast compared with pupillary boundary is gener-
ally poor. Besides, the iris region may also be occluded by the eyelashes, eyelids, cosmetic
lenses and the frame of eyeglasses. Due to this fact the gradient and thresholding-based
schemes may perform poorly. Therefore, for robust limbic boundary localization, the proposed
scheme utilizes the following steps:

a) First, through the decimation process [8], it resizes the preprocessed image O(x, y) to 50%
of its original size. Resultant image is O′(x, y) (Fig. 8a). This act results in reducing the
overall iris localization time.

Fig. 6 Histogram of the original eyeimage I(x, y)
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b) Next, it extracts an edgemap e(x, y) from O′(x, y) using the Canny-edge detector R [6, 30]
(Fig. 8b).

c) After that, it removes all edges corresponding to pupil in e(x, y). Notably, this act also
boosts up the overall system’s speed. It is because these pixels do not belong to the actual
limbic boundary. Therefore, these points should be avoided from voting in the Hough
accumulator while marking this boundary (Fig. 8c).

d) Following that, it applies CHT to localize limbic described by (xi, yi, ri) [18]. Where, (xi,
yi) and ri represent the iris’ center and radius coordinates, respectively. For CHT, consider
a radii-range for the iris outer circle as (rmin : rmax) pixel. Where rmin and rmax represent the
minimum and maximum radii-range for the iris outer circular boundary in O′(x, y),
respectively. Set rmin to (rp + 10) and rmax to one-half of the width of O′(x, y). Note, such
radii-range is generally necessary for IDO/CHT while localizing the iris contours [11].

e) Now, it extracts a peak (ϕ) from the Hough transform accumulator and its corresponding
parameter vector (xc, yc, rc) for the target circle. If the center (xc, yc) of this circle is close to

the pupil center x
0
p; y

0
p

� �
by an offset of five pixels; and its radius is not more than (2 ⋅ rp)

[11, 14, 16], then it is considered as the accurate circular limbic boundary. Otherwise, this
peak is deleted and another one is tried in this concern. Notably, the top few peaks in the
Hough transform generally correspond to an accurate limbic boundary [2, 31].

Figure 8d shows the limbic boundary being localized through CHT. It is evident that CHT did
not localize the actual limbic contour. It is because that CHT attempts to localize iris contour
with a circle approximation, but its actual contour for the current image is relatively elliptical.
The following section resolves this issue.

3.4 Refining iris contours

Literature [2, 11, 14] reveals that iris inner and outer contours are neither circular nor elliptical.
For this reason, those algorithms which segment iris with the circular/elliptical contours may
affect the overall performance of a target iris biometric system. To address this issue, numerous

Fig. 7 a Coarse pupil marked in b(x, y). b Coarse pupillary boundary marked in I(x, y)
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researchers have devised contours regularization schemes to convert iris contours localized
with circular/elliptical approximation to their non-circular counterparts [2, 11, 22, 23]. Jan
et al. in Ref. [14] proposed an efficient and robust iris contours regularization scheme. It is
based on a hybrid of the Fourier series and radial-gradients. Therefore, for the sake of brevity,
the proposed scheme applies the method offered in [14] to extract the iris non-circular
contours. Figure 9a and b shows the iris contours before and after application of this process.

4 Experimental results and discussion

The proposed iris localization scheme has been simulated in the MATLAB Version:
8.5.0.197613 (R2015a). It was installed on a Laptop PC (Intel® Core™ i5-2430M CPU @
2.4 GHz 2.4GHz), with 2 GB RAM and Windows Ultimate (64-bit operating system) as an
operating system. The proposed scheme has been validated on a set of three public iris
datasets: MMU V1.0 [21], IITD V1.0 [9] and CASIA-IrisV3-Interval [4]. Accumulatively,
these databases offer noisy factors such as specular reflections, eyelids, eyebrows, eyelashes,
poor contrast, non-uniform illumination, contact lenses, eyeglasses and vertically-oriented eye

Fig. 8 a Decimated input image O′(x, y). b Edgemap e(x, y). c Iris outer circular contour marked with (xi, yi, ri) in
I(x, y). (d) Circular limbic boundary localized with CHT
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in eyeimages. The following text elaborates the experimental setup, results and limitations of
the proposed scheme.

