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Content-based image retrieval algorithm for nuclei
segmentation in histopathology images
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Abstract
In today’s world, the medical diagnostic system shows a high reliance on medical imagery
and digital nosology. To facilitate the fast and precise screening of samples, technology
is leading towards the computer-aided disease diagnosis and grading. Image segmentation
possesses high worth in the computer-aided disease diagnosis and grading systems to extract
the region of interest. This paper presents a content-based image retrieval algorithm for
histopathology image segmentation for identification and extraction of nuclei. The proposed
technique furnishes nuclei segmentation in three cascaded stages; pre-processing, nuclei
points and region refining, and composite nuclei segmentation. The performance of nuclei
segmentation is investigated on six hematoxylins and eosin (H&E) stained histopathology
images datasets. Simulation outcomes of the segmentation schemes confirm the superiority
of the proposed method for nuclei segmentation in histopathology images in qualitative and
quantitative analysis.

Keywords Histopathology images · Microscopic image segmentation · Contour
enhancement · Content-based image retrieval (CBIR) · Nuclei segmentation

1 Introduction

Image segmentation be classified among important processes in the image analysis to
emphasize the target area. In the nosology field, image exploration plays an important role
in the diagnosis and prognosis of diseases. The research work in various fields of medical
imaging is going on to make a perfect diagnosis. Lots of research is going on in the medical
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imaging field to develop a standardized, quantified, and reproducible system for computer-
aided diagnosis (CAD) [23, 27]. In the segmentation routine, firstly, the seed/key points
are extracted to mark the object of interest in the preprocessed image. The tissue deforma-
tion study at the microscopic level is termed as histopathology. The captured image at the
microscopic level is characterized by histopathology images [HI]. Image preprocessing is
an obligatory step in case of a large dataset to transform images of diverse sources to the
same platform and provide a single image analysis method for their processing. A prepro-
cessing method provides a compatible solution to process these image varieties by a single
image analysis method. The preprocessing may be applied in the form of chromatin mor-
phology, color normalization, and transformation [22] to make suitable images for further
analysis.

The seed points were extricated using key realm enhancers as a kernel mapping and/or
Laplacian of Gaussian filter application [18, 26] and utility of Gaussian mixture model
(GMM) for pixel-level clustering [15]. A kernel application [25] is a good practice to map
the image in a high dimensional Hilbert space for the ease of region separation. The trans-
formed high dimensional map provides a peak/valley point corresponding to the object,
subject to the constraints of the selected image. The next step is the region of interest seg-
mentation also called image binarization may consider a graph-cuts method [1], and active
contours [2, 16] focused on key points. The overlap resolution of objects is an issue in effi-
cient segmentation and is investigated using concavity detection and geometric reasoning in
[41] and [48] respectively.

The segmentation performance of existing methods is database reliant and offers effi-
cacious results for a specific set of data. The proposed kernel-based method is basically
focused to segment the nuclei in histopathology images. The method is developed to seg-
ment the most possible image categories of nuclei. The proposed method contains the
following steps: the first step is to enhance the image contrast for the nuclei using a prepro-
cessing [6] [39] by the histogram equalization and proposed object size kernel application
[52]. The 2-D circular kernel function provides a peak/valley points of nuclei at their
centers. It basically provides the initial points for nuclei detection. In the next step, multi-
thresholding [28, 55] was applied to obtain the over-segmented region and it was further
refined using an active contour application [3, 5]. An iterative morphological erosion [20]
was applied to shrink the nuclei boundary and easy to get the point level marking of nuclei.
The nuclei center points were extracted using ultimate erosion [21] by considering the nuclei
radius as a constraint. Serra and Matheron worked a lot on the morphological operators and
provided a new domain of mathematical morphology [19]. The nuclei region boundary was
extracted by applying the canny edge detector [4] and discrete morphological edge thinning
[30]. The contour to nuclei points association [62] was performed by locating the nearest
boundary to the selected nuclei center point. The selected center point and its nearest best
suitable boundary were utilized for ellipse fitting [40] in the final step.

