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Abstract
In order to enhance the discernment of features in view-based 3D shape recognition, we
propose a joint convolutional neural network (CNN) learning model based on informative
images. It learns deep features from intrinsic feature images and extrinsic 2D views, and
generates a synthetic feature vector via weighted aggregation and refinement process, which
has achieved remarkable improvement in non-rigid 3D shape classification. Our joint CNNs
model contains three parts: the first part is the geometry-based feature generation unit. We
provide a discriminative BoF (bag of features) image descriptor and construct CNN framework
to learn the geometric features of the model. The second part is the view-based feature
generation unit. We establish a parallel CNN to extract spatial features from optimized 2D
views. The third part is a score generation and refinement unit, which automatically learns the
weighted scores of geometric features and spatial features. Finally, the aggregated feature is
refined in a CNN framework and serves as an informative shape descriptor for recognition task.
The experimental results demonstrate that our deep features have the strong discerning ability.
Thus, better performance and robustness can be obtained compared to state-of-the-art methods.

Keywords Shape classification . Deep learning . Non-rigid 3D shape . View-based 3D shape
recognition . Bag-of-features

1 Introduction

The advancement in 3D acquisition technique leads to wider applications of 3D models in
various fields, triggering a wave of research on shape analysis and classification methods.
Especially, the successful application of deep learning technology in visual recognition in
recent years has attracted more and more researchers to pay attention to learning-based
methods for 3D shape analysis. Among them, view-based learning methods have made
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remarkable achievements in 3D shape classification and retrieval. They make full use of the
successful deep learning model in the field of the 2D image, convert 3D shape into a series of
2D images, and then these 2D images are fed into a deep learning framework to extract the
view features. The core work of the view-based learning method mainly includes two aspects.
One is to generate valuable 2D views, such as projection views, panoramic views, geometry
images, etc. [26, 31–33]. The other is to establish an effective learning mechanism to extract
discriminative features from images, such as auto-encoder learning, deep belief networks
(DBNs) learning, generative adversarial networks (GAN), convolutional neural network
(CNN) learning, weighted CNN learning and multimodal CNN learning etc. [5, 7, 38,
42, 11, 13, 17].

However, view-based learning methods only consider the visual similarity, but ignore the
intrinsic geometric information between 3D shapes. These 2D views with insufficient infor-
mation directly affect the feature extraction and the accuracy of classification.

This issue prompts us to study how to construct informative images to obtain more distinctive
view features.We propose a novel idea to extract discerning features by establishing a joint CNNs
learning framework. This framework takes into account not only 2D projection views but also
intrinsic geometry images. In particular, a score unit is introduced to automatically measure the
contribution of each type of feature to recognition task. The weighted features are finally
aggregated and refined in a standard CNN to serve as a final shape descriptor, which has stronger
discrimination and achieves better performance in shape classification and retrieval.

The advantages of our work can be summarized in three aspects: 1) we introduce a
discriminative BoF descriptor for capturing intrinsic structural properties of non-rigid 3D
shape. It provides a uniform representation for the shapes with complex geometric variations.
2) We propose a joint CNNs learning model, taking both BoF images and 2D projection views
as input, to extract geometric and spatial features. Through weighted fusion and refinement
processing, the final feature enhances the discernment and boost the accuracy of shape
classification and retrieval. 3) A joint objective function composed of cross-entropy loss
function and Contrastive loss function is designed to optimize the learning process.
Experiments show that our learning model is more efficient and achieves better performance
than the advanced methods.

The paper is structured as follows: the related works are presented in section 2. In section 3,
we introduce BoF image-based CNN learning and view-based CNN learning. The joint CNNs
learning model is presented in section 4. Experimental results are analyzed and discussed in
section 5. We conclude our work in section 6.

2 Related work

Excellent features will enhance the discrimination of shape representation and thus improve
the classification accuracy. Therefore, most classification methods are directly related to
feature extraction. According to the content of feature representation and the way of feature
extraction, it can be divided into traditional geometric features and learning-based features.

