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Abstract
This study presents an unsupervised novel algorithm for color image segmentation, object
detection and tracking based on unsupervised learning step followed with a post process-
ing step implemented with a variational active contour. Flexible learning method of a finite
mixture of bounded generalized Gaussian distributions using the Minimum Message Length
(MML) principle is developed to cope with the complexity of color images modeling. We
deal here simultaneously with the issues of data-model fitting, determining automatically
the optimal number of classes and selecting relevant features. Indeed, a feature selection step
based on MML is implemented to eliminate uninformative features and therefore improving
the algorithm’s performance. For model’s parameters estimation, the maximum likelihood
(ML) was investigated and conducted via expectation maximization (EM) algorithm. The
obtained object boundaries in the first step are tracked on each frame of a given sequence
using a geometric level-set approach. The implementation has the advantage to help in
improving the computational efficiency in high-dimensional spaces. We demonstrate the
effectiveness of the developed segmentation method through several experiments. Obtained
results reveal that our approach is able to achieve higher precision as compared to several
other methods for color image segmentation and object tracking.

Keywords Color image segmentation · Object tracking · Mixture bounded model · Feature
selection · Minimum message length · Level-set

1 Introduction

One of the most challenging problems in pattern recognition and image processing applica-
tions is object detection and tracking. Object detection and tracking is now widely used in
video surveillance systems, smart vehicles, traffic monitoring and human computer inter-
action. To deal with this problem, we always proceed to involve more visual information
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(characteristics) into the segmentation algorithm. Visual pixel’s characteristics can be either
informative or uninformative. In case of presence of uninformative information (like noise),
the object detection process will be complex and extremely time consuming. Also, the pres-
ence of nonuniform illumination or self-shadow can generate false clusters and therefore
all these matters may easily conduct to over-segmentation. On the other hand, taking into
account all possible visual features (color, texture, shape, etc.) may decrease the algorithm’s
performance as cited in [17, 28, 29, 37, 41, 43, 54, 57, 58, 61]. For all these reasons, it is bet-
ter to not consider irrelevant features in order to increase the detection accuracy. Recently,
various distinguished scientific works involving computer vision techniques have been pro-
posed to address the above-mentioned issues and particularly to deal with complicated real
data sets. In particular, the class of approaches named “finite mixture models (FMM)” have
been suggested as a potential alternative for complex data modelling and clustering. Finite
mixture models represent one of the most crucial machine learning methods in the liter-
ature and are at the heart of several image processing and pattern recognition algorithms
[18, 47, 52, 53]. Many probability distributions (mixtures) have been suggested in the state
of the art. Based on the selected density function, the corresponding model enforces its
structure to the treated image or video. It should be noted that there is no unique model
is capable to cope with all possible data-shapes in a given dataset. Thus, it is important
that the choice of any model (i.e density function) must consider the nature of the dataset.
Even though conventional Gaussian mixture models have been broadly employed in dif-
ferent areas, recent publications have illustrated that other alternatives could offer superior
performances in terms of data modeling and segmentation especially when dealing with
non-Gaussian data. Moreover, the efficacy of such models depends on their ability in auto-
matically determining the number of components (classes or objects) for a given image.
Although finite unbounded mixtures (e.g. unbounded Gaussian mixture) have been suc-
cessfully applied in data modelling given their advantage in terms of data approximation,
other more flexible mixture variants notably the so-named “bounded Gaussian mixtures”
were presented as an attractive choice for data analysis. In this paper, we focus on effec-
tive multidimensional (color-textured) data modeling and segmentation for which bounded
mixture models have demonstrated efficiency in many applications. Indeed, bounded sup-
port mixtures offer an alternative for many other models such as Laplace mixture model
(LMM), Gaussian mixture (GMM), generalized Gaussian mixture (GGMM) and bounded
Gaussian mixture (BGMM) as special cases. Compared with classic unbounded Gaussian
distribution, the non-Gaussian distributions such as bounded generalized Gaussian distribu-
tion (BGGMM) could offer more flexibility. In this present work, we are mainly motivated
by the flexibility of this class of statistical models. Thus, the main target of this work is to
propose an unsupervised learning method based on BGGMM and permits simultaneous seg-
menting color-textured images and selecting only relevant features which is very essential
for multidimensional data modeling.

The rest of this manuscript is structured as follows. In Section 2 we introduce a state of
the art related to the current context of object detection and tracking in image and video
sequences. Section 3 describes the proposed segmentation approach and introduces the main
formalism of our statistical feature selection mixture model. In Section 4, we introduce
a post processing step with level-set approach for object tracking purpose. In Section 5,
extensive experiments are conducted and discussed to show the robustness of the developed
approach. Finally, Section 6 concludes the paper.
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2 Related research work

Object detection and segmentation in images or video sequences are two closely and impor-
tant steps for many applications including video surveillance, medical image analysis, face
detection, smart vehicle, traffic monitoring, and pattern recognition applications. In the lit-
erature, these two tasks have been extensively studied and a lot of interesting papers have
been proposed to address them. A possible categorization of existing approaches may be
those based on machine learning or not-based. In particular, variational active contours are
widely used in this area [7, 11, 22, 64]. Pattern classification techniques have also been
broadly explored for object detection [3, 24, 31, 41, 43, 57, 58, 61]. For instance, deep
learning-based approaches have been exposed recently as a good solution since they have
the benefit to learn large scale data, making them a worthy tool for analyzing massive data.
For object detection application, a single convolutional network can be used for example to
predict both multiple bounding boxes and also their class probabilities simultaneously [58].
The coordinates of bounding boxes are predicted using fully connected layers on the convo-
lutional feature extractor. Later, this algorithm has been enhanced by [57] where a real time
object detection system named (YOLOv2) was developed to detect several object categories
(about 9000). Another method called (Single Shot Detector: SSD) has been implemented
in [43]. The advantage of this method is that it does not require features for bounding box
however it permits encapsulating all stages in one network. Another recent work called
(Feature Pyramid Network) was proposed in [41] which is based on a pyramid structure, a
sliding windows step and a Fast R-CNN algorithm. Convolutional neural networks (CNN)
was also applied in [61] and a deconvolution based CNN model and a corner based ROI
estimator have been integrated to form a single CNN based detection model. Region pro-
posals are combined with CNN in order to improve object detection and to overcome classic
CNN drawbacks. The developed method is referred as “R-CNN” [31]. Later, this method
was extended as “Fast R-CNN” [30] in which the training and testing speed was improved
and also the detection accuracy was increased.

