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Abstract
The main element of extended reality (XR) environments is behavior-rich 3D content con-
sisting of objects that act and interact with one another as well as with users. Such actions
and interactions constitute the evolution of the content over time. Multiple application
domains of XR, e.g., education, training, marketing, merchandising, and design, could
benefit from the analysis of 3D content changes based on general or domain knowledge
comprehensible to average users or domain experts. Such analysis can be intended, in par-
ticular, to monitor, comprehend, examine, and control XR environments as well as users’
skills, experience, interests and preferences, and XR objects’ features. However, it is dif-
ficult to achieve as long as XR environments are developed with methods and tools that
focus on programming and 3D modeling rather than expressing domain knowledge accom-
panying content users and objects, and their behavior. The main contribution of this paper
is an approach to creating explorable knowledge-based XR environments with semantic
annotations. The approach combines description logics with aspect-oriented programming,
which enables knowledge representation in an arbitrary domain as well as transformation
of available environments with minimal users’ effort. We have implemented the approach
using well-established development tools and exemplify it with an explorable immersive
car showroom. The approach enables efficient creation of explorable XR environments and
knowledge acquisition from XR.

Keywords Extended reality · 3D Web · Exploration · Reasoning · Queries · Semantic
web · Ontologies · Annotations

1 Introduction

Extended reality (XR) covers different forms of combined real and virtual environments,
ranging from augmented reality (AR) to virtual reality (VR) in the reality-virtuality contin-
uum [34], and encompassing different types of presentation and interaction with objects in
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such environments [27]. Realistic immersion in XR has been enabled by the increasing per-
formance of GPUs as well as the variety of available headsets and controllers. XR attracts
users in multiple application domains, such as marketing, merchandising, simulation,
design, engineering, medicine, education, and training. A key element of XR environments
is behavior-rich 3D content whose objects perform actions and interactions with one another
and with content users, leading to the creation, modification, and destruction of objects in
3D scenes.

Multiple application domains can benefit from registering behavior of users and 3D
content in XR, including their actions and interactions described using general or domain
knowledge. Registered behavior can be subject to exploration with queries about 3D con-
tent states at different moments and periods in time. It may be especially useful in XR
intended to acquire knowledge about the environment behavior as well as users’ behavior,
experience, interests, and preferences. For example, in design, collaborating team members
can register and query about the history of a project, changes introduced by the particu-
lar designers, and consistency between the changes and the requirements for the project.
In marketing and merchandising, collected information about actions of customers interact-
ing with products and salesmen in virtual stores can provide knowledge of their interests
and preferences. This, in turn, can help in the proper arrangement of real stores as well as
presentation of personalized offers to the customers. In engineering, collected information
about the states and behavior of running machines can serve to analyze how the machines
work and to identify their possible faults. In medicine, collected information about the steps
of virtual treatments can be analyzed by students. In general, information collected while
training can be used to consider diverse situations and teach beginners.

However, the aforementioned cases still go beyond the possibilities of the available
methods and tools, including 3D formats, programming languages, 3D modeling environ-
ments, and game engines, which have not been intended for creation of explorable XR
environments. In particular:

1. The available solutions focus on 3D content objects, properties, animations and inter-
actions encoded in a way intelligible to programmers and graphics designers, and
interpretable by 3D browsers, rather than general or domain-specific objects, proper-
ties, actions and interactions intelligible to average users or experts in the field. This is
a problem since XR environments in different application domains are typically used
by people with expertise in fields different from IT, who are familiar with general or
domain knowledge but not technical and programming concepts.

2. Metadata frameworks in the available 3D formats and tools, such as Extensible 3D
(X3D), 3ds Max and Unity, are general and offer no strict formalism of classes, indi-
viduals, properties as well as relations between them. This limits their expressiveness
and accuracy, thereby narrowing the possibilities of practical applications. Furthermore,
unstructured or semi-structured metadata is unsuitable for complex and precise reason-
ing, which leads to the inference of implicit (tacit) content properties based on explicit
properties, and queries including various conditions on content properties.

3. The problem remains even in the case of approaches that enable implementation of 3D
content in an object-oriented way. The solutions of this group are improper for knowl-
edge exploration including automated reasoning and query processing, which require
the explicit implementation of additional functions. Such implementation is typically
done using the same technology as the technology used to build the primary version
of the environment. Special effort is needed to decouple the new functions responsi-
ble for knowledge processing from the original functions responsible for processing of
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3D content, e.g., by refactoring the former code, applying appropriate design patterns,
and implementing new software modules. It may be time-consuming and expensive,
especially in case of extending existing environments by programmers who have not
developed them.

4. Methods of tracking and registering behavior of XR environments should be flexible
and efficient in terms of covering different elements of the environment, e.g., modules,
classes, functions, and variables, with simple selection and change of target elements,
and without introducing redundancy to the original code.

The main contribution of this paper is an approach to creating explorable XR environ-
ments. The approach enables both: creation of explorable XR environments from scratch
as well as transformation of existing environments to their explorable counterparts. The
approach consists of three main interrelated elements: a new formal model of XR behavior, a
method of creating explorable XR environments, and an algorithm of generating XR behav-
ior logs, which enable exploration. The general idea of the approach is depicted in Fig. 1. It
applies declarative annotations to code written in an imperative programming language in
the aspect-oriented fashion. The subject of annotation may be the code of any XR environ-
ment, in particular, developed using a game engine. Due to the use of the aspect-oriented
approach, we minimize the necessary modifications of the available environment code. An
annotated environment uses the algorithm we propose to generate semantic behavior logs
while being used. Behavior logs rely on the new temporal representation of 3D content
behavior that is built upon the semantic web approach. Behavior logs include information
about users’ and objects’ actions and interactions as well as their results, covering the cre-
ation, modification, and destruction of 3D objects and properties. Due to the use of the
semantic web, behavior logs can be subject to exploration based on reasoning and queries.

The semantic web is one of the predominant approaches to knowledge representation
in different domains and one of the main trends in the evolution of the web [4]. It gains
increasing attention in the context of graphical systems and XR, e.g., for photogrammetry
[3], molecular visualization [46, 47], content description and retrieval [43, 44], design of
industrial spaces [38], archaeology [13] as well as feature-based data exchange between
heterogeneous CAD systems [53, 60]. Due to the use of the semantic web in our method, XR
behavior can be represented with general or domain knowledge, thus being intelligible to
average users and domain experts who are not IT-specialists. Second, the generated behavior
logs can be processed with standard reasoning engines to infer implicit knowledge based
on explicit knowledge. This allows users who develop or transform an environment to put
stress only on its fundamental objects and properties, and skip objects and properties that
can be inferred while reasoning. Next, both the explicit and implicit past and current objects
and properties can be subject to exploration with queries. Furthermore, due to ontologies,
which have been intended as shared terminological and assertional assets, the method can

Fig. 1 The concept of annotation-based creation of explorable XR environments
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be used in collaborative XR environments, in which multiple users commonly create 3D
content based on shared conceptualization.