Traditional geometric features, refer to low-level features, which are directly extracted from 3D
model using different geometric analysis. The most popular feature is spectral feature, due to its
discriminative power of isometric shape deformations, spectral feature has been extensively studied
for non-rigid shape analysis, which is broadly classified into local spectral feature and global
spectral feature. The local spectral features include GPS (the global point signature) [30], HKS
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(Heat kernel Signature) [34], SI-HKS (scale-invariant HKS) [3], WKS (Wave Kernel Signature)
[1] and SGWS (Spectral Graph Wave Signatures) [21] etc. On the other hand, global spectral
features can be obtained from point signatures by integrating over the entire shape. For instance:
Shape-DNA [29], ShapeGoogle [25], which presented significant performances in the applications
of non-rigid shapes classification and shape retrieval. The major drawback of the low-level feature
is that it cannot fully represent the 3D shapes with varied structure [20, 24]. Bag of features (BoF)
[14, 16, 18, 22, 35] improved them by extracting a set of geometric features and encoding them as
histograms distributed over the k-means clustering center to construct middle-level descriptor.
Bronstein [3, 4] introduced a SS-BoF (spatially sensitive bag of features) that considered the spatial
relationships between BoF features. Bu et al. [6] proposed the GA-BoF (geodesic-aware bags of
features) by replacing the heat kernel in SS-BoF with a geodesic exponential kernel. Ye et al. [40]
presented a global descriptor, which replaced geodesic distancewith a reduced biharmonic distance
matrix. As a global feature representation, BoF reveals well the intrinsic structural features and
achieves good performance in the fields of non-rigid shape classification.

More recently, deep learning methods have achieved great success in visual recognition and
natural language processing, making the study of learning-based features become a new trend
for 3D shape analysis.

Learning-based features are high-level features automatically obtained from amount of data
using a neural network. Earlier works take low-level features as input, such as Zernike moments
[8], Geodesic moments (DeepGM [19]), Heat kernel signature (DeepSD [9], DeepShape [39]),
Spectral graph wave codes (SGWC [21], Shape-aware BoF [10]) and 3D tensor (VoxNet [22]),
and construct deep neural networks to implement high-level feature extraction. In recent years, the
model-based learning methods directly learn features from the original representation of 3D data,
and achieve effective results in shape segmentation and classification tasks. PointNet [27] proposed
a novel network framework to learn deep features from point cloud data. PointNet++ [28] further
solved the local structure issue by designing a hierarchical neural network, which applies PointNet
recursively on a nested partitioning of the input point set. SturctureNet [41] presented a method of
transforming geometry into hierarchical parts with part label [43] to implement shape segmentation
and synthesis. Voxnet [23] employed CNN to learn features from voxelized shapes. FeaStNet [36]
presented a deep neural network based on a novel graph convolution operator, which dynamically
determines the association between filter weights and the nodes in a local graph neighborhood.
However, building learning framework directly on the raw 3D data will make it sensitive to
occlusion and noise, especially bringing huge storage and computational complexity.

Alternatively, view-based learning method encodes a 3D shape as a set of its rendered 2D
views, and makes full use of the successful CNN framework in image recognition to learn
view features, achieving satisfactory results in 3D recognition and classification [26, 33]. Shi
et al. [26] transformed 3D shapes into panoramic views and build compact feature descriptor
via using max pooling in the CNN. Sinha et al. [31] parameterized the 3D model to the
spherical surface, and projected it onto the octahedron and then expanded into a 2D plane. A
geometric image with intrinsic structure is finally obtained via the distribution of principal
curvature or HKS in the plane. Bai et al. [2] employed GPU to accelerate the view features
extraction. Guo et al. [12] presented a novel learning network monitored by triplet loss and
classification loss. Su et al. [33] proposed a new CNN architecture to transform multiple 2D
views of an object into a compact object descriptor. Bu et al. [5] proposed a multimodal
learning architecture based on geometry image and projection images.

However, the deficiency of view-based learning method is that the transformation process
changes the local and global structure of the 3D shape and reduces the discrimination of
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features. Therefore, how to effectively obtain informative images from 3D data and how to
improve the discrimination of deep features are still challenging issues.

In this work, we design a joint CNNs learning model. It learns features from intrinsic BoF
images and multiple 2D views in a dual-channel CNNs framework (see Fig. 1), they are
weighted and refined to construct a high-level informative descriptor which provides stronger
discrimination, so as to effectively identify and classify non-rigid 3D shapes.

Figure 1 illustrates the overall structure of our proposed method. First, we extract geometric
features to generate a discriminative BoF image descriptor, which has better discernment
against intra-class structural variations and noises. All discriminative BoF images of training
data are fed into a CNN1 framework, where the relationship between learning efficiency and
CNN structure are deeply explored. Meanwhile, we establish a parallel CNN2 to extract the
extrinsic features from optimal 2D views. All the geometric and view features are weighted in
a score unit. And the fused feature is finally refined in CNN3 to boost the performance of 3D
shape recognition and classification.

3 BoF image-based CNN and view-based CNN

BoF model generates codebook with low-level features through clustering method, and then
represents the 3D model as an unordered set of codebook distribution frequency values. It
effectively solves the problem of poor expression ability of low-level features, forms a kind of
visual features between low-level and high-level semantic features. Compared with 2D
images, BoF descriptors integrate a series of geometric features and effectively reveal the
intrinsic structure of the model, thus achieving excellent results in the applications of non-rigid
shape classification and retrieval [16, 18].