The contribution of this paper is the kernel design and the nuclei points refinement pro-
cess to deal with the complex boundary nuclei segmentation using the radius of nuclei as
constraints. We analyze the performance of our method by utilizing five existing datasets
for the segmentation of nuclei region. The kernel limitation is that it performs poorly in the
case of multiple overlap nuclei cases (very big clusters). The kernel works in the objects’
radius equivalent or less than the kernel size. We also proposed a multi-organ histopathol-
ogy image dataset of 12 patients and analyzed it. The successful segmentation for the cases
that detects at least 80% of the nuclei have an average Dice coefficient 0.6.

The next section describes the detailed literature survey followed by the proposed seg-
mentation methodology described in Section 3. Section 4 explains the concrete experimental
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results and discussion comparison with the state of art techniques. Lastly, Section 5
encapsulates the conclusions of the paper.

2 Literature review

The image segmentation techniques have a wide diversity in the field, some of the related
techniques are discussed here. The tissue texture and spatial structure-based-details [47]
were utilized to resolve the boundary overlapping of nuclei. Wang et al. [57] presented a
chromatin morphology-based cell characterization through an optimal transportation matrix
(Kantorovich Wasserstein) [60] that measures the relevant biological information. The
nuclei distributions and differences were computed by utilizing Fisher discriminant anal-
ysis [56] along with multidimensional scaling applied to optimal transportation distance
map [57]. Large computational cost was the major issue of this methodology. Dundar et al.
[15], have segmented the cell region through the GMM-based pixel clustering followed by
a watershed algorithm. Cell region was segmented through the GMM-based pixel clustering
and the individual cells were segmented by utilizing watershed-based segmentation.

Ali et al. [2] and Chang et al. [6] were presented a priors representation using GMM and
color normalization [59], color transformation, and scale information based-feature extrac-
tion along with multi-reference-based background and foreground separation. Zafari et al.
presented [62] an algorithm as Bounded erosion followed by the Fast radial symmetri-
cal transform and Contour assessment (BFC) for overlapping objects segmentation. Wang
worked on a semi-automatic method (SAM) [55] based on alternative threshold computa-
tion and morphological operations. Nuclei’s portrayal of overlapped objects was resolute
by detecting concavities and partitioned them through geometric syllogism [49]. Chowd-
hary et al. [9] analyzed an intuitionistic possibilistic fuzzy c-mean (FCM) approach [7, 8,
10–12]. Lei et al. [37] improvised the FCM algorithm through morphological redintegration
and membership filtration (FRFCM). These algorithms clutch the constructive points of the
considered model to overcome the concomitant cluster problem by diminishing the noise
effect with outliers sensitivity reduction and preserving image details.

Peng et al. [45] presented a local mean as well as variance based-active contouring
(LVMAC) approach to segment the medical images through the Gaussian dispersal. Vu et al.
[54] presented the nuclei segmentation system as well as the whole slide classification
approach. The segmentation procedure implements a multiscale deep residual aggregation
network (MDRAN) for segmenting the nuclear region followed by clamped nuclei separa-
tion. The classification setup initially, based on patch level using deep learning and further
extended to whole-slide image classification using statistical and morphological properties
as input to a random forest regressor. Yu et al. [61] worked on a pyramidal facet adapta-
tion based semi-supervised system (PABVS) to segment the cardiac bi-ventricle. Initially, it
employed the multiscale pyramidal characteristics of bi-ventricle shape and then adversar-
ial learning based on level-wise weighted feature adaptation to manage its high variability
and less sensitive to outliers.

Sheela et al. [46] combined the prior knowledge of a specified region, seen growing, as
well as morphological functioning (dilation and erosion). The FCM clustering, followed by
base structure realm growing (FCMRG) has been utilized for detecting and segmenting the
region of interest in the image. Vargas et al. [42] modified the FCM clustering algorithm
in terms of the robust statistics to develop an iterative image segmentation method using
color features. The non-parametric Lorentzian Redescending M-estimator was utilized in
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the clustering algorithm; since its working is as location estimator to compute the centroid
vector and at the time of the membership matrix update it acts as a weighting matrix.