The remainder of this paper is structured as follows. Section 2 provides an overview of
the current state of the art in the fields related to the paper. The proposed method is explained
in Section 5. In Section 4, we overview the semantic behavior representation, which is a
key element of the method. Section 6 outlines the algorithm used in the method, which is
responsible for generating behavior logs compliant with the representation. In Section 7,
we describe the tool for development of explorable XR environments, which implements
our approach. Further, we illustrate the concepts and toll with an explorable immersive car
showroom (Section 8). It is followed by the evaluation (Section 9) and discussion of the
results (Section 10). Finally, Section 11 concludes the paper and indicates possible future
research.

2 Related work

2.1 Modeling behavior of 3D content

3D content behavior covers actions performed by 3D objects, interactions between objects
as well as interactions between objects and users. Both actions and interactions are typically
reflected by animations of objects’ geometry, structure and appearance.

A number of 3D modeling tools and game engines enable implementation of interac-
tions and animations of 3D content, including 3D modeling tools (e.g., 3ds Max [1] and
Blender [5]), animation modeling tools (e.g., Motion Builder [2]) as well as game engines
(e.g., Unity [45] and Unreal [23]). The tools permit modeling of interactions and animations
covering diverse content features. In addition, some of them, e.g., Blender and Unity, allow
for scripting in different programming languages (e.g., Python and C#), which is the most
powerful way to implement content behavior. Other tools, which do not require program-
ming skills, are state diagrams and keyframes with interpolation of objects’ properties, e.g.,
geometry, position, orientation, and colors.

The tools use multiple 3D content representation formats, e.g., FBX, OBJ and VRML.
However, since the formats have been intended strictly for representing 3D content, they
enable neither representation of domain-specific semantics of 3D content nor content explo-
ration with reasoning and queries. Even more complex formats, such as the Extensible 3D
(X3D) [59], which enable encoding of metadata, have limited expressiveness with no for-
malism and structures for content description, such as hierarchies of classes and properties
as well as relations between them.

2.2 Semantic web

The semantic web is an emerging trend influential to a growing number of systems in dif-
ferent domains. It is currently one of the leading approaches to knowledge representation
offering well-established standards with thoroughly investigated computational properties
[55]. Content descriptions based on the semantic web are human-readable and computer-
processable. Therefore, we have chosen the semantic web to be the foundation of our
approach.

The main standards used to represent content of any type on the semantic web are the
Resource Description Framework (RDF) [57], the RDF Schema (RDFS) [58] and the Web
Ontology Language (OWL) [54]. RDF is a data model based on statements in the form
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of triples [subject predicate object]. In a statement, the subject is what we describe, the
predicate is a property of the subject, and the object is a predicate value, a descriptor, or
another entity that is in a relationship with the subject. RDFS and OWL are languages
built upon RDF, providing higher expressiveness—classes and properties with relations and
hierarchies, which enable comprehensive description of content.

These standards permit design of ontologies, which are specifications of conceptualiza-
tion [25] for a domain. Ontologies are formal conceptualization of the intended semantics
of a knowledge domain or common sense human knowledge, i.e. an abstract, simplified
view of the world represented for a particular domain [44]. Ontologies enable knowl-
edge representation, which can be expressed using statements that belong to three groups.
Terminological knowledge (TBox) describes conceptualization—a set of concepts and rela-
tions between them. Relational knowledge (RBox) describes hierarchies and properties of
relations. Assertional knowledge (ABox) describes facts about individuals (objects) using
concepts formalized in TBox and RBox. Ontologies may describe arbitrary objects as well
as classes and properties of objects, which makes them a general solution for content
description across diverse applications and domains. Ontologies constitute the foundation
of the semantic web. Ontologies developed with RDF, RDFS and OWL can be queried using
SPARQL [56], which is the main query language on the semantic web.

The aforementioned attributes make ontologies a more strict, structured and comprehen-
sive tool for content description than typical metadata based on schemes with properties and
keywords.

2.3 Metadata and semantics for 3D content behavior

Several solutions have been devised to express metadata and semantics of interactions and
animations. The analyzed solutions are summarized in Table 1.

The MPEG-7 standard [28] offers several descriptors for different features of multi-
media content such as colors, textures, shapes, and motion. An overview of the motion
descriptors and their applications has been presented in [12]. The descriptors cover motion
activities and trajectories, camera motion, and warping. In addition, the standard specifies
the XML-based Description Definition Language, which enables creation of descriptors and
descriptor schemes.

In [7], an approach to describing metadata for interaction of 3D objects has been pre-
sented. The proposed interaction model encompasses events, conditions, and actions. They
are encoded using XSD schemes. In addition, a query language about interaction metadata,
with syntax similar to SQL, has been proposed. The solution does not address representa-
tion of temporal 3D objects and properties nor reasoning over 3D content. In the paper, an
example related to interaction description for virtual heritage objects is presented.

Several approaches enable representation and modeling of 3D content behavior with
ontologies and semantic web standards, which offer more complex formalism than typical
metadata. An extensive review of the state of the art in ontology-based modeling and rep-
resentation of 3D content has been presented in [20]. In this paper, we overview the most
essential aspects of the solutions.

The approach proposed in [8] uses ontologies to build multi-user virtual environments
and avatars. The focus is on representing geometry, space, animation, and behavior of 3D
content. The covered entities are semantic equivalents of entities incorporated in widely-
used 3D formats, such as VRML and X3D. Environmental objects, which are the main
entities of 3D content, are described by translation, rotation, and scale. Avatars are described
by names, statuses, and UIs. The avatars’ behavior is specified by scripts linked to the scene
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Table 1 Metadata- and semantics-based representation of 3D behavior

Approach \ Metadata (M) / Specificity Level Example of Use Flexible 3D-domain

Criteria Semantics (S) (3D / domain) Connection

[12] M 3D video browsing �
[28]

[7] M 3D virtual museum −

[8] S 3D virtual humans

[11]

[10]

[37] S 3D and domain game design �

[26]

[24] S domain virtual humans −

[29] S 3D genome visualization

[33] M domain rigid body simulation −
[40] S domain human embryo �

[46] S domain molecular visualization −

[18]

[50]

[19] S 3D and domain virtual museum �

[22] S 3D cultural heritage −

using descriptors. However, scripts do not allow for query-based exploration, reasoning, and
temporal content representation.