It is noteworthy that in object detection process, the more information is provided the
better result can be obtained in term of accuracy. Taking into account that certain features
are more relevant than others and therefore integrating only these informative features into
such algorithm allows better detection of specific regions (or objects). The irrelevant charac-
teristics can be only noise, thus not participating to effectively segment the desired objects.
Thus, feature selection step is particularly important and plays a primary role in improv-
ing the accuracy of object detection algorithms and reducing the processing time especially
when the data sets contain a lot of features. A comprehensive literature review show that the
step of extracting and selecting relevant features has been investigated broadly for several
related applications and it is addressed with different manners. In fact, feature selection can
be used as a preprocessing step or integrated within the classifier. The diversity of methods
and applications using the feature selection step is a good indicator of its importance, as we
will show through some relevant published works.

Selecting informative features using Fisher information criterion is used for measuring
the uncertainty of the classifier and for providing more effective real-time object track-
ing [66]. The latter has been extended in [65] and it was enhanced by taking into account
prior knowledge. Another work, related to medical context, was developed for detecting and
screening diseases in capsule endoscopy [60]. It involves the following steps: extracting and
selecting relevant features then classifying images. In [63] a supervised learning approach
was developed for discriminative regional feature integration. Support vector machines have
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been also used in [20]. The proposed model is able to automatically exclude useless fea-
tures from the feature pool. Recently, the authors in [35] proposed a robust feature selection
mechanism to deal with image classification which identifies a set of mixed visual features
from color spaces. The selection step is performed according to the least entropy of pix-
els frequency histogram distribution. The work [39] integrated cluster analysis and sparse
structural learning into a joint framework for feature selection. They investigated a nonneg-
ative spectral clustering and the hidden structure of features to learn an accurate clustering.
The developed framework is formulated and optimized via an iterative algorithm. Another
interesting work is developed in [38], where authors proposed a new scheme to identify
and select the most useful and discriminative features based on the so-called nonnegative
spectral clustering and redundancy analysis. The redundancy between the selected features
is also exploited. The proposed formulation is optimized via an objective function through
an iterative algorithm. In [33], a texture-based feature selection technique is proposed for
segmenting fundus images. Texture features are derived from different statistical image
descriptors. Another recent work shows the importance of feature selection via the imple-
mentation of a tensor based image segmentation algorithm [34]. Indeed, specific objects are
distinguished and characterized on the basis of their characteristics (shape, colour, texture).

In addition to the approaches mentioned above, other interesting algorithms were applied
with success to tackle the issue of unsupervised feature selection and object detection
notably those based on model-based approaches [2, 51]. Model-based approaches are exten-
sively applied for data classification which is a critical step in many applications of practical
importance such as pattern recognition applications [4, 13, 15, 19], medical image analy-
sis [14] and intrusion detection systems [1]. For instance, in [2] authors combines both the
unbounded generalized Gaussian mixture model and feature selection for image segmenta-
tion. Although these models (i.e unbounded Gaussian and generalized Gaussian) are capable
to offer good results, their limitation is that the underlying distribution is not bounded and
their support range is (−∞,+∞) which can be an obstacle to achieve high performances. In
fact, in real applications, it is crucial to select the appropriate model for the data such as the
pixel’s values which belong to [0, 255] and not to ] − ∞,+∞[. Indeed, most source’s sup-
ports are bounded and it is therefore important to consider this assumption as useful for the
challenges of data modeling. Motivated by the promising results obtained with the bounded
mixture models for some applications like in speech modelling [42] and image denoising
[18], we propose in this work to develop a novel unsupervised flexible bounded mixture
model to address the aforementioned challenging problems. In particular, we propose to
investigate the flexibility of bounded generalized Gaussian mixture models to fit different
data-shapes which have (bounded models) the advantage to model observed images using
different supports. We are also motivated by selecting and weighting only most relevant
data-features. Thus, by estimating automatically and simultaneously model’s parameters,
feature weights, and the number of clusters, we can achieve more competitive results. For
tracking purpose, we tackle this problem by following the developed mixture model with a
post-processing step implemented with a variational active contour.

3 Proposedmethod for image segmentation and feature selection

The proposed method for simultaneously segmenting color-texture images and selecting
relevant visual features is established in an unsupervised manner. The problem of feature
selection is reformulated as a problem of model selection as proposed in [15, 36]. Indeed,

Multimedia Tools and Applications (2021) 80: –583158095812



instead of identifying some characteristics, we assess a saliency measure for each char-
acteristic named “feature saliency”. This process is performed through the Maximization
Estimation (EM) algorithm. For such situation, one must avoid the case that all saliencies
have the maximum value. This process is performed by integrating the principle of the min-
imum message length (MML) [62] in our mixture model algorithm. The MML criterion
encourages the saliency of irrelevant features to reach the value of zero, which will allow
us to reduce the number of total features. Thus, by integrating the process of estimating the
saliency of each characteristic in the proposed algorithm, we will have a method capable
of simultaneously selecting the relevant characteristics and properly segmenting the input
images by determining the optimal number of components. In this section, we start by offer-
ing a useful nomenclature in Table 1 in order to simplify for the reader the understanding
of the notation used in this manuscript. Then, we present our developed flexible statistical
mixture model.