Zhao et al. [64] combined the image refinement process to investigate the imaging sys-
tem and enhance the image lucidity. It processes the stereotype data by image computation
process to obtain noticeable statistical image features [11, 33]. Dhanachandra et al. [43] also
utilized a combined process of dynamic particle swarm optimization (DPSO) with the FCM
that utilized the beneficial points of the globally optimized searching process and parallel
computation of DPSO for image enhancement and segmentation. Kim et al. [29] presented
an unsupervised image segmentation system that used an argmax function after normaliza-
tion for differentiable clustering. After that, a spatial continuity loss function was utilized to
eliminate the limitations of the segmented region edges. Lei et al. [38] investigated a finger-
print segmentation approach using an FCM and genetic algorithm that was relying on the
gray level present in image and post-processing steps.

Sun et al. [53] applied the existing convolutional neural networks (CNNs) and presented
a hierarchical conditional random field (HCRF) based approach for gastric histopathol-
ogy image segmentation that localize the cancer regions in HIs. Xia et al. [58] applied
the FCM clustering approach to segment the image at a global level for shape proper-
ties extraction and region of interest identification. It improvises the clustering robustness
and offers the trade-off between smoothening and high-frequency information preservation
through fine-tuning using the soft voting technique. The limitations of these methods are
directly processing the images for classification of pixels to segment that limits the seg-
mentation accuracy. The mentioned problem is resolved by the proposed method using the
preprocessing, refinement, and specific region identification and complex nuclei separation.

3 Proposed segmentationmethod

The content-based image retrieval (CBIR) algorithm for nuclei segmentation uses the prior
knowledge of the histopathology images. The complete proposal of HI segmentation is
defined in three cascaded steps; A) preprocessing, B) nuclei points and region refinement,
and C) complex nuclei segmentation. The flowchart of the proposed segmentation technique
is depicted in Fig. 1.

3.1 Preprocessing

The nuclei region enhancement as preprocessing in the proposed technique is accomplished
by histogram equalization followed by the application of object size kernel. Firstly, the
histogram equalization is applied with the computational complexity of O(L2) where L is
the total number of intensity levels.

The specified size kernel (W) is adaptively fabricated using the radius of approximated
nuclei. Lets considerR is the radius of the defined object. The radius of circular kernel (W) is
taken equal to the diameter of considered object as presented in [36]. The kernel design structure
with a 3-D visual illustration of application on histogram equalized image is shown in Fig. 2.

The elementary form of kernel design is described through the pseudo-code in Algo-
rithm 1. The computational complexity in kernel design is O(D2R). The processed image
after kernel application is IF as

IF = IH ∗ W (1)
where asterisk symbol * represents convolution function between image IH and kernel W

as shown in Fig. 2.
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In the tissue, nuclei are surrounded by different types of components and possess differ-
ent types of relationships with the surrounding in various locations of the entire HI. Due to
this, the selection of any specific value for the identification of nuclei and the non-nuclei
region is very difficult. In the proposed segmentation method, nuclei region extraction is
performed by a combination of the Otsu threshold [44] and the discrete cosine transform
(DCT) based threshold selection methods [28]. The Otsu’s thresholding method has the
computational complexity of O(L2) like histogram equalization. The amended threshold
(T1) using Otsu threshold (T ) is computed by the following relations:

T1 = (1 + Tα) ∗ T (2)
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Fig. 1 Flowchart of the proposed method

where Tα is threshold normalization parameter which ranges between 0.08 to 0.22. The
value of Tα is directly proportional to the mean intensity of image. T2 is obtained using
DCT based thresholding method [28].
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Fig. 2 aHistogram equalized image b the outcome of kernel application on (a), c object size kernel d smooth
image by Gaussian filtering e the resulting image by applying the kernel on the smoothen image

Two segmented images using thresholds T1 and T2 are combined to form an initialization
mask for nuclei boundary extraction. This mask creation reduces the search space for the
subsequent processing steps. In other words, let the binary initialization mask is IM and it
is obtained by the following relation

IM =
{
1; IF ≤ Tb

0; IF > Tb
(3)

where Tb = max(T1, T2) is the overall threshold. IM will further be processed for the nuclei
boundary using local region energy-based contours to get an energy-optimized image (IEO).