4.1 Iris databases

This section briefly details the public iris-databases that were involved in experimentations. It
explains as to what type of the light illumination was used for the images acquisition, number
of subjects involved, number of images taken from each subject, image storage format and
resolution and noise (e.g., eyelids).

4.1.1 MMU V1.0

The Malaysia Multimedia University (MMU) has developed this database [21]. It contains
total 460 eyeimages collected from 46 individuals using the LG IrisAccess®2200, which is
equipped with the near-infrared (NIR) illuminators. In general, NIR images are preferred
compared with the visible-wavelength (VW) images. It is because NIR illumination reveals
relatively more iris texture compared with VW illumination. Besides, it is more suitable for
both dark and light irises [5, 31]. While developing this database, a set of 10 eyeimages was
acquired from each person. Images have been stored in the BMP format with resolution (320 ×
240) pixel. This database exhibits noise such as reflections, eyelashes, vertically-oriented eyes
and eyeglasses.

4.1.2 IITD V1.0

The Indian Institute of Technology Delhi (IITD) has developed this database [9]. It contains
total 1120 eyeimages collected from 224 different individuals using the JIRIS, JPC1000,
digital CMOS camera. This camera also uses NIR illuminators while acquiring image data.
Persons involved were mostly students and staff working at the IIT Delhi (New Delhi, India).
Each image was stored in the BMP format with resolution (320 × 240) pixel. It offers noisy
factors including eyelashes, eyelids, eyebrows, contact lenses, focus and reflections.

Fig. 9 a and b Iris contours before and after the regularization process, respectively
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4.1.3 CASIA-IrisV3-interval

The Chinese Academy of Sciences’ Institute of Automation (CASIA) has developed this
database [4]. It contains total 2639 eyeimages collected from 249 different individuals using
the CASIA’s made close-up iris camera. This device was equipped with a circular-array of
eight NIR Light emitting diodes (LEDs) to illuminate the target place while acquiring image
data. Most images were acquired in two-sessions from the CASIA graduate students. Each
image was stored in the JPEG format with resolution (320 × 280) pixel. The pupil region in
each image contains eight circularly oriented white-dots (i.e., reflections), which are mainly
because of NIR illuminators.

4.2 Accuracy

In this section, we present accuracy results of the proposed iris localization algorithm through
two metrics: (i) Subjective metric (manual evaluation) and (ii) Iris recognition. The following
text highlights these two metrics in more details.

4.2.1 Subjective accuracy

Different accuracy metrics have been utilized by researchers while computing accuracy of their
proposed iris localization schemes [2, 16]. If the ground-truth images for a public database are
available, then researchers computed accuracy of the proposed scheme using these truth
images [3]. Otherwise, they compute accuracy via subjective metric [11, 16, 17, 25, 27, 30].
To compute accuracy results of the proposed scheme subjectively, we utilized the Accuracy-
rate (Ar) that is defined as

mr ¼ k1
kt

� 100

	 

: ð11Þ

Here, k1 is the total number of irises localized accurately and kt indicates all images
involved in experimentation. Moreover, the mr also relies on the Accuracy-error (zerr)
that is defined as

zerr ¼ f 1− f 2j j
f 1

� 100

	 

: ð12Þ

Here, f1 and f2 are the actual and detected iris-pixels, respectively. In general, detected pixels
are counted using a row-major scanning technique [16]. According to Eq. (11), authors
consider a localized iris as correct if zerr is less than 10%, otherwise it is marked as false.
Figure 10 shows some accurate iris localization results of the proposed scheme via this
subjective metric. In addition, Fig. 12 shows some wrong iris localization samples whose
reason has been identified in Section 4.4. Table 1 shows accuracy comparison of the proposed
scheme with its contemporary counterparts. It is evident, the proposed scheme performed
relatively better compared with contemporary schemes. It is mainly because of its iris
boundaries regularization via the Fourier series and robust limbic boundary localization
through the optimized CHT based scheme. The main reason as to why the accuracy results
of contemporary schemes are lower is these schemes localized iris contours with just a circular
approximation and did not refine the iris contours.
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4.2.2 Recognition accuracy