3.1 Themodel

If we have an input image X defined by d-dimensional vector and having N pixels, then we
can describe this vector by a mixture model with M components as follows:

p(X|Θ) =
M∑

j=1

πj

d∏

l=1

f (xl |θjl) (1)

where f (xl |θjl) represents the probability density of the feature l in the component j .
For the case of a mixture of bounded generalized Gaussian distributions [18] with M

components, the complete likelihood is expressed as:

p(X|Θ) =
N∏

i=1

M∑

j=1

πj

fggd(Xi |θj )H(Xi |Ωj)∫
∂j

fggd(Xi |θj )dy
) (2)

where H(Xi |Ωj) =
{

1 if Xi ∈ ∂j

0 Otherwise
is an indicator function able to define ∂j indicates

the bounded support region in � for each Ωj and the density function fggd is the generalized

Table 1 Nomenclature related to
the proposed method GMM Gaussian Mixture model

GGMM Generalized Gaussian Mixture Model

BGGMM Bounded Generalized Gaussian Mixture Model

BGGMM+FS BGGMM with Feature Selection

N Number of pixels

M Number of components

πj Mixing proportions

θj Model’s parameters for the jth component

λ Shape parameter

Θ Model’s parameters for the mixture

μ Mean parameter

σ Variance parameter
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Gaussian distribution. This probability density is defined as:

fggd(Xi |θj ) = A(λj ) exp

(
−
[

Γ (3/λj )

Γ (1/λj )

]λj /2∣∣∣∣
Xi − μj

σj

∣∣∣∣
λj
)

(3)

where: A(λj ) =
λj

√
Γ (3/λj )

Γ (1/λj )

2σj Γ (1/λj )
and Γ (.) is the Gamma function given by: Γ (x) =

∫∞
0 tx−1etdt , x > 0.

Finally, in order to characterize the developed mixture model, we propose the following
complete set of parameters:

Θ = {μ1, ..., μM, σ1, ..., σM, λ1, ..., λM, π1, ..., πM } .

Thus, each component (as illustrated in (2)) models the data with different supports
Ωj . The objective of the segmentation consists in assigning each pixel xi to one region
(or component) of the given image. This assignment is defined through a latent variable
zi = (zi1, zi2, ..., ziM) such as zij ∈ {0, 1} and

∑M
j=1 zij = 1. Therefore, the conditional

distribution of xi given the label zi is defined as follows:

p(xi |zi, Θ) =
M∏

j=1

(
d∏

l=1

p(xil |θjl)

)zij

(4)

where θjl = (λjl, μjl, σjl), and p(xil |θjl) is the bounded generalized Gaussian distribu-
tion (BGGD). In this case, these parameters are the missing information. Given the set of
parameters Θ , the missing information represented by the parameters zij can be identified
by applying the Bayes theorem as follow:

p(zij |xi,Θ) = p(xi, zij |Θ)/p(xi |Θ) ∝ pjp(xi |zij ,Θ) (5)

where pj = p(zij ). Therefore, for M components in the mixture, the primary segmentation
step consists in estimating the optimal parameters Θ∗ = (p∗

j , θ
∗
j l), with j = 1...M and l =

1...d . On the other hand, when dealing with images having various features like color and
texture, it is clear that their importance and contribution is not the same for discriminating
pixels. The distribution of some of these features can be independent of the different regions.
We can found for example noise which can make the modeling task more complex and can
lead to false classification.

Thus, we propose to extend the BGGMM model by taking into account the importance
of each feature separately. The feature irrelevance can be defined as follows: features are
considered irrelevant if they have a common density, p(xil |ϕl), in all model’s components.
Let φl a binary variable such as:

φl = 0 if then lth feature is irrelevant
1 Otherwise

Thus, each xil has the following distribution [15, 36]:

p(xil |θ∗
j l , ϕ

∗
l , φl) � (

p(xil |θjl)
)φl (p(xil |ϕl))

1−φl (6)

where Θ∗ = (p∗
j , θ

∗
j l , ϕ

∗
l ). The superscript star indicates the unknown real distribution of

the feature l; p(xil |θjl) and p(xil |ϕjl) are both univariate bounded generalized Gaussian
distributions. Based on this equation, we notice that the underlying mixture model could
lead to false positives, that is to say non-informative features can be considered relevant
[15]. To deal with this issue, we propose to generalize the definition of the features perti-
nence by taking into account the following component p(.|ϕl) as irrelevant one and being
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a mixture of BGGD independent of the region label (zi). Our choice is encouraged by the
flexibility of the proposed mixture to found close arbitrary distribution for the irrelevant
characteristics [10].

Let define K , the total number of components of this mixture defined by (ϕ11, ..., ϕKl).
Let wilk ∈ {0, 1}, where

∑K
k=1 wilk = 1, the label associated to an irrelevant feature, where

wilk = 1 if xil is generated by the component k of this mixture and 0 otherwise. Let � be
the set of all φl . From this, it is simple to demonstrate that the (4) can be redefined as:

p(xi |zi,�, {wil},Θ) =
M∏

j=1

⎛

⎝
d∏

l=1

(
p(xil |θjl)

)φl

(
K∏

k=1

(p(xil |ϕkl))
wilk

)1−φl
⎞

⎠
zij

(7)

where zi , � and {wil} are the missing information. Thus, it is practical to marginalize the
complete likelihood function p(xi |zi, �, {wil},Θ) with respect to the variables zi,� and
{wil}. This is used to define the likelihood of the observations p(xi,Θ). To reach this
objective, we must first define the following prior distributions:

p(zi) =
M∏

j=1

p
zij

j ,

p(�) =
d∏

l=1

ρ
φl

l1 ρ
1−φl

l2 ,

p(wil |φl) =
K∏

k=1

(
(πkl)

wilk
)1−φl (8)

where ρl1 = p(φl = 1) determines whether the feature l is relevant or not. On the other
hand, ρl2 = p(φl = 0) measures the irrelevance of l. In this case ρl1 + ρl2 = 1. Here πkl is
the prior probability that xil is coming from the component k given that l is considered as
irrelevant feature (i.e. φl = 0).