In our work, we provide a discriminative BoF image descriptor based on multiscale HKS
and AGD features. The reason why these two geometric features are selected is that AGD
reveals well the global topological structure of non-rigid 3D shape, while HKS captures rich
local geometric information of 3D deformable shape. The combination of the two features has

Fig. 1 Architecture of our deep learning model
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shown excellent performance in the applications of shape retrieval and shape segmen-
tation [6, 37, 39].

AGD Let g(xi, xj) be the geodesic distance between two vertices xi and xj on a 3D mesh M, the
average geodesic distance of xito all other vertices is defined as follows:

AGD xið Þ ¼ An xið Þ
∑x j∈X

An x j
� �

=N

An xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑x j∈X

g xi; x j
� �

Area Mð Þ
n

s ð1Þ

Where Area(M) denotes the total area of the mesh M.

HKS For each vertex xi of the mesh M, its HKS is a p-dimensional feature vector as:

HKS xið Þ ¼ Kt1 xi; xið Þ;…;Ktp xi; xið Þ� � ð2Þ
The equation describes the conduction of heat on the surface with respect to time t, the heat
equation Kt(xi, xi) is called the heat kernel which is usually defined by the first bm eigenvalues λi

and eigenvectors φi:

Kt xi; xið Þ ¼ ∑
bm
i¼0

exp −λitð Þφ2
i xið Þ ð3Þ

Figure 2 shows the reconstruction results of the first 100, 150 and 200 eigenvectors of our
optimal LBO [15]. It can be seen that the representation error decreases gradually with the
increase of the number of basis functions, and reaches stability at 200. Therefore, in our work,
we choose first 200 eigenvectors and divide time t into p = 100 time intervals in logarithmic
scale interval[tmin, tmax] (tmin = 4 ln 10/λ200, tmax = 4 ln 10/λ2) [34], so as to generate p-dimen-
sional HKS description.

BoF descriptor 3D mesh model is defined as two geometric feature matrices
Shks sh1; s

h
2;…; shn

� �
andSagd sa1; s

a
2;…; san

� �
, whereshi ; s

a
i are the local features of HKS and AGD

at vertex xi, and n is the number of mesh vertices.
We embed low-level local descriptors Shks, Sagd into vocabulary spaces. A codebook is

constructed for each local descriptor by quantizing it into a certain number of codewords [3].
These codewords are usually defined by the k centers V = (v1, v2, .., vk)which are obtained via

Fig. 2 Reconstruction of wolf model based on first 100,150 and 200 eigenvectors of our LBO
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performing an unsupervised k-means clustering algorithm (k is also called feature dimension).
Therefore, each featuresiis mapped to a codeword in the codebook via the k × n cluster soft-
assignment matrix U = (u1, u2, .., un) whose elements are given by:

ui ¼
exp −α si−vtk k22
� �

∑k
t¼1exp −α si−vtk k22

� � ð4Þ

Where ⋅k k22denotes the L2-norm, and α is a smoothing parameter that controls the softness of
the assignment. Each local descriptor is encoded by a k-dimensional code ui and then
constructs a k × n matrix U, which is denoted as BoF descriptor. The shape is eventually
represented by the histogram of the codewords.

As we can see from Fig. 3 the shape descriptors of AGD and HKS of tiger model (Fig. 3a)
are extracted and embedded into vocabulary space by using k-means clustering (Fig. 3b),
respectively, the occurrence distribution of the codewords (k-cluster centers) are finally
computed as shown in Fig. 3c.

However, BoF only considers the occurrence of codewords and ignores the spatial rela-
tionship of them, which reduce its discernment ability. Inspired by SA-BoF [40], we construct
a global BoF descriptor by using biharmonic distance matrix as follows:

gij ¼ ∑
m

l¼1

1

λ2
l

ϕl ið Þ−ϕl jð Þð Þ2; F ¼ UGUT ð5Þ

Where gij denotes the element of biharmonic distance matrix G, which is defined in
terms of the eigenvalues λi and eigenfunctions φi of the LBO between any pair of
mesh vertices vi and vj, The resulting BoF descriptor F is a k × k matrix which
represents global and spatial relationships of geometric features. Obviously, it is
independent of the number of vertices of the model, and provides the same size
representation for different shapes.

Figure 3d has shown the global BoF descriptors based on HKS and AGD features, where
the color changes from blue to red as the value increases.

We compare the global BoFs of a set of shark models in SHREC 2015. However, as can be
seen in Fig. 4, both HKS-BoFs and AGD-BoFs have quite different patterns, and they are not
competent to recognize non-rigid shapes.

Fig. 3 aAGD (left) and HKS (right). b The quantization of features. c The distribution curves of AGD-BoF (left)
and HKS-BoF (right). d The global AGD-BoF and HKS-BoF (k = 55). e Our discriminative BoF descriptor
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The key reason is that the codewordV generated by k-means clustering in vocabulary space
is random, which causes the instability of constructed BoF descriptors. To improve
the discernment of global BoF, we introduce a discriminative BoF descriptor (see
Fig. 4c).