3.2 Nuclei center and region extraction

The existence of overlapping and touching nuclei results in false identification in nuclei
boundary extraction. To resolve this issue, nuclei center points are identified using iterative
morphological erosion and used as seed points for segmentation. The pseudo-code for nuclei
points refinement is explained in Algorithm 2.
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Let � ⊂ R
d and f : � → R is an image of d-dimension. The B-spline (BSP) level-set

function has an interface � ⊂ R
d represented in terms of an implicit boundary function φ(.)

at the zero level-set. It is a linear combination of BSP basis functions [3] is given as

φ(x) =
∑

k∈mathbb(Z)d

[c[k]]βn(
h

x
− k) (4)

Here the BSP function βn(.) is the symmetric d-dimensional having the degree n. The knots
or cross points of the BSP can be marked using a grid spanning �, at a regular interval. The
measures of the BSP rendering are accumulated in c[k]. The parameter h has a scale value
that controls the smoothness of the interface. The suitable energy function is defined by the
following equation

E(φ) =
∫

�

F(I (x), φ(x))dx, (5)
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To implement the proposed segmentation problem the value of F is computed from the
Chan & Vese data analysis as

F(I (x), φ(x)) = H(φ(x))(I (x) − v)2 + (1 − H(φ(x)))(I (x) − u)2 (6)

Here H is a well known Heaviside function and the update parameters u and v are used
at each iteration as per the (7) and (8).

u =
∫
�x′ (1 − Hφ(x′)).Ix′dx′
∫
�x′ (1 − Hφ(x′))dx′ (7)

v =
∫
�x′ Hφ(x′).Ix′dx′
∫
�x′ Hφ(x′)dx′ (8)

The minimization of the functional (5) can be done using the BSP parameters c[k].
The derivatives of energy function with respect to every BSP functional parameter c[k0] is
defined as

δE

δc[k0] =
∫

�

δF(x, φ(x))

δφ(x)
.βn(

x

h
− k0)dx (9)

with
δF (x, φ(x))

δφ(x)
= δφ(x)(I (x) − v)2 − (I (x) − u)2 (10)

The evaluation of the level-set function was computed using the gradient descent of the
BSP functional parameters. The respective variation in the BSP parameters is depicted as:

ci+1 = ci − λ�cE(ci) (11)

where parameter λ represents an iteration number and �c shows the energy gradient of the
BSP parameters given by (9). The smoothness parameter h is a scalar integer number to
represents the degree of smoothness of contour (h ≤ 4).

3.3 Complete nuclei segmentation

The image formed after application of nuclei center and region extraction is further pro-
cessed for complex nuclei identification using the center to boundary association with curve
fitting.

3.3.1 Nuclei boundary extraction

The nuclei region boundary was extracted by applying the canny edge detector on ICF

followed by discrete morphological edge thinning.

3.3.2 Nuclei boundary and center point association

The nuclei border contour to center point association was performed by locating the nearest
boundary pixels to the selected nuclei center. It combines the distance with divergence rate
to assign the boundary pixels to a center point. The elementary-code for boundary extraction
is given in Algorithm 3.

Given a set of nuclei center points C = {c1, c2, ..., cn}, every boundary pixels bk in B =
{b1, b2, ..., bm} represents a relation to the identified nuclei center points using a relevancy
metric rel(bk, cj ) given by

rel(bk, cj ) = 1 − λ

1 + dist (bk, cj )
+ λ

div(bk, cj ) + 1

2
(12)
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where dist (bk, cj ) and div(bk, cj ) are the Euclidean distance and divergence functions,
respectively. These values are normalized in the range (0,1] and then added through the
weight λ. By using the above relation, the boundary pixel bk is assigned to center point cj

with optimum relevancy. The function dist (bk, cj ) represents the distance from boundary
point bk to the nearest center point cj . The assumption is taken for all the pixel values on the
connecting line of boundary points to center point l(bk, cj ) considered as nuclei region M:
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The computation of gradient on a given point x is

g(x) =
{ ‖bk − cj‖; if (bk, cj ) ⊂ M

∞; otherwise
(13)

The function div(bk, cj ) shows the difference of directions between the line connecting the
boundary point bk to center point cj and gradient direction at boundary point bk , and is
computed by taking cosine of the angle between them:

div(bk cj ) = g(bk)l(bk, cj )

||g(bk)||.||l(bk, cj )|| (14)

The computational complexity for the boundary to seed point association is O(N2NpLB).
To reduce the number of latent false classified boundary points and the computa-
tional cost, the region was searched adaptively in the circular expanse near every
boundary point individually so that fewer center points were processed. After defining
a circular zone and taking the alternating boundary points the computational com-
plexity for the boundary to seed point association is O(N2LB/2). Figure 3 demon-
strates the boundary-to-center point association to estimate boundary evidence. The red
arrow shows the direction of the gradient at boundary point b1, the dashed arrows
of black and blue color show the direction of the lines connecting b1 to c1 and c2
respectively.