To estimate the set of all model’s parameters, we need to optimize an objective functional
which leads to perform the segmentation of color images by considering the mechanism
of visual feature selection. These parameters are denoted by Θ = (p, θjl, ϕkl,π l ) where
p = (p1, ..., pM) , θjl = (λjl, μjl, σjl) and πl = (πl1, ..., πlK). Now p(xi |Θ) is esti-
mated by successively marginalizing the likelihood function with respect to the parameters
p(xi |zi,�, {wil},Θ) and we can deduce the following final model for image segmentation
with feature selection mechanism:

p (xi |Θ) =
M∑

j=1

pj

d∏

l=1

(
ρl1 p(xil |θjl) + ρl2

K∑

k=1

πkl p(xil |ϕkl)

)
(9)

3.2 Model’s parameters estimation

Several techniques have been proposed to deal with the complex problem of parameters
estimation for statistical mixture models [47]. In this work, we opt for the maximum likeli-
hood estimation method [48, 56]. In practice, the expectation maximization method [27] is
applied in order to estimate the parameters of the model. The log-likelihood is given by:

log p(X|Θ) =
N∑

i=1

log(p(xi |Θ)) (10)

Multimedia Tools and Applications (2021) 80: –58315809 5815



The posterior probability is estimated as follows:

p(j |xi) = pj

∏D
l=1

[
βj (xil)

]
∑M

j=1 pj

∏D
l=1

[
βj (xil)

] , (11)

where βj (xil) = ρl1p(xil |θjl) + ρl2p(xil |ϕl), and p(xil |ϕl) = ∑K
k=1 πklp(xil |ϕkl).

We derive now the equation to compute the relevance of the respective features.

1

ρ̂l1
= 1 +

max
(∑N

i=1
∑M

j=1 p(j |xi)
ρl2p(xil |ϕl)

βj (xil )
− 3K

2 , 0
)

max
(∑N

i=1
∑M

j=1 p(j |xi)
ρl1p(xil |θjl )

βj (xil )
− 3M

2 , 0
) (12)

The weights pj and πkl are updated as follows:

pj =
max

(∑N
i=1 p(j |xi) − 3D

2 , 0
)

∑M
j=1 max

(∑N
i=1 zij − 3D

2 , 0
) (13)

πkl =
max

(∑N
i=1

∑M
j=1 p(j |xi)

ρl2πklp(xil |ϕkl )
βj (xil )

− 3
2 , 0

)

∑K
k=1 max

(∑N
i=1

∑M
j=1 p(j |xi)

ρl2πklp(xil |ϕkl )
βj (xil )

− 3
2 , 0

) (14)

For j = 1, ...,M and k = 1, ...,K the model’s parameters are estimated as follow: First,
the mean is updated according to the following equation:

μ̂θ
j l =

∑N
i=1 p(j |xi)

ρl1p(xil |θjl )

∣∣∣xil−μθ
jl

∣∣∣
λθ
jl

−2

βj (xil )
xil

∑N
i=1 p(j |xi)

ρl1p(xil |θjl )

∣∣∣xil−μθ
jl

∣∣∣
λθ
jl

−2

βj (xil )

(15)

Then, the standard deviation parameter is computed as:

σ̂ θ
j l =

λθ
jl

√√√√√√√

∑N
i=1

p(j |xi )ρl1p(xil |θjl )λ
θ
jlA(λθ

jl )

∣∣∣xil−μθ
jl

∣∣∣
λθ
jl

βj (xil )

∑N
i=1

p(j |xi )ρl1p(xil |θjl )

βj (xil )

(16)

Finally, the shape parameters λ̂θ
j and λ̂

ϕ
k are estimated using the Newton-Raphson method

as follow:

λ̂�◦l � λ̂�◦l −
⎢⎢⎢⎣∂2MML(M, K)

∂λ̂�◦l

2

⎥⎥⎥⎦
−1 ⌊

∂2MML(M, K)

∂λ̂�◦l

⌋
(17)

3.3 Optimal model selection

In our case, the problems of both relevant features and optimal model selection are solved
with the minimum message length (MML) principal [62] which is able to identify the best
statistical learning model with less complexity. It is noted that the weights pj , ρl1 and φkl for
unwanted components are forced to zero. We determine the message length (MessLength)
criterion as follows:

MessLength = − log p(Θ) + 1

2
log(|I (Θ)|) + c

2

(
1 + log

1

12

)
− log p(X|Θ) (18)
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where p(Θ), p(X|Θ), and I (Θ) denote the prior distribution, the likelihood and the
Fisher information matrix, respectively. The constant c denotes the total number of
parameters. In order to facilitate the calculation of MML, we assume the indepen-
dence of the different groups of parameters. This assumption allows the factoriza-
tion of p(Θ) and |I (Θ)|. The Fisher information |I (Θ)| is approximated from the
complete likelihood which assumes labeled observations [25]. Given that p, ρl and
πl are defined on the simplexes (p1, ..., pM) : ∑M−1

j=1 pj < 1, (ρl1, ρl2) : ρl1 < 1, and

(πl1, ..., πlK) : ∑K−1
k=1 πlk < 1, respectively, a natural choice is the Dirichlet distribution for

conjugate prior. The hyper-parameters of these distributions are set to 0.5. The latter are
defined as:

p(p) ∝ 1
∏M

j=1 p
1/2
j

p(ρl) ∝ 1

ρ
1/2
l1 ρ

1/2
l2

p(πl) ∝ 1
∏K

k=1 π
1/2
kl

(19)