In general, subjective metric is considered sufficient while evaluating accuracy of the proposed
iris localization schemes [1, 14, 16]. However, the curiosity as to how much impact the
proposed scheme would have on the overall efficiency of an iris biometric system remains
high. For this reason, computing accuracy via iris recognition is generally favored [2, 5, 19,
31]. It is logical because its impact on the overall system’ performance is also observed. Due to
this reason, we also computed accuracy of the proposed scheme through iris recognition. The
following steps highlight this process.

Noise removal As demonstrated in Fig. 10, a localized iris may contain the eyelids/eyelashes’
occlusions in the localized iris part. This issue may significantly deteriorate the overall
system’s performance if not addressed properly. Due to this fact, almost all iris biometric
algorithms either remove noise during the iris localization/segmentation process or before
extracting features from the localized iris. The following steps are used to perform this job:

a) Iris normalization: The physical orientation and quality of irises in eyeimages taken from an
individual are not necessary to be 100% similar. It may happen because of the different image

Fig. 10 Rows 1, 2 and 3 show accurate iris localization results of the proposed scheme on the CASIA-IrisV3-
Interval, IITD V1.0 and MMU V1.0, respectively

Table 1 Accuracy comparison with contemporary schemes. All results are shown in the percentage (%)

Method MMU V1.0 IITD V1.0 CASIA-IrisV3-Interval

Ma et al. [17] 98.18 98.30 98.56
Sardar et al. [23]a 97.11 97.19 97.12
Wan et al. [30] 96.08 94.81 95.70
Proposed 98.21 98.60 98.60

a : Results are taken from the Ref. [17]

The results of our proposed method are shown in bold
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acquisition setups, pupil dilation, distance between subject and image acquisition device, etc.
[6]. To address this issue, Daugman proposed a Rubber-sheet model [5, 18]. It transforms the
annular iris i(x, y) into a fixed rectangular-strip p(r, θ) (Fig. 11). Here, r and θ are the radial
and angular resolutions, which are experimentally set to 65 and 360, respectively.

b) Noise detection: It is clear from Fig. 11, normalized iris may contain noisy regions (i.e.,
eyelids and eyelashes). Literature [16] reveals that many contemporary researchers
devised different noise-removal schemes to address this issue. For example, they used
the line and parabolic versions of CHT/IDO while marking eyelids [2, 5, 19, 31]. Some of
these schemes perform relatively better, but most of them paid little to no attention to the
issue of specular reflection and eyelashes present in the normalized iris strip. To resolve
this issue, Jan and Usman in [13] proposed an effective scheme to mark the positions of
eyelids, eyelashes and reflections in the corresponding noise-mask. For the sake of
brevity, here the noise removal scheme proposed in [13] was utilized to demarcate noisy
regions. Figure 12 shows the noise-mask (NoiseMask) obtained corresponding to the
normalized iris strip shown in Fig. 11. Notably, this mask is always required to match
noise-free regions of two iris templates.

Features extraction: This section employed the 1D Log-Gabor filter G(f) (Fig. 13a) for
extracting features from p(r, θ). The G(f) is defined as

G fð Þ ¼ exp
− log f

�
f o

� �� �

2 log σ= f o

� �� �2

20
B@

1
CA; ð13Þ

where fo and σ are the center frequency and bandwidth of G(f), respectively. These
parameters were experimentally set as σ = 0.026 and fo = 0.051. To extract the IrisCode

Fig. 11 Iris normalization
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(Fig. 13), the procedure proposed in [5] was utilized. The output of G(f) was then phase
quantized into four levels. This quantization process produced a bitwise template (i.e.,
IrisCode). Its resolution equals to the product of the angular and radial resolution
multiplied by 2, i.e., (65 × 360 × 2) = 46800. The resultant IrisCode is shown in
Fig. 13b. The IrisCode and its corresponding NoiseMask are necessary components for
the iris matching and recognition module.