Discriminative BoF descriptor We concatenate two feature matrices Shks,Sagd to build a
synthetic descriptor SHA(sHA(x1), sHA(x2),…, sHA(xn)). Each element sHA(xi) = (Shks(xi),
Sagd(xi)) is composed of p-dimensional HKS feature and 1-dimensional AGD feature
at vertex xi.

And then we use k-means clustering to generate codebook, where the k cluster
centers C = (c1, c2, .., ck) are sorted in ascending order according to their AGD features.

eui ¼ exp −α sHA xið Þ−ct
�� ��2

2

� �
∑k

t¼1exp −α sHA xið Þ−ctk k22
� � ; eF ¼ eUKeUT

ð6Þ

By computing the optimized visual features matrixeU (k × n)with sorted codewords C in Eq. 6,

we can obtain a discriminative BoF descriptoreF, which reveals intrinsic structure of non-rigid
3D shape.

As can be seen from Fig. 5, the discriminative BoF descriptors not only reveal the intrinsic
structural similarity of different shark models, but also highlight the obvious differences
between different categories. Especially, it presents strong robustness to topological changes
and incomplete (e.g. holes,cuts).

Our discriminative BoF descriptor eF is invariant to the number and order of vertices on

non-rigid shapes. It can provide unified matrix representation eF(k × k) for models with
different resolutions.

Let U* ¼ eU⋅P, K∗ = PTKP,U*T ¼ PT⋅eUT
, where P is a permutation matrix that PT ⋅ P = 1, then we

have:

F* ¼ U*K*U*T ¼ eU⋅P⋅PTKP⋅PT⋅eUT
¼ eU⋅K⋅eUT

¼ eF ð7Þ

Fig. 4 The BoFs of different shark models. a Global HKS-BoF b Global AGD-BoF c Discriminative BoF
descriptors
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Therefore, we can convert BoF matrix into BoF image to build uniform image representation
of complex non-rigid model.

BoF image-based CNN learning Taking the discriminative BoF images as input, we design a
BoF image-based CNN learning model to extract deep features.

Our BoF image-based CNN learning model use classic AlexNet structure which consists of
five convolutional layers C1...5 followed by three fully connected layers FC1...3. Each
convolutional layer has ReLU activation, and we use the max-pooling operator P() in our
framework (see Table 1). The output features of the penultimate layer FC2 (after ReLU non-
linearity, 4096-dimensional) are taken as shape descriptors, and the last fully connected layer
FC3 is a Softmax classification layer.

In the practice, we take discriminative BoF image (224*224 pixels) as input and learn high-
level intrinsic features by training hidden layers individually in an unsupervised manner.
Figure 6 displays the step plots of deep features learned from BoF images of spider and
human models.

BoF images effectively capture intrinsic geometric features, but may ignore the spatial
correlation information of 3D shapes. Therefore, we further establish an optimized view-based
CNN learning framework to provide extrinsic feature description.

View-based CNN In our view-based CNN framework, we follow the successful network
architecture of MVCNN [33] (see Table 1). It replicates CNN branches for learning multiple
views and aggregates them in a view-pooling layer to provide a compact and informative
shape descriptor.

As we all know, more cameras will capture more detailed spatial information, but
also cause more time consumption in deep learning. Instead of setting 12 cameras on
the equator or 20 cameras on the icosahedral vertex in MVCNN [33], we present an
improved theme, which need not assume that the vertical direction of the shape is
consistent, but uses an appropriate number of cameras to achieve better projection
views.

As shown in Fig. 7a, we distribute 12 cameras evenly cross a unit sphere enclosing the 3D
shape. Six rendered views are from the cameras on the equator using the azimuth θzi and
elevationθei , which are set asθ

z
i ¼ i� 60∘ i ¼ 0; 1; 2; ::::5ð Þ,θei ¼ 0. Other three rendered views

Fig. 5 Discriminative BoFs and the distribution curves of non-rigid shapes
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are generated fromθzi ¼ i� 90∘ð Þ þ45∘ i ¼ 0; 1; 2ð Þ,θei ¼ 45∘ and the rest three rendered
views are from three cameras settingθzi ¼ i� 90∘ð Þ þ45∘ i ¼ 0; 1; 2ð Þ,θei ¼ 135∘. All cameras
point towards the centroid of the mesh model.

The projection views pass through parallel CNN with shared parameter and generate an
informative shape descriptor via an element-wise maximizing in a view-pooling unit.

The classification performance comparison of our 2D view-based CNN and MVCNN [33]
on three classic non-rigid shape datasets is shown in Fig. 7b. It can be seen that our CNN
network has achieved better results and the average accuracy is improved by nearly 0.65%.