In the approach proposed in [10, 11, 37], primitive and complex objects’ behavior can
be specified. Examples of primitive behavior are: move, turn, and roll. Primitive behavior
may be combined into complex behavior using temporal, lifetime, and conditional opera-
tors, e.g., before, meets, overlaps, starts, enable, and disable. Examples of complex behavior
are: build a museum and destroy a bridge. In addition, complex behavior can be modeled
using diagrams. Like in the previous solution, the implementation underlying the seman-
tic description of behavior is based on scripts, which imposes similar limitations. The
implemented behavior can be exported to X3D scenes.

The ontology proposed in [48] contains classes and properties that represent animations
using keyframes, which are linked to geometrical and structural descriptions of the objects.
The ontology does not allow for temporal content representation.

The ontology of virtual humans [24, 26] consists of geometrical descriptors (describing
vertices and polygons), structural descriptors (describing levels of articulations), 3D anima-
tions of face and body as well as behavior controllers (animation algorithms). In addition,
the approach enables ontology-based representation of emotional body expressions.

The ontology proposed in [29] enables 3D content representation using classes and
properties that are equivalents of X3D nodes and attributes, e.g., textures, dimensions,
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coordinates, and LODs. In addition, the approach permits specification of rules. For
instance, if an individual is of the atom class (body), generate a sphere to represent it in
an ontology for chemical compounds (head). Thus, final 3D content is based on both the
explicit and implicit (inferred) knowledge.

The simulation environment presented in [33] combines a few tools. The Unreal game
engine enables rigid-body physics and content presentation. An inference engine enables
reasoning and updating the scene representation when events occur. A behavioral engine
enables action recognition and changes in conceptual objects’ properties. The use of dif-
ferent engines within one environment permits separation of concerns between users with
different expertise.

An approach to spatio-temporal reasoning over ontology-based representations of evolv-
ing human embryo has been proposed in [40]. The ontologies are encoded in RDF and
OWL, and they describe stages, periods, and processes.

In [46], an ontology-based representation of 3D molecular models has been proposed.
The approach combines different input (e.g., interaction using various haptic and motion
tracking devices) and output (e.g., 2D and 3D presentation) modalities to enable pre-
sentation and interaction suitable for different kinds of devices, content, and tasks to be
performed.

The approach proposed in [16–18, 49, 50] uses ontologies to represent 3D content at
different specificity levels—related to 3D graphics as well as an application domain. Fur-
thermore, it enables reasoning to liberate content authors from determining all content
properties. It permits semantic queries to generic 3D templates (meta-scenes) in order to
generate customized 3D scenes. Finally, the customized 3D scenes can be transformed into
different 3D formats understandable to 3D browsers.

In [22], an approach to generating ontology-based 3D formats from available 3D formats
has been proposed. The X3D Ontology [51], which is a semantic equivalent of the Exten-
sible 3D (X3D) [59] format has been presented. It gathers all concepts of X3D, including
animation and interaction. The ontology has been automatically generated from the X3D
XML Schema combined with the X3D Unified Object Model (X3DUOM), which com-
plements the schema with information about classes of and relationships between X3D
nodes.

2.4 4D Fluents

Semantic temporal representation of content has been extensively studied in the domain
of the semantic web leading to the development of a few solutions. One of the available
approaches is 4D fluents [52]. A fluent is a property that varies over time. The approach
specifies rules to be accomplished to transform a time-independent statement into a time-
dependent statement. The result of the transformation of a statement two objects are linked
by a property is a statement two objects are linked by a property at a time point or within a
time interval.

This is achieved by using the concept of time slices, which are temporal counterparts to
the primary objects, associated with time entities. The representation of an object that has
several different values of a property in different points or intervals of time includes several
distinct time slices of the object (one for every point/interval) that are associated with the
points/intervals and are assigned the proper property values.

For instance, to express that a virtual salesman was working in a store from 10 to 11
am., create time slices for both the salesman and the store, and link them by the worked in
property. Next, create the interval representing that 1 hour, and assign it to the time slices.

6965



Multimedia Tools and Applications (2021) 80:6959–6989

3 Problem statement

So far, the semantic representation of behavior, including animations and interactions has
gained little attention in comparison to the representation of static content features related
to geometry, structure, and appearance. The available approaches in this field are still pre-
liminary and have the following limitations, which also determine the main requirements
for our approach:

1. They do not enable representation of temporal 3D content objects and properties with
their changes over time.

2. They do not enable flexible, applicable to different domains and contexts, connection
between temporal 3D content objects and properties with domain-specific or general
objects and properties that are visualized by the 3D content.

3. They do not enable reasoning over temporal 3D content objects and properties, which
can lead to the inference of implicit (tacit) knowledge from explicitly specified knowl-
edge. It could allow content authors to focus only on fundamental features of the content
while skipping features that are implicated by the fundamentals.

4. They do not enable registration of users’ and objects’ behavior, including actions and
interactions that occur while using XR environments.

4 Semantic behavior representation

The main contribution of this paper is an approach to annotation-based creation of
explorable XR environments, which covers the shortfalls of the available solutions men-
tioned in Section 3. The approach consists of two main elements: the semantic behavior rep-
resentation, which is a formal model of XR behavior, and the method of annotation-based
development of XR environments, which is presented in Section 5.

The semantic behavior representation is a pair of ontologies based on the semantic web
standards: RDF, RDFS, and OWL. The ontologies permit semantic representation of actions
of 3D content objects and users as well as interactions between 3D objects, and between
users and 3D objects. In addition, they enable representation of results of actions and inter-
actions. Due to the use of the semantic web, 3D content behavior can be represented using
general or domain knowledge. The ontologies of the representation are sets of statements
that express TBox and RBox (cf. Section 2.2).

4.1 Behavior representation ontologies

The behavior representation consists of a domain ontology and the fluent ontology, which
are presented in the following subsections.

4.1.1 Domain ontology

A domain ontology specifies classes and properties related to a particular application
domain, comprehensible to average users or domain experts. A domain ontology is deter-
mined by a particular XR application, and it is common to all its use cases. Different domain
ontologies may be used for behavior representations across different explorable environ-
ments, e.g., exhibitions in a virtual museum, buildings in a virtual city, and cars in a virtual
showroom.
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4.1.2 Fluent ontology

The fluent ontology specifies classes and properties based on the 4D-fluents approach (cf.
Section 2.4), which describe intervals, points in time and time slices. The classes and prop-
erties are used to represent temporal content properties (referred to as fluents) that are
specified in the domain ontology. The fluent ontology is an immutable part of our approach,
and it is common to all explorable XR environments.

The ontology has been specified using a description logic enabling: class intersection
and union as well as qualified cardinality restrictions. The ontology is presented in Listing 1
using the notation for description logics [30]. TimePoint is the class of time entities that
are instant—have duration equal to zero (line 1), while TimeInterval is the class of time
entities that have duration larger than zero (2). The start and end properties are specified
for time intervals, and indicate time points (3-6). Every time slice has exactly one object
indicated using the isTimeSliceOf property and exactly one of two properties hasTimePoint
or hasTimeInterval, which indicates a time entity in which the time slice exists (8-9). The
domains and ranges of the properties are specified like for start and end (10-14).