Matching: The Hamming distance (HD) given in Eq. (14) was used as a recognition metric
[5, 18]. During matching, only those bits in the probe (X) (target) and gallery (Y) (stored in

Fig. 12 NoiseMask generated from p(r, θ)

Fig. 13 a Real and imaginary view of the 1D Log-Gabor filter. b IrisCode generated from p(r, θ)
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database) IrisCodes are matched that refer to the zero-bits in their noise-masks (Xn) and (Yn),
respectively.

HD ¼ 1

N− ∑
N

k¼1
X nk ORð ÞYnkð Þ

∑
N

j¼1
X j XORð ÞY j
� �

ANDð Þ X
0
nj ANDð ÞY 0

nj

� �
; ð14Þ

where N represents the number of bits in an IrisCode. X
0
n and Y

0
n represent the complements of

Xn and Yn, respectively. If the head of a target person in the corresponding eyeimage was not
upright, then this issue may result in the rotational inconsistency. Daugman addressed this
issue by shifting one IrisCode and its associated NoiseMask to the left and right bitwise.
During successive shifts, numerous HD values are recorded. This shifting process in the
horizontal direction basically corresponds to a rotation of original iris region by an angle
given by angular resolution. Notably, this act rectifies the misalignments issue. For best match
between the target and stored IrisCodes, the algorithm selects HD with lowest value. The
following text elaborates the iris recognition performance of our proposed scheme.

a) Experimental Setup-I

In this setup, we used the CASIA-IrisV3-Interval database. Out of its 249 main folders, some
subfolders do not contain images. For this reason, we involved 121 main-folders in experi-
mentation, where each subfolder contains at least 4 images. With this scenario, 1452 intra class
and 2,32,320 inter class comparisons were performed. Fig. 14a and b shows the intra- and inter

Fig. 14 a and (b) Intra- and inter class distributions, respectively. c EER. d GAR versus FAR
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class distributions, respectively. Moreover, Fig. 14c and d illustrates the equal error rate (EER)
versus HD; and the genuine accept rate (GAR) versus false accept rate (FAR), respectively.
Here, EER represents a point where both FAR and the false reject rate (FRR) gets equal. FAR
represents the error rate of accepting an unenrolled individual as an enrolled one. Similarly,
FRR represents the error-rate of denying an enrolled person as an unenrolled one. Besides,
GAR represents the ratio of the enrolled persons accepted by system to the total enrolled
persons input to it. However, for better performance, both FRR and FAR should be kept
minimum. It is clear from Fig. 14c, EER attains a value of 0.05% around HD= 0.3625.

In addition, Table 2 shows accuracy comparison of the proposed scheme with contempo-
rary methods. It is evident, the proposed scheme achieved relatively better performance. It is
because of its good noise (eyelids, eyelashes, and reflections) removal scheme that its
counterparts may have not considered properly. Besides, it may also happen because of its
contours-regularization scheme, which most contemporary schemes just skipped on.

b) Experimental Setup-II

In this setup, we utilized the IITD V1.0 iris database. Though this database has 224 main
folders, however some folders do not have the same number of images after it was
downloaded from its origin. For uniformity, three images from each folder were consid-
ered. This act resulted in total 672 intra- and 49,952 inter class comparisons. Figure 15a
and b shows the intra- and inter class distributions, respectively. Similarly, Fig. 15c and
d illustrates the EER versus HD; and GAR versus FAR, respectively. Here, EER attained
value of 0.025% around HD = 0.342. Similarly, the Table 3 shows accuracy comparison
of the proposed scheme with contemporary methods. On this database, the proposed iris
localization scheme performed relatively better than the CASIA-IrisV3-Interval. The
main reason for this fact is almost all images in IITD V1.0 offer good quality, i.e.,
significant texture, better contrast, etc.