3.3.3 Complex nuclei identification

Once the contour evidence has been determined, the boundary estimation is performed to
predict the missing region of the nuclei. The contour estimation was addressed to model the
partially visual nuclei through an ellipse fitting [62], [17]. The elementary-code for complex
nuclei identification is explicated in Algorithm 4.

Fig. 3 Illustrative example of boundary to center point association. The boundary point b1 near to C2 has
more weight (high divergence value) for b1 − C2 association and less weight for b1 − C1 and by comparing
the distance (g(1) and g(2)) and divergence values (div(1) and div(2)). g(1) < g(2) and div(2) > div(1).
Both the parameters supports as b1 is the boundary point of C2
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4 Result and discussion

Performance evaluation of the proffered HI discrimination technique is done using five
existing HI datasets and one proposed multi-organ dataset; 1) Animal Diagnostics Lab
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(ADL) dataset [51], 2) Bisque dataset 3) Nuclei dataset by A. Janowczyk [24], 4) BreaKHis
dataset [50], 5) MICCAI 2018 [31], and 6) Dataset prepared by us in association with All
India Institute of Medical Sciences (AIIMS) Bhopal India, and Jawaharlal-Nehru Cancer-
Hospital & Research-Center (JNCH&RC), Bhopal, India [34, 36]. The detailed information
of the proposed dataset is given in the supplementary material provided with the manuscript.
The experiments on 60 images taken from six different datasets are performed for the
quantitative assessment. The parameters used for evaluation measures are discussed in
Section 4.1. The experiment with different kernel radius was performed to get the optimum
value for the best performance of the proposed method in consecutive subsection.

4.1 Evaluationmeasures

There are four existing evaluation measures used for validation of the proposed method.
F1-score (FS), [32], Dice similarity coefficient (DC) [13], and modified Hausdorff dis-
tance (MHD) [14, 35]. Accuracy is the most intuitive measure for analyzing classifiers’
performance and it is simply a ratio of correctly predicted utterance to the total utterances.

Accuracy = T rPo + T rNe

T rPo + FaPo + FaNe + T rNe

(15)

where T rPo represents truly positive cases that are accurately classified, T rNe shows true
negative cases are the negatives and also classy them into the negative category, FaPo terms
as false positive that are negative cases but classified as positive elements and FaNe values
are false negative, which is positive identities while grouped into negatives. The standard
deviation at sample level (STD.S) [36] is taken for the variation analysis of the perfor-
mance measures. One cumulative performance parameter is proposed and defined using the
standard predefined measures.

4.1.1 Weighted cumulation factor

The word cumulation is coined form the words (Cumula-tive+Aggrega-tion). The existing
evaluation parameters cover one side and miss other aspects. To avoid this limitation we
introduce a novel performance parameter aggregation that combinedly evaluated by three
measures F1 score - Dice coefficient - modified Hausdorff distance (FS-DC-MHD) cumu-
lation. The FS-DC-MHD cumulation is computed by taking the unidirectional performance
which means take the increasing or decreasing effects and termed as weighted cumulation
factor (WCF). All the parameters are molded accordingly, as the high value of FS and DC
is preferable, while the lower value of MHD is the first choice. The preferable MHD is of
opposite nature hence we have taken the negative exponential of it in the parameter aggre-
gation. The weight taken here for all cases is equal to 1. The value of WCF ranges from 0
to 1. For fully different sets, it is 0 and for similar matrices, it is 1.