4.2 Behavior logs

A semantic behavior log is a set of statements that express assertional knowledge (ABox)
about behavior-rich domain objects, which are represented by animated and interactive 3D
objects of an XR environment, and described using entities specified in the behavior repre-
sentation, including the fluent and domain ontologies. A behavior log represents a temporal
state of affairs in a particular use (session) of an explorable XR environment, while users
and 3D objects are acting and interacting. Actions and interactions reported in logs can be
further explored by reasoning engines to infer tacit (implicit) users’ and objects’ properties
on the basis of their explicit properties. Moreover, logs can be queried by users, applica-
tions, and services to acquire information about involved users and objects, their actions and
interactions, added and removed objects as well as modified users’ and objects’ properties,
in different points and periods of time.

Listing 1 Fluent ontology for the XR behavior representation
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5 Method of annotation-based development of explorable XR
environments

The concept of the method, which is the second key element of the approach, is depicted in
Fig. 1. An explorable XR environment is an XR environment in which selected users’ and
objects’ properties are logged using general or domain knowledge, while the environment
is being used. The registration, also referred to as logging, covers changes of users’ and
objects’ properties over time. Properties are registered in the form of semantic behavior
logs, which comply with the semantic behavior representation (cf. Section 4).

The goal of the method is to enable creation of explorable XR environments by involv-
ing domain experts who have knowledge in the particular application domain but have
no advanced technical skills. To achieve this, we provide the method, which liberates the
authors from regularly programming the environment code in favor of annotating it using
domain knowledge. Therefore, the method is based on aspect-oriented programming in
combination with the semantic web approach, which permits creation of new explorable
environments from scratch as well as transformation of existing environments to their
explorable counterparts. The method is intended to minimize changes to the 3D content
management layer, which could affect the presentation and behavior of the environment as
an undesirable side effect. Finally, it separates the knowledge management layer, which is
extra to the environment, from the 3D content management layer.

The successive steps of the method are depicted in Fig. 2. It the steps, the code of a proto-
type XR environment is annotated and compiled, leading to the generation of an explorable
XR environment. The method significantly extends the approach proposed in [15, 21] with
representing autonomous actions of 3D content objects in a way that is independent of XR
ontologies.

5.1 Step 1: Annotating the prototype environment

A prototype XR environment, which is given at the input of the method, is an applica-
tion implemented using a game engine (e.g., Unreal or Unity), an imperative programming
language (e.g., Java, JavaScript, C++ or C#) and libraries for 3D/XR development (e.g.,
Java 3D, WebGL, and DirectX). A prototype environment is encoded in a procedural or
object-oriented way, thus it consists of functions or classes with methods.

Fig. 2 Transforming XR environments to explorable XR environments
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5.1.1 Selection of class methods for annotation

In this step, a designer annotates some functions or class methods (depending on the pro-
gramming paradigm used) in the prototype environment. A designer may be a domain expert
with extensive knowledge of the application domain and basic knowledge of the hierarchy
of classes and methods in the project. The selection of class methods is arbitrary. It depends
on the desirable information that should be included in behavior logs that will be generated
while using the environment. In general, subject to annotation are class methods, whose
successful execution has to be reported in the behavior logs. For instance, the annotation
of a class method that puts a product into the shopping cart allows marketing specialists to
study consumers’ behavior in a virtual store. The annotation of a class method that turns on
appliances on a power station allows new employees to learn how to use the equipment. The
annotation of class methods that add and modify buildings in a 3D urban area allows archi-
tects to follow the city design process. Apart from generating fragments of behavior logs,
annotated class methods behave in the same way as their equivalents in the prototype XR
environment. The result of this step is annotated code, in which the headers of the selected
class methods are preceded by annotations. In this step, the bodies of the class methods
remain unchanged.

5.1.2 Semantics and syntax of annotations

In our approach, every class method may be preceded by multiple annotations, e.g., in
Listing 2. Every annotation consists of at least three parameters: a subject, a predicate, and
an object, which form an RDF statement (cf. Section 2.2). The optional fourth parameter
is a timestamp that is a moment or a period when the statement is true. In an annotation, a
subject, predicate and object can be given as literal values, parameters of the class method,
local variables, or global variables.

Different annotations of the same or different class methods may use common enti-
ties: subjects, predicates, objects, and timestamps. The same entities used in annotations
attached to a common method denote the same values. Also, the same entities that indicate
global variables and are attached to different methods denote the same values. Otherwise,
the values are determined by the indicated method parameters or local method variables.

In the example in Listing 2, since the method belongs to the Visitor class, the this
keyword in the first annotation indicates the subject as the visitor for whom the method is
invoked. The predicate is the watches property from a domain ontology for virtual gal-
leries. Painting indicates a method parameter, which is used as the object of the first
annotation. The action of watching the painting by the visitor will be reported as occurring
since the current moment as indicated by the start timestamp. In a while, the visitor may
be watching another painting. To collect more comprehensive information about the visi-
tor’s action, also the author of the painting, his/her name, and birth date are registered by
the other three annotations. The annotations use predicates specified in the Dublin Core [9],
FOAF [6] and DBpedia [32] ontologies, and indicate objects represented by variables in the
method body. Since the annotations describe immutable data, they include no timestamps.
Successful execution of the method adds semantic statements derived from the four anno-
tations to a behavior log in a triplestore. Information collected in behavior logs generated
using this annotated method allows for analyzing visitors’ interests in art, including their
favorite periods and artists.
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Listing 2 Example of an annotated class method in C#

5.2 Step 2: Compiling the annotations

In this step, the annotation compiler that we have implemented (cf. Section 7) processes the
entire project code and completes the following actions.

1. It attaches the semantic log library to the project. The library implements the algorithm
for generating logs (cf. Section 6). It derives statements from annotations and loads
them to a triplestore.

2. It extends the body of every annotated class method with appropriate instructions that
generate log statements while the environment is being used. Processing each indi-
vidual annotation of a class method injects new instructions that are responsible for
generating logs to the end of the method. The scheme of a generated class method is
presented in Listing 3. The added instructions are responsible for extracting information
about the classes of the variables used in the annotations, creating timestamps, setting
identifiers of the semantic individuals to be inserted to the log, and invoking a method
from the library that inserts the statements with the individuals to the triplestore. The
input parameters of the method are the variable values and literal values given in the
annotations as well as the extracted classes and created timestamps.

3. It injects additional common classes and methods responsible for setting values of
temporary variables used in the code inserted in action 2.