The Fisher information of the θjl is approximated on the basis of the second derivatives
of the minus log-likelihood of the l′th feature. Indeed, by discarding the first order terms and
substituting the prior and Fisher information in (18), the minimum message length objective
to be minimized becomes:

MessLength = − log p(X|Θ) + c

2
log N + 3d

2

∑M

j=1
log pj

+3

2

∑d

l=1

∑K

k=1
log πkl + c

2

(
1 + log

1

12

)

+3M

2

∑d

l=1
log ρl1 + 3K

2

∑d

l=1
log ρl2

3.4 Proposed algorithm/framework

The developed framework and the proposed algorithm are both summarized in Fig. 1 and
Algorithm 1.

Fig. 1 Flowchart of the proposed method for the object detection/segmentation
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For the convergence, the log-likelihood should be evaluated through checking the con-
vergence criterion between two successive iterations t and (t+1). If the following condition
is not satisfied || log(X|Θt+1)− log(X|Θt)|| < ε then, the process is re-iterated from E-step
where ε is a predefined threshold.

4 Object tracking with BGGMM and a variational-based approach

The purpose of this step is to detect speedily and accurately the contour of the object of inter-
est in a sequence of images. Thus, we propose to apply a variational active contour which
is controlled by an effective speed function (level set function). This function is derived
from both local and global information. It is noteworthy that variational-based approaches
are widely explored previously [7, 12, 64]. Unlike classical edge detection algorithms, vari-
ational models constitute a suitable framework able to combine heterogeneous information
(e.g. local and global) and offer an effective geometrical representation for a image analy-
sis. One of the fashionable developed model is called “level-set” [59]. The use of level-set
makes it possible to avoid any possible parameterization and changes in topology are easily
treated. In addition to these benefits, it has been shown also that this approach has flexi-
bility properties especially in shape modeling and object tracking. These advantages make
level-set a good alternative given its flexibility in shape segmentation and tracking. Whereas
detailed proofs regarding the level-set principle are not given here, the reader can refer to
[59].

The key idea behind this approach is to handle and update the displacement of the 2D
curve into the motion of 3D surface. The shape of the 2D object (named as the front Γ (t)) is
represented by the zero-Levelset function φ. φ is evolved by resolving the subsequent PDE
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equation:

∂φ

∂t
= F .|∇φ| (20)

where F is the speed function building on the local geometric curvature k. The symbol ∇ is
used for the gradient operator.

In the literature, several level-set based speed functions (called also evolution equation)
have been developed. We can categorize them into three main classes: edge-based informa-
tion, region-based information, and prior-based information. The main difficulties facing
when using level-set are the dependency to an accurate initialization step (i.e adequate initial
active contour) and the choice of a robust speed function that guarantee the convergence of
the deformable model to the optimal solution. In this work, we deal with these two subprob-
lems by considering as initial active contour the one obtained with our developed statistical
BGGMM+FS. The prior segmentation with BGGMM+FS will provide an initial contour
(C) for the region of interest (ROI) for the variational model. Then, the obtained object
boundaries in the first step are tracked on each frame of a given sequence (X) by using a
robust level-set model proposed by Chan and Vese [16]. The proposed scenario for object
tracking is depicted in Fig. 2 where both BGGMM+FS and level-set approaches are used in
a cooperative scheme to detect accurately moving objects. Indeed, after a certain number p

of frames, a step of boundary-detected verification is carried out with the statistical model
BGGMM+FS. This will allow us to correct introduced errors by the variational model. As
a result, parameters C1 and C2 (from the level-set equation (21)) are updated.

It is also noted that the advantage of applying the variational model is to speed up
the online tracking process and to maintain high precision since, thanks to the accurate
initialization-step, only a small number of iterations is needed to detect the boundaries of
the object of interest. The used variational model is formulated by minimizing an energy
functional which is a particular case of the Mumford-Shah formulation [50]. This function
is defined as:

E = λ1

∫

inside(C)

|X − C1|2dX + λ2

∫

outside(C)

|X − C1|2dX (21)

where C1 and C2 are two constants. C1 is the average intensity inside the delimited region
by the initial contour and C1 is the average intensity outside the region. The variational level
set is then reformulated as:

∂φ

∂t
= δ(φ)

[
μdiv

( ∇φ

|∇φ|
)

− ν

]
+ δ(φ)

[
−λ1(X − C1)

2 + λ2(X − C2)
2
]

(22)

where δ(x) is the derivative of the Heaviside function (i.e the Dirac mass function), μ ≥ 0,
ν ≥ 0, λ1 > 0, λ2 > 0 are prefixed parameters. ν amplifies the propagation speed; λ1 and
λ2 derive the image force inside and outside the contour, μ controls the smoothness of the
level set model.

Fig. 2 Tracking step based on BGGMM+FS and Level-set approaches
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5 Experiments and results

Our purpose here is to evaluate the effectiveness of the proposed method “bounded gener-
alized Gaussian mixture model with feature selection” that we refer to as (BGGMM+FS).
Other results for the problem of tracking obtained using BGGMM+FS and level set (LS)
are also presented. We propose to compare the obtained results with respect to those offered
by other models and methods such as GMM, GGMM and BGMM. The experiments were
carried out on several real-world color-textured images. To deal with the convergence issue,
we use two criteria: a threshold value (set to 0.01) that assesses the parameters’s difference
between two successive iterations and also a maximum number of iterations.