WCF = FS.DG + DC.e−MHD + e−MHD .FS (16)

4.2 Kernel size analysis

The central window diameter of the kernel is R + 1 for an even radius and R for odd one
with all pixels of negative values. The outer layers of the kernel have positive values with
smaller values near the central window to the outer region. The kernel and image can also
be taken in the opposite way as for image (Max(image) − image) and for the kernel just
take the opposite sign and calculate all the results.
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The Jaccard index value first increases with increasing the kernel radius as illustrated in
Fig. 4a. At certain kernel radius with maximum Jaccard index, the performance decreases
with an increase in radius. The ADL and Nuclei dataset images for spleen, kidney, and lung
provide good performance for radius size R = 5 − 8 and for BreaKhis dataset R = 6 − 10
is the suitable range. Meanwhile, the time complexity observation with kernel radius is
illustrated in Fig. 4b. BreaKhis dataset images show the high computational complexity
and as compared to the ADL dataset images for low kernel radius. Initially, the average
complexity increases rapidly with an increase in the kernel radius and then gradually. By
analyzing the time complexity and the Jaccard index we performed an experiment for all
the images at kernel radius R = 6.

4.3 Complex structure analysis

The segmentation performance at complex boundaries is depicted in Fig. 5. A larger set of
visual results for multiple dataset images is given in the supplementary material. The average
performance on all six datasets is considered for the evaluation of the proposed method.

The touching nuclei are shown inside cyan-colored ellipse and on the right side in the
big rectangle in Fig. 5b. The touching nuclei are easily marked separately in Fig. 5c, using a
suitable ellipse fitting. Meanwhile for the overlapped nuclei cases as shown inside the cyan
circle, a small rectangle of red color, and left side in the big cyan rectangle. The overlapped
nuclei are also tried to represent with their best-estimated boundary through the ellipse
fitment method. Minimum 6 base points coordinates are required to plot an ellipsoidal but
we have used 50 points to show the continuous curve of a nucleus as depicted in Fig. 5c.

4.4 Evaluation

The results are evaluated on the basis of qualitative and quantitative performance.

4.4.1 Qualitative evaluation

The visual illustration for the segmented sample images by different segmentation tech-
niques as the BFC [62], SAM [55], FRFCM [37], MDRAN [54], LVMAC [45], PABVS

Fig. 4 The Jaccard index values are high for the kernel radius in the range of 5-12 a The Jaccard index versus
kernel radius plot. b The plot for time analysis with variation in kernel radius for six different images. The
taken to segment the image increases with an increase in kernel radius
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(a) (c)(b)

Fig. 5 Sample Illustration of histopathology image segmentation, a Original image b The nuclei centers and
there associated boundaries c The suitable ellipse fitting for touching and overlapped nuclei

[61], FCMRG [46], and HCRF [53] comparison with the proposed method is depicted in
Fig. 6. The segmentation outcome is illustrated through two samples H&E stained color
images. The performance can be observed by the visual inspection of column-wise the result
from the BFCmethod in the second column and the SAMmethod results in the third column
in the upper part of the figure. The fourth and fifth columns show the results for MDRAN
and LVMAC methods. The lower part of Fig. 6 from first, second, and third columns depict
the segmentation results of PABVs, FCMRG, and HCRF methods, respectively. The lower

SAMBFCH&E

Proposed Ground TruthHCRFFCMRGPABVS

LVMACMDRAN

Fig. 6 Segmentation result illustration by two samples of H&E stained histopathology images (400×400×3)
by the BFC, SAM, FRFCM, MDRAN, LVMAC, PABVS, FCMRG, HCRF, and proposed methods along
with ground truth
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Table 1 The comparison of FS of the proposed technique with state of the art methods for five different
datasets

Dataset BFC SAM FRFCM MDRAN LVMAC PABVS FCMRG HCRF Proposed

ADL 0.709 0.655 0.726 0.829 0.802 0.7931 0.685 0.854 0.916

Bisque 0.709 0.631 0.706 0.713 0.686 0.762 0.72 0.778 0.828

BreaKhis 0.593 0.586 0.558 0.741 0.714 0.85 0.769 0.877 0.934

Nuclei 0.621 0.778 0.66 0.829 0.802 0.762 0.836 0.903 0.938

MICCAI 0.709 0.655 0.726 0.818 0.791 0.871 0.799 0.854 0.916

Avg 0.668 0.661 0.675 0.786 0.759 0.808 0.762 0.853 0.906

STD.S 0.057 0.071 0.071 0.055 0.055 0.050 0.060 0.047 0.045

fourth and fifth columns in Fig. 6, depict the results of the proposed method and ground
truth (GT), respectively.