Listing 3 Example of a compiled
annotated class method in C#
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5.3 Step 3: Compiling the environment

In this step, a native compiler specific for particular hardware and software platform is
used to generate the explorable XR environment in its executable form, which is the result
of the method. The explorable XR environment comprises the same classes with the same
properties and methods as the prototype environment. Hence, its 3D objects appear and
behave like their prototypes. However, the class methods with annotations created in Step
1 and compiled in Step 2 generate behavior logs while the environment is used. Behavior
logs conform to the semantic behavior representation presented in Section 4.

6 Algorithm for generating behavior logs

In addition to the semantic behavior representation, an essential element used by the method
is the algorithm for generating semantic behavior logs, which conform to the representation.
The implementation of the algorithm is injected into every explorable XR environment in
Step 2 of the method (cf. Section 5.2), and it is running during a session of using the environ-
ment. The algorithm registers actions as well as interactions occurring in the environment
that are executed by class methods annotated in Step 1 of the method (cf. Section 5.1). The
algorithm has the following steps for every annotated class method:

1. For every annotation, determine the values of the subject, predicate and
object in the following order.

(a) If a subject/predicate/object is enclosed in quotation, it is processed as
the literal value.

(b) If a subject/predicate/object is not enclosed in quotation:

i and is equal to the identifier of a method parameter, it is processed as the
value of the parameter.

ii and is equal to the identifier of a method variable, it is processed as the
value of the variable.

iii and is equal to the identifier of a global variable, it is processed as the
value of the variable.

Comment. A subject, predicate, and object of an annotation may indicate either a
literal value, method parameter, local method variable, or global class variable. Quota-
tion indicates that the subject/predicate/object is a literal value. Otherwise, the priority
of variables is determined by points 1(b)i-1(b)iii.

2. For every annotation without a timestamp, which has the form [SemanticLog(
subject, predicate, object)], insert the statement <subject
predicate object> to the triplestore.

Comment. Processing of annotations without timestamps is simpler as it does not
cover creation of time slices, time points nor time intervals.

3. For all annotations with a timestamp, which have the form [SemanticLog(
subject, predicate, object, timestamp)] where timestamp does
not indicate a particular date, determine the common value equal to the current date,
which denotes:

(a) a time point, if the timestamp is equal to now.
(b) the beginning of a time interval, if the timestamp is equal to start.
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(c) the end of a time interval, if the timestamp is equal to end.

Comment. Annotations with timestamps set to exact dates will use the dates to
express temporal statements. Annotations with timestamps set to keywords must be com-
monly processed—to generate statements that refer to the same points or intervals in
time.

4. For every annotation with a timestamp:

(a) If the timestamp is equal to end or the predicate is a functional property,
update the open time interval (with no end property set) associated with a subject
time slice and the predicate, if such one exists, by setting its end property
to the timestamp value.

Comment. An interval in which a subject has a particular predicate may be
closed explicitly, by using the end keyword with an annotation related to this subject
and predicate. If the predicate is a functional property, which may have at most one
value at a given time for a particular subject, a similar effect is caused by setting
a new value for the predicate assigned to the subject.

(b) If the timestamp is equal to now or start:

i If the timestamp is equal to now, create a time point, which is
an individual of the TimePoint class, and set its value property to the
determined timestamp value.

Comment. The now keyword indicates the current moment in time
considered as a time point.

ii If the timestamp is equal to start, create a time interval,
which is an individual of the TimeInterval class, and set its start
property to the determined timestamp value.

Comment. The start keyword indicates the current moment in time
considered as the beginning of a time interval.

iii Create a time slice of the subject, which is an individual of the
TimeSlice class from the fluent ontology as well as of all the classes
of the subject.

iv Assign the created time point or time interval to the subject
time slice using the hasTimePoint or hasTimeInterval,
respectively.

Comment. The time slice will be a temporal representation of the sub-
ject with the particular predicate assigned at a given moment or for a
period in time. Therefore, it must link the information about time.

v If the predicate is a datatype property, set the predicate for the subject
time slice to the value specified by the object.

vi If the predicate is an object property:

A Create a time slice of the object, which is an individual of
the TimeSlice class from the fluent ontology as well as of
all the classes of the object.

B Set the predicate for the subject time slice to the
object time slice.

C Assign the created time point or time interval to
the object time slice using the hasTimePoint or
hasTimeInterval, respectively.
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Fig. 3 Architecture and workflow of the Development Tool for Explorable XR Environments

Comment. If the predicate indicates an object, temporal representa-
tion must be specified for the object as it was specified for the subject in
points 4(b)iii-4(b)iv.

7 Development tool for explorable XR environments

We have implemented the Development Tool for Explorable XR Environments to illustrate
and evaluate the proposed approach. The tool consists of three modules: the annotation
module, the semantic log library and the annotation compiler, which are described in the
following subsections. The scheme of the architecture and the workflow of the tool are
depicted in Fig. 3. The annotation module supports Step 1 of the method by providing an
ontology browser and enabling presentation and completion of annotations. The annotation
compiler enables Step 2 of the method, while the semantic log library permits logging of
behavior of executable environments.

7.1 Annotationmodule

The annotation module is an extension to the MS Visual Studio IDE. The module offers
three functions: ontology browser, annotation presentation, and annotation completion.

7.1.1 Ontology browser

The ontology browser enables loading an arbitrary OWL ontology, whose classes, datatype
properties and object properties are presented in three neighboring list views (Fig. 4). The
left list view presents all classes specified in the ontology. The central and right list views
present all datatype and object properties specified in the ontology, or properties whose

Fig. 4 Ontology Browser of the Development Tool for Explorable XR Environments
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domain is the class selected in the left list view. The properties are used by the other func-
tion of the module responsible for presentation and completion of annotations. The fluent
ontology (cf. Section 4.1.2) has been implemented using OWL 2 DL.

7.1.2 Annotation presentation

Semantic annotations are instances of as the SemanticLog class, which inherits from the
System.Attribute class. The SemanticLog class has four fields corresponding to ele-
ments of an annotation: subject, predicate, object, and timestamp. Nonetheless, it accepts
annotations of two forms—with and without timestamps. The SemanticLog class is added
to the code project of an XR environment by the annotation designer in Step 1 of the method
(cf. Section 5.1). It enables Visual Studio to validate the syntax of the created annotations.

While annotations are programmed, the annotation presentation function paints their
subjects, predicates, objects and timestamps using distinct colors. An example of color-
ing annotations is depicted in Fig. 5. The same subjects and objects have the same colors
across different annotations, e.g., user and car, to denote that they refer to the same vari-
ables in the code. In addition, datatype properties (e.g., name) are distinguished from object
properties (e.g., isIn and seatsOn).

7.1.3 Annotation completion

The annotation completion function provides suggestions while writing annotations. The
suggestions are contextual and depend on what is currently being written in the text area. In
Fig. 6a-d, suggested are, respectively, the entire annotation template, subject (from the list
of method parameters and variables), predicate (from the list of properties in the ontology),
and timestamp (dates and keywords).