5.1 Experiment 1: color-texture image segmentation

Images and their ground truth used in this section are offered by the well known Berkeley
benchmark [45]. Indeed, each pixel (i, j) is modelled by a vector of several features x(i, j).
This vector includes both color and texture characteristics. We opt here for 19 features given
as: 3 color characteristics calculated from from the RGB color space and the remaining
16 features describe the texture content of the image. They are obtained from the color
correlogram matrix (CC) [32].

The entry of this matrix matrix account for the probability that a pixel x2 at distance d

and orientation θ from a pixel x1. In our experiments, we calculated the correlogram matrix
for 4 different orientations such as θ = [0, π/4, π/2, 3π/4]. Texture features are mainly
evaluated as follow [2]:

– Energy (EN)

EN(d, φ) =
∑

ci ,cj

(Cd,φ(ci; cj ))
2

– Entropy (ET)

ET (d, φ) =
∑

ci ,cj

− Cd,φ(ci; cj ) log(Cd,φ(ci; cj ))

– Inverse-Difference-Moment (IDM)

IDM(d, φ) =
∑

ci ,cj

1

1 + ‖ci − cj‖2
Cd,φ(ci; cj )

– Correlation (C)

C(d, φ) =
∑

ci ,cj

(ci − Mx)(cj − My)
T

∣∣∑
x

∣∣
∣∣∣
∑

y

∣∣∣
Cd,φ(ci; cj )

where

Mx(d, φ) =
∑

ci

ci

∑
cj

Cd,φ(ci; cj ),

My(d, φ) =
∑

cj

cj

∑
ci

Cd,φ(ci; cj ),

∑
x
(d, φ) =

∑
ci

(ci − Mx)
T (ci − Mx)

∑
cj

Cd,φ(ci; cj ),

∑
y
(d, φ) =

∑
cj

(cj − My)
T (cj − My)

∑
ci

Cd,φ(ci; cj ),

∣∣∣
∑

x

∣∣∣ and
∣∣∣
∑

y

∣∣∣ are the determinant of the matrices
∑

x
and

∑
y
.
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Quantitative performances are obtained based on 500 images provided from the Berkeley
segmentation database (BSD) [6]. All images are provided with their manual segmen-
tations for validation purpose. Performance are evaluated on the basis of the following
metrics: accuracy, sensitivity, specificity, recall, MCC (Matthews correlation coefficient),
F1-measure and the boundary displacement error (BDE) [26]. These measures are often
applied by the image segmentation research community to assess the segmentation out-
put. Figure 4 shows the segmentation output for some images selected from the Berkeley
database.

The convergence test is based on the stabilization of the parameters and the log-
likelihood function. We have not noticed a problem related to the convergence of the EM
algorithm although we are not sure obviously that we converge to a global maximum which
is a common problem with EM. Indeed, in Fig. 3, which represents the log-likelihood func-
tion as a function of the number of iterations, we show that the log-likelihood does not
change much after a certain number of iterations. Thus, after 20 iterations, the log likelihood
stabilizes and then the learning algorithm converges (Fig. 4).

A comparative study is also given in Tables 2 and 3. It represents the average perfor-
mance for the Berkeley benchmark database. Accordingly, some interesting conclusions can
be deduced: first, BGGMM+FS is able to offer very encouraging results. It outperforms
other conventional Gaussian-based models and other methods from the literature (Table 3).
Furthermore, both BGGMM+FS and GGMM+FS are capable to offer better accuracy. This
is due to the importance of considering only relevant features if we want to enhance the
expected results in term of segmentation accuracy. If we look at both Tables 2 and 3, the
obtained values for the accuracy metrics are 92.10% for GMM, 93.26% for GMM+FS,
93.87% for GGMM, 95.03% for GGMM+FS, 94,98% for BGGMM, and 96,68% for

Fig. 3 The log-likelihood function as a function of the number of iterations shows that the log-likelihood
stabilizes after 20 iterations and then the learning algorithm converges
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Fig. 4 Image Segmentation Results; First row: Ground Truth, second row: GMM, third row: GMM+FS,
fourth row: GGMM, fifth row: GGMM+FS, sixth row: BGGMM, and seventh row: BGGMM+FS

Table 2 Average performance metrics for the Berkeley dataset generated by different Gaussian-based models

Method GMM GMM+FS GGMM GGMM+FS BGGMM BGGMM+FS

Accuracy(%) 92.10 93.26 93.87 95.03 94.98 96.68

Precision(%) 63.4 64.8 65.1 66.9 66.4 73.2

Sensitivity(%) 69.4 75.1 76.8 79.9 81.5 89.4

Specificity(%) 91.2 92.7 92.4 93.9 95.3 96.9

Recall(%) 69.4 75.1 76.8 79.9 81.5 89.4

F1(%) 59.1 62.5 60.8 62.9 63.1 64.3

MCC(%) 52.9 55.7 54.1 58.7 57.4 62.7

BDE 0.324 0.276 0.291 0.218 0.223 0.186
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Table 3 Comparative study between different algorithms from the state-of the art on the Berkeley Segmen-
tation Database

Method PRIf [49] UCM [5] MS [5] WS [5] gPb [44] GMM BGGMM BGGMM+FS

Precision(%) 63 65 60 58 68 63 66 73

Recall(%) 62 69 67 68 71 69 81 89

F-measure(%) 63 67 63 63 70 59 63 64

BGGMM+FS. We notice that if we combine a feature selection step within the mixture
model, then we can achieve better performance than if we did not consider this step.