4 Joint CNNs learning model

In this work, we establish a joint CNNs framework to generate shape descriptor with rich
information, by weighting and fusing the intrinsic BoF image and extrinsic projection views,
and further refine them to achieve deep features for recognition task.

Our goal is to obtain an informative shape descriptor F, which is extracted from geometric
image learning FBof and spatial view learning FView. Let J be the extraction process, and then
the F can be defined as:

F ¼ J FBof ; FView
� � ¼ WB⋅FBof⊕WV ⋅FView ð8Þ

This work focuses on exploring the efficient combination of two features to improve the
discrimination of shape descriptor, we introduce a weight learning unit to give each feature a
score value, and further use Hadamard product (⋅) and concatenation (⊕) in the aggregation
unit to achieve effective feature fusion.

As shown in Fig. 8, our joint CNNs learning model contains three pipelines: one is the BoF
image-based learning in CNN1, the other is the view-based learning, in which multiple views
are passed through parallel CNN2 and processed via an element-wise maximum operation. In
the third pipeline, two kinds of deep features are evaluated in score unit, and the weighted and
aggregated feature is refined by CNN3 as discriminative shape descriptor for classification
task. In our network, we design an objective function composed of Softmax loss function and
Contrastive loss function to optimize the learning process.

Score unit Different from traditional pooling or concatenation, we pay attention to the
contribution of each type feature to the recognition task. We propose a score unit based on a
two-layer neural network (CNN3). First, the first layer is used to align the input features. To be
specific, the input features come from the second fully connected layer of CNN1 and CNN2.
Then, the output of the first layer with different features are concatenated and sent to the
second layer for learning the weight coefficient. The formula is as follows:

Table 1 Framework of BoF image-based CNN and our view-based CNN

BoF image-based CNN1 C1(96)P(3)-C2(256)P(3)-C3(384)-C4(384)-C5

(256)P(3)-FC1(4096)-FC2(4096)-FC3(Softmax)
view-based CNN2 C(64)P(2)-C(64)P(2)-C(128)P(2)-C(128)

P(2)-C(256)P(2)-C(256)P(2)-C(256)
P(2)-C(512)P(2)-C(512)P(2)-C(512)P(2)-C
(512)P(2)-C(512)P(2)-C(512)P(2)-FC(4096)
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hbof
hview

� 	
¼ tanh Wn

f bofi
f viewi

� 	
þ bn


 �
ð9Þ

ha ¼ hbof ; hview
� 


; a ¼ softmax Waha þ bað Þ ð10Þ

Where f bofi , f viewi are the input features, and Wn,bn are the weight and bias terms of the first
layer. Here tanh activation function is adopted to distinguish different input features,
hbof,hview are the output features, those are aggregated and sent to the second layer to learn
the weight coefficient a, where Wa and ba are the weight and bias terms of the second layer,
whose output is converted into weight coefficient through Softmax.

Then, in the aggregation unit, we use the Hadamard product of the input features and the
weight coefficients to obtain the fused feature:

v
0 ¼ a⋅ f bofi

f viewi

� 	
ð11Þ

Finally, the aggregated feature is further refined in CNN3 with AlexNet architecture to generate
compact shape descriptor for a recognition task.

Fig. 6 BoF image-based CNN learning. a The BoF images. b The feature map after 1st layer. c The final deep
features

Fig. 7 The comparison of our 2D view-based CNN and MVCNN [33]. a Different camera settings. b
Classification performances on three datasets
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Optimization Our CNNs network is jointly supervised by cross-entropy loss and Contrastive
loss, to achieve the optimization goal of maximum inter-class distance and minimum intra-
class margin.

min Lð Þ ¼ min Ls þ Lcð Þ ð12Þ

Lc ¼ ∑
m=2

i¼1
αDW

2 þ 1−αð Þmax Tr−DW ; 0ð Þ2
� �

ð13Þ

where

DW ¼ Y 2i−1−Y 2ik k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑c

l¼1 y lð Þ
2i−1−y

lð Þ
2i

� �2r
i ¼ 1; 2;…;m=2ð Þ s:t:y lð Þ

i ¼ ew
T
l X iþbl ; ð14Þ

Where Ls is the cross-entropy loss function and Lc is the Contrastive loss function.
DW represents the L2 normalization of a paired shape features Y2i − 1andY2i, and
αdenotes the similarity between them, if they are matched, α is set to 1, otherwise
set to 0. Tr represents the distance between shape features of different categories, we
only consider Euclidean distance between 0 and Tr for dissimilar features.