7.2 Annotation compiler

The annotation compiler is a console application encoded in C#. The input parameters of
the compiler are: the path of a prototype XR environment to be transformed and the path of

Fig. 5 Painting annotations in the Development Tool for Explorable XR Environments
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Fig. 6 Annotation completion in the Development Tool for Explorable XR Environments

the explorable XR environment to be generated. The compiler implements code injection
according to the aspect-oriented approach. It works in Step 2 of the method. It attaches the
semantic log library to the project, extends the bodies of annotated methods with invocations
of the library methods, and injects additional auxiliary classes that prepare the invocations.

The compiler is based on ANTLR [36], which is a well-established library for creat-
ing parsers and compilers. ANTLR has been used to create a grammar, which recognizes
method annotations with their parameters and variables to generate the final code.

7.3 Semantic log library

The semantic log library is the module responsible for generating semantic behavior logs
while an explorable environment is being used. It creates semantic statements on the basis of
method annotations. The library has been implemented as a dynamic-link library (DLL) in
Visual Studio. Its size is equal to 46 KB. Semantic statements are created using Semiodesk
Trinity [42], an open project for ontology engineering in C# applications. The generated logs
are stored in Semiodesk TinyVirtuoso [41], which is a triplestore with an HTTP-based inter-
face. The library is attached to the XR environment in Step 2 of the method (cf. Section 5.2)
by the annotation compiler. The library is compatible with C# projects. In the examples pre-
sented in the rest of this paper, we use the library for projects developed in the Unity game
engine.

8 Explorable immersive car showroom

An immersive car showroom has been developed in the virtual reality laboratory at the
Poznań University of Economics and Business in Poland [35, 39].

8.1 Design

The showroom is a Unity-based application, which uses an Oculus Rift headset [14] and a
Leap Motion hand tracking device [31]. The Unity game engine [45] is a widely-used tool
for creating XR applications with different devices such as headsets and motion tracking
systems. Oculus Rift enables immersive presentation of 3D content, while the Leap Motion
enables interaction with 3D cars using hand gestures.
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Fig. 7 Selecting a car (a) and sitting in the car (b) in the immersive car showroom. ©Jakub Flotyński 2020,
all rights reserved.

We have annotated and transformed the showroom to an explorable VR environment.
An example of a method annotation is depicted in Fig. 5. In the showroom, a user
can accomplish the following actions implemented by distinct class methods, using hand
gestures.

1. Select a car, which is executed by indicating the car using the forefinger of the right
hand (Fig. 7a). The user is immediately moved to the car and can watch it from outside.
In the showroom, a number of different cars are accessible.

2. Change the color of the car, which is executed for the currently watched car by selecting
a color from a palette in the main menu using the forefinger of the right hand. The
selected color is immediately applied to the body of the car.

3. Watch a car from around, which is executed by selecting a direction of rotation around
the car from the main menu using the forefinger of the right hand. In this way, the user
can view the car from all sides.

4. Take a seat in the car, which is executed by selecting a seat inside the car from the main
menu. Once got in, the user can watch the car inside (Fig. 7b).

The aforementioned class methods have been annotated using the annotation module of
the development tool for explorable XR environments in Step 1 of the method. In addition to
the methods, constructors of the Customer and Car classes have been annotated to register
information about basic objects for time slices. Next, the annotations have been compiled
by the annotation compiler in Step 2. Finally, in Step 3, MS Visual Studio has been used to
compile the overall environment to its executable explorable form.

8.2 Example of a behavior log

A behavior log has been generated while a customer was visiting the explorable immersive
car showroom. A part of the visit is described in Listing 4. The log presents past behavior
of the customer and the environment. The log consists of statements that describe actions
and interactions between the customer and cars in the environment, which are implemented
by the annotated methods listed in Section 8.1.

Every object in the log is represented by an OWL named individual. Objects are
described in a general way understandable to average users. The underlying 3D represen-
tation of the objects is irrelevant to the log, as its target users are not necessarily familiar
with computer graphics. The prefixes fo and do pertain to the fluent and domain ontolo-
gies, which are the parts of the behavior representation (cf. Section 4). The names of the
individuals are distinct due to postfixes, which are combinations of date, time, and hash
codes.
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Listing 4 Example of a behavior log

The customer (lines 1-3) and the car (5-7) are basic classes for time slices, with constant
(independent of time) properties such as name. The customer interacts with the car by
watching it, which is expressed by time slices linked by the watches property (9-15). It
is lasting from 2020-02-07T13:41:06Z to 2020-02-07T13:41:18Z as specified
by the time interval linked to both the time slices (17-20). Later, the color of the car was
changed by the customer for another interval of time (22-31).

8.3 Use cases of behavior exploration

Semantic exploration of actions and interactions in the immersive car showroom is possible
with queries to the generated behavior logs. Queries may be encoded in SPARQL [56],
which is the main query language for RDF-based ontologies and knowledge bases. Such
exploration can provide information about customers’ interests and preferences, which can
be further used for marketing and merchandising, especially for presenting personalized
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Fig. 8 Behavior exploration query: how much time did a customer spend to watch a car outside?

offers. Examples of an exploration cover the following use cases presented in the Virtuoso
web interface.

Query 1: how much time did the customer spend to watch a particular car outside?
The SPARQL query and its result are presented in Fig. 8. This information can be used to
investigate which cars are interesting to customers. In the example, the customer is watching
a Lexus car. Customer and car time slices linked to common intervals are searched. Next,
the length of the intervals is calculated, and the intervals are presented.

Query 2: which places inside cars are preferred by the customer? The SPARQL query
and its result are presented in Fig. 9. This information can be used to discover whether the
customer is mostly a driver or a passenger. The query looks for seats taken by the customer
with no regard to the particular cars.

Fig. 9 Behavior exploration query: which places inside cars are preferred by the customer?
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9 Evaluation

The Development Tool for Explorable XR Environments has allowed for the evaluation of
the approach in terms of processing performance, the size of behavior representation and
logs as well as the computational complexity of the log generation algorithm.

9.1 Performance

The performance of the tool has been evaluated in terms of transforming XR environ-
ments, inserting statements derived from annotations to a triplestore, and the number of FPS
rendered for the generated explorable environments. The tests have been completed using:

1. Work station 1 equipped with CPU Intel Core i7-5820K CPU 3.30GHz with 6 cores
and 12 threads; 16 GB RAM 2400 MHz; GPU NVIDIA GeForce GTX 960; and HD
Western Digital WD2003FZEX with 64 MB cache and rotational speed 7200 as well
as the Windows 10 operating system.