4.4.2 Quantitative evaluation

The quantitative evaluation in terms of average FS for ADL, Bisque, BreaKhis, Nuclei,
and MICCAI dataset are shown in Table 1. The BFC, SAM, and FRFCM methods
show average FS (Mean±STD.S) 0.668±0.057, 0.661±0.071, and 0.675±0.071, respec-
tively. The MDRAN, LVMAC, and PABVS methods gave 0.786±0.055, 0.759±0.055, and
0.808±0.050, respectively. The average FS by the FCMRGmethod is 0.762±0.060, and the
HCRF approach provides 0.853±0.047 while the proposed algorithm offered 0.916±0.045
which is at least 6% better to all the baseline methods.

The DC analysis for all the considered datasets is discussed in Table 2. The BFC method
offers maximum DC value for the Nuclei dataset 0.621 and the average value is 0.502±
0.065. The SAM, FRFCM, MDRAN, and LVMAC algorithms provide average DC 0.605±
0.039, 0.439± 0.050, 0.604± 0.030, and 0.701± 0.040, respectively. The PABVS, FCMRG,
and HCRF methods gave average DC 0.607± 0.067, 0.681± 0.046, and 0.739± 0.021,
respectively. The proposed method offered average DC 0.771± 0.016, which is at least or
nearly 5% better as compared with state of art approaches.

Table 3 shows the comparative performance on all considered datasets of different meth-
ods with the proposed approach. The average MHD by the thee BFC method is 7.323±

Table 2 Analysis of Dice’s coefficient for different state of the art methods with proposed method on five
different datasets

Dataset BFC SAM FRFCM MDRAN LVMAC PABVS FCMRG HCRF Proposed

ADL 0.469 0.657 0.477 0.605 0.63 0.585 0.727 0.746 0.782

Bisque 0.513 0.587 0.379 0.612 0.708 0.592 0.62 0.715 0.746

BreaKhis 0.611 0.636 0.389 0.577 0.725 0.576 0.659 0.723 0.778

Nuclei 0.45 0.567 0.473 0.577 0.712 0.557 0.674 0.767 0.765

MICCAI 0.469 0.577 0.477 0.65 0.728 0.725 0.725 0.746 0.783

Avg 0.502 0.605 0.439 0.604 0.701 0.607 0.681 0.739 0.771

STD.S 0.065 0.039 0.050 0.030 0.040 0.067 0.046 0.021 0.016
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Table 3 MHD analysis of the proposed segmentation approach with state of the art methods for five different
datasets

Dataset BFC SAM FRFCM MDRAN LVMAC PABVS FCMRG HCRF Proposed

ADL 7.073 9.759 7.071 8.288 7.013 7.268 7.46 6.768 5.186

Bisque 5.287 12.273 6.274 7.295 7.891 9.275 8.303 6.707 4.903

BreaKhis 9.538 10.058 7.292 9.26 8.388 8.058 7.342 7.553 5.929

Nuclei 7.646 11.482 8.212 8.26 7.388 7.24 9.342 6.723 5.242

MICCAI 7.073 9.759 7.071 7.333 9.411 7.408 7.408 6.768 5.186

Avg 7.323 10.666 7.184 8.087 8.018 7.850 7.971 6.904 5.289

STD.S 1.523 1.147 0.693 0.813 0.935 0.863 0.861 0.364 0.381

1.523 (Mean±STD.S). The SAM, FRFCM, and MDRAN methods offered 10.666± 1.147,
7.184± 0.693, and 8.087± 8.813, respectively. The LVMAC, PABVS, FCMRG, and HCRF
methods provided 8.018± 0.935, 7.850± 0.863, 7.971± 0.861, and 6.904± 0.364, respec-
tively. The proposed segmentation method gave average MHD value 5.289± 0.381, which
is at least 23% improvement than all the considered approaches for comparison.