The cross-entropy loss function Ls improves the feature separability by making the distance
of inter-class farther; the Contrastive loss function Lc, on the other hand, expresses the
matching degree of paired samples that improves the cohesion of features by narrowing the
intra-class distance. To fit data into Eq. 13, we input the shapes into our CNN framework in
pairs. First, we calculate the Contrastive loss and Softmax loss through forward propagation,
and then update the parameters through backward propagation with stochastic gradient descent
as follows:

∂L
∂W

¼ ∂Ls
∂W

þ ∂Lc
∂W

∂Ls
∂W

¼ − ∑
m

i¼1
P I−

Y i

∑m
j¼1Y i

 !
X i

∂Lc
∂W

¼ 2 ∑
m=2

i¼1
1þ 1þ αð Þ Tr

Diw


 �
Y 2i−1−Y 2ið ÞTX i

ð15Þ

Fig. 8 The joint CNNs learning model and Score Unit
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The algorithm of our joint CNNs learning model is summarized as follows:

5 Experimental results

We conduct extensive experiments to test the performance of our proposed approach on classic
non-rigid shape benchmarks: SHREC2010, SHREC2011, SHREC2015 and SHREC2016.

SHREC10 contains 200 non-rigid models with different postures from 10 classes. SHREC-
2011 is a dataset of 3D shapes consisting of 600 watertight mesh models, which are obtained
from transforming 30 original models. The SHREC-2015 is a dataset of 1200 watertight mesh
models from 50 classes [34]. We also test our learning model on the incomplete non-rigid
shapes using SHREC2016, which includes 8 categories with 400 incomplete models. In the
experiment, we train our CNNs model by randomly selecting 50% models, and extract 1000
times to ensure the training accuracy.

Our CNNs model is pre-trained on ImageNet from 1 k categories and then fine-tuned on all
the 3D shapes in the training set. In the training phase, we organize the training data into pairs
to fit our joint loss function, generate 12 rendered views and 1 discriminative BoF image for
each data. All rendered views of each pair of data are fed to the CNN2 framework and then
generate deep extrinsic feature through max pooling. Meanwhile, each pair of discriminative
BoF images is sent to CNN1 to extract deep intrinsic features. And after weighted fusion, the
deep feature is refined in CNN3 and input a Softmax classifier.
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Our network parameters are optimized using the joint objective function and stochastic
gradient descent. We set learning rate of 0.03 and learning rate decay of 0.95, dropout
probability of 0.5, regularization weight of 5 × 10−4.

In this section, we first discuss the robustness of our discriminative BoF image descriptor
against different resolution and Gaussian noises, and then we study the contribution of each
part of CNN framework to the recognition task. Finally, the performance of our joint
CNNs learning model on non-rigid shape datasets is analyzed by comparing to state-
of-the-art methods.

5.1 Performance of discriminative BoF image descriptor

In our work, we combine HKS and AGD features to generate BoF image descriptor, which
provides stronger discriminative representation. Fig. 9a shows the distribution curves of our
BoFs of two David models. Compared with those of HKS-BoF and AGD-BoF in Fig. 9b, c,
our BoF descriptor reveals better the similarity. Moreover, it provides a more stable and
excellent classification performance over three datasets.

In Fig. 9d, we compare the classification performance of different BoF descriptors in three
non-rigid databases. As we can see that AGD-BoF is sensitive to the topological changes and
unable to recognize complex models, such as octopus (category no.5 in SHREC-2010,
category no.19 in SHREC-2011 and category no.20 in SHREC-2015). HKS-BoF has
a good effect on most models but it is difficult to classify the unstructured models,
such as snakes, sharks (category no. 7 in SHREC-2010 and category no. 24 in
SHREC-2011 and SHREC-2015);

Our BoF feature combines AGD with HKS features, which effectively enhance the
discernment of features. The average classification accuracy based on our discriminative
BoF image descriptor is 10.38% higher than that of AGD-BoF and 7.73% higher than that
of HKS-BoF (see Table 2).

We further evaluate the robustness of BoF image descriptor to noise and multi-
resolutions. Taking the cat model as an example, the distribution curves and classi-
fication performances under different resolutions (2 K, 1 K) and Gaussian noises (δ =
0.05, δ = 0.1) and topological variations (holes and cuts) are compared. As shown in
Fig. 10a, b the BoF distribution curves of test groups lightly change which shows the
strong stability of BoF descriptors.

Meanwhile, we test the discrimination ability of our BoF descriptor on non-rigid shape
datasets SHREC2010 and SHREC2011 (Fig. 10c). The red curve describes the classification
accuracy of our BoF image-based CNN learning with clean models, while the other two curves
represent the classification accuracy with noisy models. The average precision is 93.8% and
95.5%, even in the noisy models, the impact on performance is very small, within the range of
0.25%.