5.2 Experiment 2: object detection

In this experiment, we focus on extracting a region of interest from an image. To this end,
a series of experiences are performed on the “Microsoft Common Objects in COntext (MS-
COCO)” dataset [40]. COCO dataset contains more than 200K images and 91 common
object categories with 82 of them having more than 5000 labeled instances. Some sam-
ples are given in Fig. 5. This dataset is composed of more than 100K images for training,
5000 images for validation and about 40K for testing. We perform our experiments on the
training subset designed with (train 2017). The algorithm is performed on several training
sets chosen randomly where images are selected from the training subset. A comparative
study was also carried out for this dataset. Indeed, we have compared the performance of
BGGMM+FS against some relevant methods from the state-of-the-art on the basis of the
metric mean Average Precision(mAP). This metric is often applied for object detection
problems. Obtained results for different methods are provided in Table 4. According to this
table, we can conclude that our method is very competitive and outperforms some other
methods. This is justified by the generative nature of the developed approach that allows
more flexibility and interpretability of the results. It is noteworthy that the proposed model
has the advantage to take into account the nature of the data which is compactly supported.
Moreover, the integration of the feature selection process in the generative model enables
us to accurately distinguish and identify different objects of interest.

Fig. 5 Sample images from the COCO dataset
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Table 4 Comparative study
using the mean average precision
(mAP) scores for different object
detection methods based on
COCO dataset

Method Detection result (mAP) (%)

SSD300 [43] 41.2

SSD512 [43] 46.4

FPN [41] 33.9

DeNet [61] 33.8

Proposed method 44.3

Fig. 6 Result 1 for Object tracking: First row presents the initial detection of the region of interest ROI
(from left to right: first original frame, classification of the frame with BGGMM+FS, and the detected ROI).
Second row presents the tracking of the ROI using the C-V level-set model for different frames

Fig. 7 Result 2 for Object tracking: First row presents the initial detection of the region of interest ROI
(from left to right: first original frame, classification of the frame with BGGMM+FS, and the detected ROI).
Second row presents the tracking of the ROI using the C-V level-set model for different frames
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Fig. 8 Result 3 for Object tracking: First row presents the initial detection of the region of interest ROI
(from left to right: first original frame, classification of the frame with BGGMM+FS, and the detected ROI).
Second row presents the tracking of the ROI using the C-V level-set model for different frames

5.3 Experiment 3: object tracking

In this experiment, we focus on identifying a region of interest (ROI) in a sequence of
images. To this end, for each sequence, the first frame is segmented using the BGGMM+FS
model, then, the obtained segmentation will be considered as the initial contour for the level-
set and will be evolved according to the level-set function in order to detect the boundaries of
the same ROI in other frames. Subsequently, the output of the current result will be applied
as an accurate initialization step (initial contour) for the following frame in the sequence
and so that. Some obtained results for object tracking are depicted in Figs. 6, 7, 8, 9 and 10.
The First row of each result presents the initial detection of the region of interest ROI and

Fig. 9 Result 4 for Object tracking: First row presents the initial detection of the region of interest ROI
(from left to right: first original frame, classification of the frame with BGGMM+FS, and the detected ROI).
Second row presents the tracking of the ROI using the C-V level-set model for different frames
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Fig. 10 Result 5 for Object tracking: First row presents the initial detection of the region of interest ROI
(from left to right: first original frame, classification of the frame with BGGMM+FS, and the detected ROI).
Second row presents the tracking of the ROI using the C-V level-set model for different frames

the second row presents the tracking of the ROI using the C-V level-set model for different
frames.

Qualitative results are obtained on the basis of the LASIESTA dataset which contains
many real image sequences with their corresponding ground truth [21]. Quantitative mea-
sures are performed using the accuracy and the boundary displacement error (BDE) metrics.
The accuracy measures the proportion of correctly labelled pixels over all available pixels,
and the boundary displacement error (BDE) measures the displacement error [26]. Obtained
values are depicted in Tables 5 and 6. A comparative study with other approaches is also
provided in Table 7. According to these results, we can conclude that the application of a
variational active contour for object tracking with an accurate initialization step provided

Table 5 Quantitative results for five different sequences produced by BGGMM+FS with C-V level-set

Sequence 1 Frame 204 Frame 223 Frame 240 Average

Accuracy(%) 91.66 91.33 90.73 91.24

BDE 0.2709 0.2785 0.2819 0.2771

Sequence 2 Frame 204 Frame 223 Frame 240 Average

Accuracy(%) 96.69 96.41 95.96 96.35

BDE 0.1860 0.1891 0.1936 0.1895

Sequence 3 Frame 204 Frame 223 Frame 240 Average

Accuracy(%) 94.07 94.22 94.75 94.34

BDE 0.2229 0.2219 0.2201 0.2216

Sequence 4 Frame 15 Frame 20 Frame 33 Average

Accuracy(%) 95.49 95.21 97.53 96.07

BDE 0.1877 0.1993 0.1836 0.1902

Sequence 5 Frame 240 Frame 245 Frame 252 Average

Accuracy(%) 97.06 96.83 97.12 97.0

BDE 0.1954 0.2031 0.1940 0.1975
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Table 6 Average metrics for different video sequences segmentation models

GMM GMM+FS GGMM GGMM+FS BGGMM BGGMM+FS

Accuracy(%) 94.1 94.4 94.9 95.6 96.2 96.6

BDE 0.354 0.320 0.317 0.269 0.246 0.207

by the BGGMM+FS model enables us to maintain an accurate track of the object of inter-
est (OOI) even if the topology of the object changes over time. Indeed, high performances
are obtained and the average accuracy value is more than 93% for all sequences. Further-
more, we can see that the obtained boundary displacement error values are very encouraging
thanks to the use of the level-set formalism and the BGGMM+FS model. These results show
the merit of using a variational approach initialized by the BGGMM+FS model for a robust
object tracking.

