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Abstract
Due to the rapid development of digital and cloud technologies, everyone can easily shoot
and spread digital videos via email or social media. However, it is difficult for law
enforcement to trace the origin of those digital videos, while some videos or images
containing illegal information such as personal privacy, obscene pornography, and
national security-related content. Recently, a significant breakthrough is achieved by
using Photo-Response Non-Uniformity (PRNU) noise to characterize the camera sensor.
However, PRNU analysis is often carried out on a frame-by-frame basis. As a result, the
processing time is unbearable when treating a large set of videos and devices. In this
paper, we propose a novel video forensic method considering both cameras rolling and I-
frame of videos to improve the processing time and accuracy. Experimental results
demonstrate that our proposed method is at a minimum of 15 times on average faster
than the most wildly used method, PRNU analysis, and reduce the false positive rate as
compared to existing methods used in the field of the forensic examination.

Keywords Source camera identification . Forensic science .Video forensic investigation . Photo-
response non-uniformity

1 Introduction

With the widespread use of smartphones and the rapid development of corresponding soft-
ware, the acquisition and processing of a video stream is no longer a difficult task. The rise of
convenient social media and live broadcast platforms have made communication using videos
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easier. Consequently, some videos or images containing illegal information such as personal
privacy, obscene pornography, and national security-related content have been released to the
public. To prohibit these behaviors and incriminate the criminal behavior of these suspects
who created illegal videos or images, it is important to identify that these videos or images
were taken from devices owned by these suspects.

The task of the forensic analyst in source camera identification (SCI) is to identify the
device used to shoot a desired photo or video, and in source camera verification (SCV) is to
verify whether a camera has been acquired an image or video evidence by a given threshold. A
large part of the research works in source camera identification and verification (SCI/V) was
mainly concentrated on still images. Most of the existing methods are to extract the sensor
fingerprint, which is also called the reference sensor pattern noise (SPN) or Photo-Response
Non-Uniformity (PRNU), of an image [20]. In May 2009, this technique (SPN/PRNU) was
used in child rape convictions in Scotland [25].

Kurosawa et al. [14] were the first investigators to study the SCI/V technique on videos.
They performed SCI experiments with 9 camcorders in 4 types by using dark current on CCD
chip and obtained 8 fixed pattern noise from 9 camcorders. Chen et al. [2] extended the SPN/
PRNU technique [20] from image to video and showed that PRNU could be used to identify
the source camcorder effectively. They extracted PRNUs from video clips using the Maximum
Likelihood Estimator (MLE) and proposed the peak-to-correlation energy (PCE) as the
measurement to detect the presence of PRNU. They performed SCI experiments with 25
camcorders in 3 types and got good results. McClokey [21] analyzes the influence of video
content on the performance of Chen et al. [2] and proposed a confidence weight PRNU based
on image gradient magnitudes to improve PRNU estimation.

Existing video coding standards such as MPEG series, H.264, or newer version, use three
types of video frames, meaning that each group of pictures (GOP) is comprised of intra-coded
picture (I-frame), predictive coded picture (P-frame), and bi-predictive coded picture (B-frames).
I-frame is the least compressible and does not require other video frames to decode. P-frames can
use data from previous frames to decompress and are more compressible than I-frames. B-frames
can use both previous and forward frames for data reference to get the highest amount of data
compression. Chuang et al. [4] analyzed the video compression effect on SCI based on Chen et al.
[2] and McClokey [21] and described that I-frames, which are extracted from videos, are more
reliable than P-frames, for PRNU analysis. Recently, Taspinar et al. [26] proposed a PRNU-based
method for out-of-camera stabilized videos, such as rotation and cropping processing. They
performed experiments with 100 videos from 13 smart-phone cameras of five brands. First, at
most 50 I-frames are extracted as a set from each video clips. Then, to determine if a given video
is stabilized using the set of the given video. Finally, compute the fingerprint by aligning the
misaligned frames using an inverse affine transformation and then calculate normalized cross-
correlation (NCC) values [2] between non-stabilized videos and the fingerprints from the no
stabilized/stabilized videos. Otherwise, using the standard PRNUmethod to calculate PCE values
between non-stabilized videos and the fingerprints from the no stabilized/stabilized videos. Their
experimental results showed wrongly classified a stabilized video as non-stabilized in 12% cases
and obtained a 91.29% average true positive rate (TPR) for SCI/V without considering the
wrongly classified cases. Iuliant et al. [11] extended Taspinar et al.’s work [26] and proposed a
hybrid approach that uses both videos and still images to extract video fingerprints in video source
identification. They used the PRNUs extracted from still images on stabilized videos and the
PRNUs extracted from videos on non-stabilized videos. The TPR in their experimental results is
consistent with the results in Taspinar et al.’s work [26].
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Despite that many approaches had been proposed to deal with videos, those approaches
don’t differentiate still images and videos to our knowledge. In other words, PRNU analysis is
often carried out on a frame-by-frame basis for video, resulting in high time consumption [1].
Nevertheless, a video clip usually has a much lower spatial resolution and varying sensor
sensitivity, often called the International Organization for Standardization standard values
(ISO), on different frames as compared to still images. Thus, there is an urgent need to
develop a faster and accurate SCI/V technique on videos. This work is targeted to address
this urgent need.