The BoF feature dimension k is defined by k-clustering. Although larger k can reveal
geometric characteristics of 3D shape in more detail (Fig. 11a), it will also generate larger
matrix, thus increasing the computation burden. We observe that the accuracy improves when
k ranges from 50 to 200, after which the curve changes smaller (Fig. 11b). The performance
remains stable when it reaches 1000 epochs (Fig. 11c). Therefore, we use k = 200 and T =
1000 for the remaining experiments.

Our joint CNNs learning model effectively combines BoF image-based CNN and view-
based CNN to generate informative and compact shape descriptors, thus improving the
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performance of shape classification. We compare it with each pipeline running
independently.

Table 3 shows the classification performance on four databases. It can be seen that the deep
feature extracted from our joint CNNs learning has the best discrimination ability, while the
BoF image-based CNN learning has lowest performance compared with the view-based CNN
learning. Although our joint CNNs consumes more time in training process, it greatly
improves the convergence due to the use of joint loss function, so a better trade-off between
the consuming time and the accuracy is achieved.

Figure 12a, b, c shows the comparison of deep features extracted from the BoF images, the
2D views and the informative images, respectively. We can see that the deep feature curves
with our informative images present the best matching results between two crabs and two bears
(Fig. 12a). For these two kinds of models, the accuracy based on BoF image learning is
96.53%, and that of 2D views learning is 97.06%, while the accuracy of our joint CNNs model
reaches 98.14%.

Fig. 12d presents the best classification performance of our joint CNNs model on
SHREC2015. Fig. 12e shows the training process based on three different CNN frameworks.
We can see that our joint CNNs model can obtain more stable and higher training accuracy in a
certain number of iteration (200 times) comparing with the other two CNN models. Figure 12f
shows the comparison of our objective function with other two loss functions by taking the
SHREC2010 dataset as an training example, we can see that our joint loss function curve is
more stable and presents higher convergence.

Fig. 9 a The distribution curves of discriminative BoF image descriptor. b of HKS-BoF descriptor. c of AGD-
BoF descriptor. d The classification accuracy on SHREC2010 (left), SHREC 2011(middle) and SHREC 2015
(right)

Table 2 The classification accuracy (%) of different BoFs on three datasets

Dataset SHREC2010 SHREC2011 SHREC2015

AGD-BoF 83.26 84.53 85.78
HKS-BoF 87.65 88.10 90.36
Discriminative BoF 93.75 95.50 95.47
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5.2 Comparison to state-of-the-art methods

Since our method combines BoF image-based CNN learning with 2D view-based CNN
learning, we are interested in knowing how each learning framework improves the classifica-
tion performance. Therefore, we will discuss our learning model by comparing it with BoF

Fig. 10 a The comparison of distribution curves under different simplified and noised models. b The comparison
of different incomplete shapes on SHREC2016. c And the classification accuracy on SHREC 2010
and SHREC 2011

Fig. 11 a The BoF images of crab models under different feature dimension k (k = 50,100, 200). b, c
Classification performance under different feature dimension k and training epoch T
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methods [3, 4, 6, 21, 40], feature learning methods [9, 19, 36, 39] and view-based learning
method [33, 44].

ShapeGoogle [4] is one of the representative works, it embeds HKS into a vocabulary
space, and extracts a frequency histogram of geometric words as BoF descriptor, which is
robust to structural variations and has achieved good results in non-rigid shape retrieval. The
GA-BoF [6] adopts scale invariant heat kernel and AGD as low-level descriptor, and con-
structs global BoF using geodesic exponential kernel instead of heat kernel to avoid the
influence from time scale and size, the deep features are learned in a two-layer deep belief
networks (DBN). While SA-BoF [40] employs spectral graph wavelets and learned high-level
features in a deep auto-encoder. SGWC BoF [21] uses spectral graph wavelet signatures to
construct middle-level features and implement the classification task by multiclass SVM.

Our BoF image-based CNN learning framework uses multiscale HKS and AGD to
construct discriminative BoF image and learns intrinsic features inside a CNN framework
optimized by a joint objective function. The comparison with typical BoF methods is shown in
Table 3. We can see that our performance has significantly improved by an average of 3%
to10% compared to GA-BoF and SA-BoF, and it is slightly lower than SGWC [21].

Table 3 The performance of our joint CNNs framework

Architecture Accuracy (%) Training Time (m) cross-entropy
loss/ Joint loss function

SHREC10 SHREC 11 SHREC 15 SHREC 16

BoF image-based CNN1 93.75 95.50 95.47 89.4 92 / 72
2D view-based CNN2 97.61 98.04 96.49 87.6 150 / 123
Joint CNNs 98.38 98.53 97.82 91.3 196 / 178

Fig. 12 The learned deep features of deformable shapes a from our informative images. b from BoF images. c
from multiple 2D views (d) (e) the comparison of the classification performance and the training process based
on different CNNs frameworks on SHREC2015. f the comparison of loss curves during learning
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Considering BoF images may ignore the spatial correlation of original 3D shape, we
construct informative images by taking BoF images and 2D views as input and learn in a
joint CNNs learning framework. The comparison of our joint CNNs learning model with the
feature learning methods (DeepGM [19], DeepShape [39], FeaStNet [36],FVCNN [44]) and
view-based learning method (MVCNN [33]) is shown in Table 4.