2. Work station 2 equipped with CPU Intel Core i7-4710HQ 2.50GHz with 4 cores and
8 threads; 8 GB RAM DDR3; GPU NVIDIA GeForce GTX 860M; and HD Hitachi
TravelStar 7K1000 750 GB with 32MB cache and rotational speed 7200 as well as the
Windows 10 operating system.

9.1.1 Transformation of XR environments

We have measured the time of transforming environments to their explorable counterparts
using works station 1. We have generated environments with the number of classes in the
range 10 to 100, step 10, every class including 10 to 100 methods with step 10. Each method
has been assigned 1 to 5 annotations. The results of the transformation are presented in
the graphs in Fig. 10. For every number of classes and every number of methods, 20 envi-
ronments have been generated. Hence, every point in graphs a-e is the average time of 20
transformations. Graph f presents the accumulated time for all the environments including
methods with 5 annotations.

The results show that the transformation time growths linearly with the growth in the
overall number of methods/annotations that are processed. This is confirmed by the high
R-squared equal to 0.9803. However, the results presented in graphs a-e show that the influ-
ence of the number of annotations on the transformation time is moderate. The five-fold
increase in the number of annotations leads to a slight increase in the average transforma-
tion time equal to 6.14/5.62=1.09. It means that the other activities encompassed by the
transformation, such as the creation of directories and copying files of the project, are more
time-consuming than processing annotations. This is also visible in graphs a-e, where the
increase in the number of classes more affects the transformation time than the increase in
the number of methods in a class.

9.1.2 Processing annotations

We have performed tests of streaming statements generated upon annotations at work sta-
tion 2 to the triplestore installed on work station 1. The streams were generated by an
environment with an animation of a moving object that lasted for 10 minutes. In every
update of the object, statements from annotations about its position were added to the triple-
store. The tests have been performed for 3 cases in terms of the location of the store: at
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Fig. 10 Time of transforming XR environments including class methods with 1-5 annotation to explorable
environments (a-e). Time of transformation for methods with 5 annotations depending on the overall number
of methods (f)
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Table 2 Performance of adding statements derived from annotations to a triplestore as well as the size of the
created annotations and generated logs

property localhost LAN internet

time [ms] avg 27 209 2059

stddev 3 56 78

CV 0,12 0,27 0,04

min 22 119 1786

max 60 818 2188

number of inserted annotations 20272 2732 288

inserted statements 50680 6830 720

inserted objects 15204 2049 216

log [KB] 5108 655 85

size of annotation [B] 258 246 303

the localhost (together with the environment), on another host in the same LAN, and on
another host on the internet. For every case, we repeated streaming 20 times. The results are
summarized in Table 2. Whereas inserting statements to the store at the localhost required
in average 27 ms, the performance for the LAN and the internet was much lower—209
ms and 2059 ms. It denotes significant network delay—182 and 2032 ms, respectively.
Also, the number of FPS was lower in these cases as rendering and logging were exe-
cuted by the same thread. The standard deviation of the results was relatively high for
the LAN, which is expressed by the coefficient of variation (CV) equal to 0.27. CV was
much lower for the localhost (0.12) and the internet (0.04), which denotes more stable
transmissions.

9.1.3 FPS

We have used work station 2 to complete two sessions of using the immersive car showroom
with the triplestore installed on the same station. The first session was completed using the
explorable showroom, whereas the second session—using the prototype (non-explorable)
showroom. For every session, we were registering the average number of FPS calculated for
the last 10 frames. The sessions lasted for 3 minutes each. The results are shown in Fig. 11.
While the average number of FPS for the session without annotations is 9% higher than
with annotations, logging the behavior increases the coefficient of variation that is twice
higher than without logging (0.2 to 0.1), which is also visible as the vertical distribution
of the points in the graphs. The sessions consisted of three parts in which three cars were
being watched from outside and inside and painted. Painting the cars was being executed
continuously by the mouse move event occurring over a palette of colors. Therefore, it was
generating streams with large numbers of statements about colors sent to the triplestore.
This mostly decreased the number of FPS, which can be seen as the breakdowns in Fig. 11a
in the intervals around 1:00, 1:42 and 2:40. In other periods of the session, 3D content
was smoothly rendered with no visible difference in comparison to the session without
logging.
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Fig. 11 FPS for sessions of using the immersive car showroom: the explorable environment—with logging
the behavior (a), and the prototype environment—without logging (b)

9.2 Size

We have evaluated the size of data used in the consecutive steps of the proposed method and
generated while running explorable environments:

1) annotations created in Step 1 and the instructions generated on the basis of the
annotations in Step 2,

2) classes and methods before and after the transformation in Step 2,
3) behavior logs generated while using explorable environments.

9.2.1 Annotations and generated instructions

We have compared the size of annotations created using the annotation module with the
size of imperative instructions for logging behavior that were added to the classes and
methods by the annotation compiler. This allowed investigating the gain in the developer’s
effort when using our approach in comparison to implementing the logging functions from
scratch.

Using at least one annotation for a method in a class is followed by extending the class
with additional auxiliary methods of the size equal to 911 bytes. The size of the annota-
tion template (without parameters) is equal to 28 bytes, while the size of the generated
instructions is equal to 729 bytes, which gives the gain ratio equal to 26.

9.2.2 Classes andmethods

We have compared the overall size of classes and methods of the generated explorable
environments to the size of classes and methods of their prototypes. The ratio also expresses
the gain in the developer’s effort when using our approach in comparison to implementing
logging functions from scratch. For the comparison, we have used environments mentioned
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Fig. 12 The ratio of the size of generated methods/classes to the size of their annotated prototypes

in Section 9.1.1 with 100 classes, every one with 100 methods. All the methods have been
assigned the number of annotations in the range 1 to 5. The results are presented in Fig. 12.
The gain ratio is proportional to the number of annotations for a method and varies from 3.5
for methods with a single annotation to 7 for methods with 5 annotations.

9.2.3 Behavior logs

The size of the behavior logs containing the streamed statements mentioned in Section 9.1.2
is summarized in Table 2. The largest log (5108 KB) was generated in the case of using the
XR environment with the triplestore at the same work station. It is almost 8 times larger than
the log collected remotely over the LAN, and 60 times larger than the log collected over
the internet. The proportions are similar for the numbers of annotations represented within
the logs, statements derived from the annotations, and objects used in the statements. In the
cases, the average size of the statements derived from an annotation is similar, ranging from
258 to 303 bytes.

The size of the behavior log representing the three minutes long session of using the
explorable car showroom, mentioned in Section 9.1.3, equals to 98 KB. It consists of 990
statements on 279 objects derived from 273 annotations.

9.3 Computational complexity

The computational complexity of the log generation algorithm described in Section 6 is the
following for the particular steps of the algorithm.