c) Experimental Setup-III

Table 2 Recognition accuracy comparison

Method CASIA-IrisV3-Interval

FAR (%) FRR (%) Accuracy (%)

Daugman [5]a 1.16 0.98 90.59
Soliman et al. [27] (Binomial at HD = 0.43) 0.007 2.4 –
Soliman et al. [27] (Binomial at HD = 0.44) 0.16 1.3 –
Soliman et al. [27] (Binomial at HD = 0.45) 1.9 0.64 –
Kang et al. [16] 0.05 – 98.60
Mehrotra et al. [20] (SURF: Fixed strip) 3.39 4.78 95.91
Mehrotra et al. [20] (SURF: Adaptive strip) 1.55 3.80 97.32
Proposed (HD = 0.37) 0.055 0.065 99.30

a : Results are taken from [13]

The results of our proposed method are shown in bold
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In this setup, we utilized the MMU V1.0. As stated above, it has total 460 images stored
in 46 main folders equally. Each folder contains two subfolders labeled as ‘1’ and ‘2’;
each contains five images acquired from the left and right eyes of same individual,
respectively. For this setup, 460 intra- and 41,400 inter class comparisons were done.
Figure 16a and b shows the intra- and inter class distributions, respectively. Similarly,
Fig. 16c and d illustrates EER versus HD; and GAR versus FAR, respectively. For this
case, EER attained value of 0.026 around HD = 0.385. The Table 4 shows accuracy
comparison of the proposed scheme with contemporary methods. This database offers
noise such as vertically-oriented eye in eyeimages, subjects wearing eyeglasses, eyelids
and eyelashes occlusions, etc. In comparison with contemporary schemes, the proposed
scheme performed relatively better. As stated earlier, this improvement has been because
of the effective noise removal scheme of the proposed scheme, iris contours regulariza-
tion, etc.

Fig. 15 a and (b) Intra- and inter class distributions, respectively. c EER (d) GAR versus

Table 3 Recognition accuracy comparison

Method IITD V1.0

FAR (%) FRR (%) Accuracy (%)

Masek [18]* 0.118 0.098 95.41
Daugman [5]* 0.078 0.021 97.81
Proposed 0.04 0.048 99.53

* Results are taken from [10]

The results of our proposed method are shown in bold
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4.3 Temporal analysis

The proposed iris localization scheme comprises four main tasks: (i) Preprocessing (Pre),
(ii) Iris inner contour localization (IICL), (iii) Iris outer contour localization (IOCL) and
(iii) Iris contours regularization (ICR). Using the MATLAB profiling facility, on the
average, the proposed iris localization scheme took around 430-, 510-, and 230 m-
seconds (mSec) on the CASIA-Iris3-Interval, IITD V1.0 and MMU V1.0, respectively
(Table 5). It is evident from Table 4, the IOCL took relatively longer because it uses the
CHT, which involves a voting-strategy for all pixels present in the corresponding

Fig. 16 a and (b) Intra- and inter class distributions -, respectively. c EER. d GAR versus FAR

Table 4 Recognition accuracy comparison

Method MMU V1.0

FAR (%) FRR (%) Accuracy (%)

Basit [1]* 1.77 2.44 97.56
Masek [18]* 0.120 0.098 90.04
Daugman [5]* 0.073 0.045 95.12
Proposed 0.05 0.057 99.34

* : Results are taken from [10]