Fig. 13 a Top 7 retrieved shapes using baseline methods on SHREC2015. b The comparison of P-R curves by
using different features in our learning model. c The comparison of state-of-the-art methods

Table 4 The comparison of performances (%) with deep learning methods

Dataset SHREC2010 SHREC2011 SHREC2015 mAP

ShapeGoogle [4] 90.96 92.89 83.16 89.15
GA-BoF [6] 86.02 93.20 72.93 84.11
SA-BoF [40] 91.83 98.00 84.27 91.37
SGWC-BoF [21] 95.66 97.66 92.54 95.28
BoF image-based CNN 93.75 95.50 95.47 94.91
DeepShape [39] 95.5 96.53 92.87 94.96
DeepGM [19] 96.33 97.89 93.03 95.75
FeaStNet [36] 97.84 98.12 96.35 97.43
FVCNN [44] 97.66 98.05 96.53 97.41
MVCNN [33] 97.42 97.86 96.17 97.15
Our 2Dview-based CNN 97.61 98.04 96.49 97.38
Our joint CNNs 98.38 98.53 97.82 98.24
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DeepShape [39] takes heat kernel shape descriptor (HeatSD) as input and learns the deep
features by a many-to-one encoder neural network. While DeepGM [19] learns deep features
in an auto-encoder learning framework by taking geodesic moments as input. FeaStNet [36]
uses a dynamic graph convolution operator in a local neighborhood and learns local shape
properties with the raw 3D shape coordinates as input instead of 3D shape descriptors.
FVCNN [44] proposes a feature coding module, the features of the 3D shape are coded as
the pixel values on the view plane from which the views are generated and then learned by a
fusion module based on CNNs. MVCNN [33] converts 3D shape into multiple projection 2D
views and adopts max pooling to aggregate the multi-view features extracted by VGG-M.

It can be seen that the integration with view features and BoF image features effectively
promotes the classification performance. It achieves 2.5%, 3.3% and 0.81% higher than
DeepGM [19], DeepShape [39] and FeaStNet [36] on average, and 1.09% and 0.83% higher
than MVCNN [33] and FVCNN [44],respectively.

The retrieval results and P-R curves using different methods are further illustrated
in Fig. 13. Taking a pigeon in SHREC2015 as the query sample, we compare the
retrieved results of top 7 models with several baseline methods. As can be seen in
Fig. 13a our method is able to correctly retrieve relevant pigeon shapes, while other
methods get eagle models more than once by mistake (the red box shows the wrong
eagle model). The comparisons of the precision-recall graphs of state-of-the-art
methods is shown in Fig. 13c. As we can see that GA-BoF has the lowest precision
compared with the typical BoF methods and feature learning methods, DeepGM and
DeepShape present comparable performance, while our method provides the best retrieval
accuracy, which is 0.78%, 0.83% and 0.86% higher than FeaStNet, FVCNN and MVCNN,
respectively.

We also study the impact of each pipeline in our framework on shape retrieval task
(Fig. 13b, it further verifies that the feature extracted from the joint CNNs learning presents
better discernment and boosts the retrieval performance.

6 Conclusions and future work

In this paper, we proposed a CNNs framework to deal with non-rigid 3D shapes classification
task. We aim to efficiently boost the classification performance from two perspectives of
improving informative image representation and CNN learning mechanism.

In the first stage, the low-level 3D shape descriptors based on HKS, AGD are extracted and
used to construct discriminative BoF images. We adopt a standard CNN framework to extract
intrinsic deep features from BoF images. Meanwhile, we learn extrinsic spatial features from
projected 2D views within a parallel view-based CNN model. Then, a score unit is designed to
automatically evaluate different deep features. Finally, the weighted and aggregated feature is
refined to perform 3D shape classification. All the training processes are monitored by a joint
objective loss function which effectively improves the convergence and the accuracy.

We showed that our deep features are robust and stable, which achieve significantly better
performance than state-of-the-art methods.

However, our informative images capture global features rather than semantic structural
features; it is thus still difficult to implement partial recognition and structure understanding
tasks. Therefore, it is necessary to research a novel deep learning model that can directly
extract hierarchical structural features and build symmetry-aware and structure-aware learning
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mechanism. In addition, our learning model has a constraint on the topological connectivity of
data. We will further extend our work to learn localized and structural features in large-scale
point cloud data.
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