The main contribution of this paper is: to our knowledge, we are the first research team to
discover the effect of the camera rolling on PRNU analysis and, in the meantime, consider
both cameras rolling and I-frame of video to increase processing speed and also reduce the
false positive rate as compared to existing methods used in the field of the forensic examina-
tion. Besides, we provide a novel structure to analyze various SCI/V methods, which is in high
demand in the SCI/V field. This paper is organized as follows: In Section 2, we provide a brief
overview of the SCI/V methods based on PRNU analysis. Then, we demonstrate the effects of
camera rolling1 and I-frame of videos on PRNU in Section 3. In the following section, we
introduce our proposed method considering the effects of both cameras rolling and I-frame on
SCI/V, and in Section 5, we present experimental results and some discussions. This paper is
concluded in the final section.

2 Related work

Throughout the past decade, many SCI/V methods which are PRNU based have been
proposed. An overview and summary are described in this section. Using the SPN/PRNU
extracted from images to track the source camera is one of the most widely used methods.
According to the different steps in the photo production process, in general, existing ap-
proaches are grouped into three phases to improve SCI methods, including artifacts extraction
phase, enhancement phase, and similarity measurement phase. The first phase, artifacts
extraction phase, is to extract the rough device artifacts or called the rough PRNU. Then,
techniques proposed in the enhancement phase are to estimate, enhance, or refine the rough
PRNU. Finally, the sophisticated detection or similarity measurement is used to identify the
source device from the enhanced PRNU. Some important works are summarized in Table 1
and will be described in the following.

Lukas et al. [19, 20] proposed the first method for source camera identification using
reference SPN. Their methods de-noise each image multiple times using the wavelet-based
Mihcak’s filter [22] to obtain noise residuals and then use the weighted average to extract the
final required SPN. Our previous work [27] showed using the Wiener filter as a de-noising
algorithm can obtain better reference SPNs as compared to wavelet-based Mihcak’s filter. A
new de-noising algorithm, block-matching and 3D filtering (BM3D) algorithm, was subse-
quently proposed by Dabov et al. [6]. In the original image, for each target block, Dabov’
method finds the most similar blocks nearby and stack them into a 3D array. Then, the third
dimension of the array is processed through the discrete cosine transform (DCT). Finally, the
inverse DCT is performed to derive aggregated values after thresholding and filtering. The
advantage of this algorithm is that the identification accuracy reaches an optimal level,

1 Rolling is defined as the rotation around the optical axis of the camera.
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especially for small- and medium-size images. However, the computational complexity is
extremely high. Chen et al. [3] extracted PRNU by using the Maximum-likelihood Estimator
(MLE) and further eliminating artifacts caused during the photographing process by combin-
ing the pre-processing steps of zero-mean (ZM) and Wiener filter (WF). A method namely
peak-to-correlation energy (PCE) was proposed for measuring the similarity between the
reference PRNU and extracted noise residual of query image by Chen et al. [2] to decrease
the false-positive rate of source camera identification. The core idea of PCE is to reduce the
similarities between noise residuals of images taken by different cameras and PRNU of a
particular camera.

Similarly, in [9, 10], Goljan et al. proposed a method by adding a sign function to PCE,
called signed PCE (SPCE), to obtain the positive and negative values, which reduces the false
positive rate by half compared to PCE. Li [16] proposed an algorithm to eliminate the
contamination of scene details by adding a factor that is inversely proportional to the size of
the PRNU component. Cortiana et al. [5] compared the noise reduction effects of different
denoising filters and summarized their impact on the performance of identifying source
cameras. Li and Li [17] proposed a couple-decoupled PRNU (CD-PRNU) extraction method
to reduce the interpolation noise caused by the color filter array (CFA). They divided the

Table 1 Related SCI methods based-on PRNU analysis

Phases Method Authors Purpose

Artifacts
extraction
(PRNU
Extraction)

Basic Lukas et al. [19,
20]

The basic method for SCI using PRNU

Wiener filter Yang et al. [27] Using Wiener filter as a denoising
algorithm to extract better reference
SPN

Color-Decoupled PRNU
(CD-PRNU)

Li and Li [17] To prevent the interpolation noise from
propagating into the physical
components

Block-matching and 3D
filtering (BM3D)

Dabov et al. [6] Grouping 2D image patches with
similar structures into 3D arrays and
collectively
filtering the grouped image blocks.

Predictor based on Context
Adaptive Interpolation
(PCAI)

Kang et al. [12] To suppress the effect of scenes and edges.

Enhancement
(Estimation)

Zero-Mean (ZM) Wiener
Filter (WF)

Chen et al. [3] To further remove the artifacts produced
by camera processing operations

Enhance components of
PRNUs

Li [16] The stronger component of PRNU is
associated with strong scene details.