1. Determining the values of the subject, predicate and object requires 3
operations, thus the complexity is O(1).

2. Creating and inserting a statement derived from an annotation to a triplestore requires
2 operations, thus the complexity is O(1).

3. Determining the value of a timestamp requires 1 operation, thus the complexity is
O(1).

4. The complexity of the substeps completed for an annotation is as follows.

(a) Finding the statement with the latest interval in a list of statements sorted by the
intervals requires 1 operation, this is an operation O(1).
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(b) The complexity of the substeps completed for a timestamp is as follows.

i The creation of a time point requires 1 operation, thus the complex-
ity is O(1).

ii The creation of a time interval requires 1 operation, thus the
complexity is O(1).

iii The creation of a subject time slice requires 1 operation, thus
the complexity is O(1).

iv Assigning the created time point or interval to the subject
requires 1 operation, thus the complexity is O(1).

v Setting the predicate value for the subject requires 1 operation,
thus the complexity is O(1).

vi The complexity of the substeps completed for a predicate is as
follows.

A The creation of an object time slice requires 1 opera-
tion, thus the complexity is O(1).

B Setting the predicate value for the subject requires 1
operation, thus the complexity is O(1).

C Assigning the created time point or interval to the
object requires 1 operation, thus the complexity is O(1).

Thereby, the overall computational complexity of processing 1 annotation by the
algorithm is O(1), and O(n) for processing n annotations.

10 Discussion

The proposed approach offers a qualitative contribution over the available methods and
tools for development of XR environments, by satisfying the requirements listed in
Section 3.

10.1 Evaluation results

The obtained results show that the implemented environment efficiently transforms XR
environments to their explorable counterparts, as the time of transformation varies from 3
seconds for smaller environments to 13 seconds for larger environments. Such a reasonable
transformation time allows for developing web services transforming XR environments on-
demand.

The time of inserting statements derived from annotations strongly depends on the rel-
ative location of the explorable environment and the target triplestore. Its lowest value
obtained for the environment and triplestore installed on the same host enables logging
semantic information about animations, maintaining an acceptable number of FPS. It is oth-
erwise in the case of transmitting the statements over the LAN or the internet when the
delay affects the quality of the visualization. This problem may be solved in different man-
ners. First, logging behavior can be performed by a different thread than the one responsible
for updating and rendering 3D content. In such a case, the statements can be waiting in a
queue to be saved to the triplestore, without stopping the primary graphical thread. Second,
the transmission can gather multiple statements derived from various annotations into larger
packages to reduce the average delay. Third, other triplestores should be tested in terms of
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efficient communication over a network. Currently, the network delay is no problem for
logging actions and interactions that do not generate streams of statements to be registered
(like in animations).

The high performance of the log generation algorithm itself has been confirmed by the
theoretical analysis of its computational complexity, which linearly depends on the number
of annotations to be processed.

The behavior logs generated in the analyzed use cases are of acceptable size taking into
account possible practical applications of the approach, such as marketing, merchandising,
and training sessions, even in cases of streaming annotations to a triplestore. The com-
parison of the size of annotation to the size of the generated instructions as well as the
comparison of the size of classes and methods before and after the transformation show the
large gain in using the approach rather than implementing the corresponding functions from
scratch using programming languages and libraries.

10.2 Guidelines for developers

Processing annotations by the algorithm inserts new code instructions at the end of the
class methods annotated in Step 1 (cf. Section 5.1) of the proposed method. This requires
that the variables used in annotations be accessible at the end of the methods in the form
in which they should be registered. Therefore, we can specify the following guidelines for
developers who use our approach to create new XR environments that can potentially be
made explorable or to adjust existing environments before their transformation.

1. Local method variables that will be referred from within annotations should be defined
in the main scope of the method but not in narrower scopes, e.g., within conditional and
loop instructions.

2. A method that will be annotated should finalize with the values of the local and global
variables as well as method parameters to be annotated equal to the values used in the
method. Setting appropriate values should be done at the beginning of the method.

Although the guidelines introduce certain restrictions on the way in which the approach
is used, they may be applied by developers before transforming an environment by minor
changes of the code if needed. The following modifications should be accomplished if the
aforementioned conditions are not met.

1. If an annotation refers to a local method variable that is not defined in the main scope
of the method, the variable declaration should be moved to the main scope.

2. If a method, after completing its main job, is preparing new values of variables to be
used by other methods later on, the preparation should be moved to those other methods
while leaving the variables unchanged at the end of the primary method.

3. If a method, after completing its main job, is invoking other methods:

(a) Copies of the variables to be logged should be passed to the methods instead of
references to the variables. This is required to prevent modification of the variables
by the other method invoked, which would lead to logging invalid values, or

(b) The invocations should be moved before the method does its main job.

In particular, it is relevant to methods with tail recursion, which might be required
to be exchanged with head recursion or a loop.

4. If it is necessary to register actions and interactions executed by methods implemented
in external libraries that are available only as binaries, the methods should be wrapped
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by additional annotated methods in the environment. For instance, if an environment
invokes a web service to get a new representation of an object in a scene, which
should be registered, the invocation should be moved to an extra method, which will be
annotated, thus logging the execution of the service.

11 Conclusions and future work

In this paper, we have presented the approach to creating explorable XR environments, in
which actions and interactions of objects are registered in a way that permits their further
temporal exploration with queries. The behavior logs generated using the algorithm we
propose conform to the temporal representation of 3D content behavior. The representation
is based on the semantic web standards. It allows for expressing domain knowledge, and for
inference of tacit knowledge. The logs are finally subject to semantic queries about users’
and objects’ actions and interactions.

Due to the focus on annotating class methods, which often have domain-related names
and parameters, and the possibility of using knowledge in any domain, the approach can
encourage average users and domain experts with limited programming skills to contribute
to the development of XR. In addition, with the approach, explorable environments do
not have to be created from scratch but may be generated from available systems. These
advantages set directions to a variety of new applications of XR in the diversity of domains.

Future development encompasses several aspects. First, we plan to extend our tool with
the possibility of the presentation of past actions and interactions that would accompany
query-based knowledge acquisition. It can be achieved in two ways. On the one hand, the
animated 3D content of the environment can be recorded as a movie, which can be further
replayed from specific points in time to illustrate desirable content behavior. On the other
hand, dumps of the application memory can be created and restored in response to queries to
present actions and interactions logged in a session of using the environment. Such dumps
would need to cover the states of the objects that can potentially be subject to exploration.
Second, a tool for graphical modeling of annotations in the form of graphs associating
methods, classes, and packages of code can be implemented. Third, the implementation of
network communication in the development tool needs to be improved to enable logging
semantic information about animations generating streams of statements to a triplestore. We
plan to evaluate other existing libraries and triplestores and consider our own implementa-
tion of critical components. Finally, the implementation could be further improved in case
of the availability of aspect-oriented libraries compatible with game engines.
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