The accuracy measure of the proposed technique is compared with mentioned state
of art segmentation techniques like BFC [62], SAM [55], FRFCM [37], MDRAN [54],
LVMAC [45], PABVS [61], FCMRG [46], and HCRF [53] for five different datasets is
given in Table 4. The BFC method shows 0.729 accuracy for ADL dataset with 0.701±
0.033 (Mean±STD.S) average value. The SAM method shows 0.725 accuracy for Bisque
dataset and its average accuracy performance is 0.687± 0.030. The FRFCM, MDRAN, and
LVMAC methods segments the nuclei region with average accuracy 0.601± 0.102, 0.772±
0.010, and 0.837± 0.005, respectively. The FCMRG and HCRF methods provdes aver-
age accuracy 0.828± 0.017 and 0.868± 0.015, respectively. The proposed method gave the
average accuracy of 0.927± 0.014, which is at least 7% greater than all state of the art
methods.

4.5 Evaluation usingWCF

The box plot [63] for the illustration of average performance using the weighted cumulation
factor is shown in Fig. 7.

Table 4 Dadaset-wise accuracy analysis of the proposed segmentation system with different state of the art
methods

Dataset BFC SAM FRFCM MDRAN LVMAC PABVS FCMRG HCRF Proposed

ADL 0.729 0.695 0.655 0.785 0.843 0.825 0.817 0.884 0.926

Bisque 0.692 0.725 0.696 0.760 0.838 0.837 0.843 0.856 0.944

BreaKhis 0.729 0.697 0.47 0.773 0.829 0.814 0.822 0.877 0.918

Nuclei 0.65 0.674 0.512 0.763 0.838 0.836 0.850 0.847 0.937

MICCAI 0.707 0.643 0.671 0.779 0.837 0.817 0.810 0.875 0.909

Avg 0.701 0.687 0.601 0.772 0.837 0.826 0.828 0.868 0.927

STD.S 0.033 0.030 0.102 0.010 0.005 0.010 0.017 0.015 0.014
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Fig. 7 The box plots illustrate the overall analysis of different methods on the test database using the
weighted cumulation factor. The black dots represent the scores obtained for all 60 images by respective
methods

The box has the centerline with median value within the box is overall best for the pro-
posed method. The WCF for all the images is depicted by the black dots in the box plot
along with the box (box shows two quartile 25%-75%) with median value as a horizontal
line inside the box. The average value of WCF in the box plot for BC, SAM, and FRFCM
methods is 0.482, 0.520, and 0.460, respectively. The MDRAN, LVMAC, and PABVS
segmentation approach offered average WCF 0.525, 0.545, and 0.538, respectively. The
FCMRG and HCRF methods gave 0.576 and 0.581, respectively, on the other hand, the pro-
posed algorithm offered average WCF 0.623 which is at least 7% better as compared with
all state of the art algorithms (Table 5).

4.6 Complexity analysis

The computational complexity of particular processing steps discussed at various sub-
sections is given as exact computations required. Here we approximate the complexity
and the worst-case computing complication is taken as the complexity of the algorithms.
The BFC, SAM, and FRFCM methods have O(N3) computation complications. The
MDRAN, PABVS, and HCRF algorithms offer the complexity ofO(N4)while the LVMAC

Table 5 Complexity analysis of different image segmentation techniques

Method name and reference number Complexity in order of N

SAM [55] O(N3)

BFC [62] O(N3)

FRFCM [37] O(N3)

MDRAN [54] O(N4)

LVMAC [45] O(N3.5)

PABVS [61] O(N4)

FCMRG [46] O(N3.5)

HCRF [53] O(N4)

Proposed method O(N3)
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and FCMRG proffer O(N3.5) computational operations. The proposed method offers the
computing complexity of O(N3).

5 Conclusion

A novel content-based histopathology image segmentation method using a multi radial
kernel has been proposed in this manuscript. It is a three-stage method where histogram
equalization and multi radial circular kernel are used for pre-processing followed by B-
spline function based nuclei center and region extraction and finally center to boundary
association and curve fitting are applied for complete nuclei segmentation. The performance
of the segmentation technique is evaluated in terms of average FS, Dice coefficient, and
modified Hausdorff distance, and a novel introduced parameter weighted cumulation fac-
tor (WCF) to define overall performance. In evaluation with existing state of art methods,
proposed method is showing at least 6%, 23% and 7% improvement in FS, modified Haus-
dorff distance, and WCF respectively. The process can further be used for grading of the
disease using various classifiers. This method may also be employed for the segmentation
of objects of different sizes and shapes in various applications.
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