6 Discussion

In this paper, a flexible and robust learning model followed with a post processing step is
proposed. The later is implemented with a variational active contour for both image/video
sequences segmentation and object tracking. Our main purpose is to improve these tasks by
investigating the flexibility of bounded models such as the bounded generalized Gaussian
mixture model and also by taking into account a feature selection mechanism. For tracking
purpose, we tackle this problem by considering an active contours via the well known level
set approach. Our method complexity is about O(NM), where N represents pixel’s number
for the treated image and M is used to designate the number of components. Thus, the first
main contribution of the current work is to tackle the segmentation problem by implement-
ing a flexible bounded statistical model given that unbounded models are obviously not the
appropriate approximation for data modelling and segmentation. The second main advan-
tage of the proposed work is the consideration of a feature selection mechanism which is
able to remove irrelevant features (i.e. noise) which make the detection of the real regions
more and more difficult. Obtained results have proven these assumptions and more accurate
results are obtained compared to the state of the art. However, it is noteworthy that using the
conventional EM-algorithm has some problems related to its dependency on initialization
and convergence to local maxima. To overcome this shortcoming, we plan to replace it with
the enhanced ECM-algorithm (Expectation/ Conditional Maximization) in order to over-
come the problems related to the use of the EM algorithm [9]. Thus, the complicated M-step

Table 7 Comparative study with
some methods from the state of
the art

Method Accuracy

Babu et al. [8] 94%

Oussalah et al. [55] 87%

Mavska et al. [46] 86%

Dzyubachyk et al. [23] 85%

Our approach 96.6%
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of EM will be replaced with several computationally simpler CM-steps. Moreover, the fea-
ture extraction step can be improved by considering other type of visual and spatio-temporal
features. We plan also to consider other datasets for validation purpose.

7 Conclusion

We have developed, in the current work, an effective framework for both color images
and sequence of images segmentation and tracking. The main goal was to investigate the
flexibility of the proposed bounded model combined with a feature selection mechanism
(BGGMM+FS) for image segmentation and object detection-tracking. The choice of the
model is motivated by its high flexibility for multidimensional data modelling and its ability
to integrate a feature selection mechanism. The developed statistical model is also followed
with a post-processing step implemented with a variational active contour for tracking a par-
ticular object of interest in a sequence of color images. The learning model is implemented
on the basis of the expectation-maximization algorithm taking into account the minimum
message length (MML) criterion. The validation process is carried out through extensive
series of experiments and the final results show high accuracy for both segmentation and
tracking. It is noted that the BGGMM+FS offer better capabilities than the conventional and
classic generative models.

Future works could be devoted to improve the feature selection mechanism by taken
into account other visual (and spatio-temporal) local and/or global features for both images
and video sequences. Another future work could be developing a unified framework that
integrates the statistical model and the variational model into the same formalism. Moreover,
the learning approach may be improved if it follows a Bayesian approximation instead of
frequentist strategy in order to overcome the convergence to local maxima. Finally, it is
possible to develop an online algorithm based on the proposed mixture model if one want
to track specific object in real time.
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Apté C, Perner P (eds) Pattern recognition and data mining, third international conference on advances
in pattern recognition, ICAPR 2005, Bath, UK, August 22–25, 2005, proceedings, Part I, vol 3686.
Springer, pp 172–182

10. Bouguila N, Ziou D, Monga E (2006) Practical bayesian estimation of a finite beta mixture through
gibbs sampling and its applications. Stat Comput 16(2):215–225

11. Bourouis S, Hamrouni K (2010) 3d segmentation of MRI brain using level set and unsupervised
classification. Int J Image Graph 10(1):135–154

12. Bourouis S, Hamrouni K, Betrouni N (2008) Automatic MRI brain segmentation with combined atlas-
based classification and level-set approach. In: 5th International conference, ICIAR 2008 image analysis
and recognition, Póvoa de Varzim, Portugal, June 25–27, 2008. Proceedings, pp 770–778

13. Bourouis S, Al Mashrgy M, Bouguila N (2014) Bayesian learning of finite generalized inverted dirichlet
mixtures: application to object classification and forgery detection. Exp Syst Appl 41(5):2329–2336

14. Bourouis S, Zaguia A, Bouguila N, Alroobaea R (2019) Deriving probabilistic SVM kernels from flex-
ible statistical mixture models and its application to retinal images classification. IEEE Access 7:1107–
1117

15. Boutemedjet S, Bouguila N, Ziou D (2007) Feature selection for non gaussian mixture models. In: 2007
IEEE workshop on machine learning for signal processing. IEEE, pp 69–74

16. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277
17. Channoufi I, Bourouis S, Bouguila N, Hamrouni K (2018) Color image segmentation with bounded

generalized gaussian mixture model and feature selection. In: 4th International conference on advanced
technologies for signal and image processing, ATSIP 2018, Sousse, Tunisia, March 21–24, 2018, pp 1–6

18. Channoufi I, Bourouis S, Bouguila N, Hamrouni K (2018) Image and video denoising by combining
unsupervised bounded generalized gaussian mixture modeling and spatial information. Multimed Tools
Appl 77(19):25591–25606

19. Channoufi I, Najar F, Bourouis S, Azam M, Halibas AS, Alroobaea R, Al-Badi A (2020) Flexible
statistical learning model for unsupervised image modeling and segmentation. Springer International
Publishing, Berlin, pp 325–348

20. Cong Y, Wang S, Liu J, Cao J, Yang Y, Luo J (2015) Deep sparse feature selection for computer aided
endoscopy diagnosis. Pattern Recognit 48(3):907–917
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