The results of our proposed method are shown in bold
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edgemap while localizing iris outer contour with circular approximation. It implies that
this stage could be further improved by eliminating the code redundancy if any or
spurious pixels not belonging to this contour. Since different authors have used different
machines, CPU speed, RAM, anti-virus, running load on CPU while perform simula-
tions, operating systems, etc.; therefore, direct comparison with their results may not be
appropriate. However, for the sake of comparison with contemporary schemes, we
implemented the bench-mark iris localization schemes [5, 18] in the current experimental
setup. Average localization time of these schemes were computed on a set of 100
eyeimages selected arbitrarily from each database. For CASIA-IrisV3-Interval, IITD
V1.0 and MMU V1.0; the schemes in [5, 18] took 20-, 25- and 15 s and 15-, 18- and
10 s, respectively. It is evident, these bench-mark algorithm took significantly longer to
localize iris contours. It is mainly because these schemes deploy the IDO/CHT operators
to localize both inner and outer iris contours, whereas the proposed scheme marks the
inner boundary via histogram and thresholding and the limbic one via a CHT-based
optimized strategy. As the proposed scheme takes less than one second, therefore it could
be deployed in the real-time iris biometric systems.

4.4 Limitations

The proposed scheme has the following limitations:

– It performs well for the NIR eyeimages, but poorly for VW images where pupil is
generally contaminated by more light reflections. It happens because the proposed scheme
applies a thresholding-based technique to mark pupillary boundary and extract its center
coordinates. Notably, this process is biased for NIR image data only. Therefore, for
optimal performance, its thresholding-based module should be modified before its appli-
cation on VW images.

Table 5 Temporal details of proposed scheme (Intel Core i5, 2.4 GHz, 2GB RAM)

Public iris dataset Average time taken in milli-seconds Total time

Pre. IICL IOCL IRC

CASIA-IrisV3-Interval 80.50 104.50 165.00 80.00 430.00
IITD V1.0 72.45 150.65 177.00 110.00 510.00
MMU V1.0 41.00 52.36 80.64 56.00 230.00

Fig. 17 a-c Wrong iris localization results for the CASIA-IrisV3-Interval, IITD V1.0 and MMU V1.0,
respectively
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– This scheme may perform poorly for eyeimages where pupil is strongly connected
with a dark strip of eyelashes, see Fig. 17b. It is because after thresholding, the
corresponding pupil object in resultant binary image may not be compact, instead
its length may be significantly longer than its width. This fact may result in the
wrong pupil localization. To cope with this fact, its thresholding-based scheme
should also be improved accordingly.

– In case if CHT operator deviates significantly from the iris actual outer boundary, then the
subsequent iris contours regularization process (based on Fourier series) may fail due its
internal constrains (e.g., Fig. 17a and c).

5 Conclusion

In conclusion, this study proposed an efficient iris localization scheme for the iris biometric
systems being equipped with the near infra-red (NIR) illuminators. The overall performance of
an iris biometric system strongly relies on the accurate demarcation of iris contours and noise
detection and removal from the valid iris part. The critical aspects of an iris localization
scheme are its speed and accuracy. If accuracy is high but speed is poor, then the concerned
algorithm may not be useful for its real-time applications and vice versa. The proposed scheme
localizes iris contours as follows. First, it suppresses reflections through the bilinear interpo-
lation scheme and minimizes the effects of eyelashes through an order-statistics filter. Next, it
binarizes the preprocessed image via an adaptive-threshold. This threshold is computed
adaptively utilizing the starting bins of the image-histogram. After that, it finds the pupil
center and radius using a combination of the centroid and ordinary geometry. Besides, it marks
iris inner (pupillary) boundary using a circle approximation. Following that, it localizes iris
outer (limbic) contour in a decimated eyeimage using the circular Hough transform (CHT). For
fast processing, it removes all pixels belonging to inside and/or boundary of pupil object from
the edgemap. This act greatly boasts up the overall boundary localization process. It is because
this act prevents many unwanted pixels from voting into the CHT accumulator. Then, it
regularizes iris contours to extract the actual non-circular iris contours to some extent. This act
may result in an increase in the overall iris recognition accuracy. Finally, it demarcates noise
location in the iris polar-form using an existing effective scheme. The proposed scheme has
been validated on the CASIA-IrisV3-Interval, IITD V1.0, and MMU V1.0. Experimental
results obtained on these databases are relatively better compared with some state of the art in
iris localization. To summarize, this work would be a great contribution for the relevant
research community.
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