Maximum Likelihood
Estimation (MLE)

Chen et al. [3] To estimate reference PRNU from
several residual images.

Phase SPN Kang et al. [12] To remove the periodic noise and other
non-white noise contaminations
in the reference PRNU.

Spectrum equalization
algorithm (SEA)

Lin and Li [18] To detect and eliminate periodic
peaks in the spectrum

Similarity
Measurement

Peak-to-Correlation
Energy (PCE)

Chen et al. [2] To attenuate the influence of periodic
noise contaminations.

Circular Cross-correlation
Norm (CCN)

Kang et al. [13] To further decrease the false-positive
rate by adding negative.

Signed PCE (SPCE) Goljan et al. [10] Same purpose as CCN
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original image into different sub-images based on each color channel to extract PRNU and
then combined PRNUs of each sub-image to obtain the final CD-PRNU. Kang et al. [12]
designed a PRNU predictor based on eight-neighbor context adaptive interpolation (PCAI8)
algorithm to reduce the contamination caused by the scene details, such as edges and context.
In [13], they extracted the reference PRNU only by using the phase from the noise residual
after discrete Fourier transform (DFT). At the same time, they also improved the PCE
algorithm by calculating the square root of PCE, which is named the correlation over the
circular cross-correlation norm (CCN). Since CCN computes negative and positive values of
the correlation, it has as similar effects as SPCE.

Based on Chen et al.’s [3], Lin and Li [18] proposed an improved algorithm, spectrum
equalization algorithm (SEA), to remove periodic artifacts caused by detecting and
eliminating periodic peaks in the spectrum. The SEA algorithm improves slightly accuracy
rate of PRNU analysis [3] in low-resolution images but requires more processing time.
Lawgaly and Khelifi [15] proposed a new source camera identification and verification
system based on three processes. The first process is to improve the original Locally
Adaptive DCT (LADCT) [23] filter by using varying block thresholds and operations in
both horizontal and vertical directions to extract PRNU features. The second process is to
use a new weighted averaging algorithm to obtain higher quality PRNU. The last one is to
extract PRNU from the whole color plane. Their method slightly reduces false rates (both
false positive and false negative rates) of PRNU analysis [3] in low-resolution images but
spends twice processing time.

The current demand for multimedia forensics is in a great need to produce a faster and more
accurate method to address the problem of source camera identification and verification for
videos. The main contribution in this paper is that our proposed method considers both camera
rolling and I-frame of videos, thus producing a significant increase in speed and reduce the
false positive rate as compared to existing methods used in the field of the forensic examina-
tion. Moreover, the proposed method is modularized and flexible where each step of our
proposed method could adapt to different approaches.

3 Effect of cameras rolling and I-frame on PRNU analysis

This section provides the analyses of the effect of cameras rolling and the I-frame of videos on
PRNU analysis.

3.1 Mobile phone rolling

Due to the gyroscopes and new sensor techniques, a mobile phone can automatically rotate the
video 180 degrees while recording videos with rolling 180 degrees. It causes difficulty to
distinguish the rolling degrees from the video content, which is a serious problem of PRNU
analysis in forensic investigation and will be illustrated below. We use an Apple iPhone 7 plus
to illustrate the rolling phenomenon on PRNU analysis. Rolling 0 degrees is set as the plug
port (USB, lightning, etc.) being on the right side of a mobile phone when someone uses a
mobile phone to shoot images or videos. The analysis is focused on whether videos with
different rolling degrees, 0, 90, 180, and 270 degrees, impact the PRNU analysis or not. Two
videos are shot for each rolling degrees and then each of them is selected to be in either one of
training or testing groups. The details are shown in Table 2.
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The analysis is divided into two processes, reference PRNU extraction, and PRNU
matching processes. The steps of the reference PRNU extraction process are described as
follows:

(1) Frame extraction: each video in the training group is extracted to frames, Ii, where Ii
denotes the ith frame in the video.

(2) PRNU extraction: according to [3], the model of the sensor output Ii is defined as

I i ¼ Ioi þ IoiΚ þΘ ð1Þ
where Ioi denotes the sensor output without noises, I

o
iΚ denotes the PRNU of the sensor,

and Θ denotes a complex of independent random noises. PRNU factor, K, is obtained
from the following equations:

Κ ¼ I i−Ioi
� �

=Ioi þΘ=Ioi ð2Þ

Ioi can be estimated by Î i
o,

Ioi ≈ Î i
o ¼ f I ið Þ; ð3Þ

where f(.) denotes Mıhçak et al.’s [22] wavelet-based de-noising function. From Eqs. (2) and

(3), K can be estimated by bΚ
K ≈ bK ¼ I i− f I ið Þð Þ= f I ið Þ þΘ= f I ið Þ: ð4Þ

3 Enhancement: the zero-mean, ZM, and the Wiener filter (WF) using in the Fourier domain

operations [3] are used to enhance the estimated PRNU factor, denoted as bΚ.
4 Rotation normalization: each estimated PRNU factor with a resolution of m rows by n

columns is rotated 90 degrees if m is larger than n, that is

bΚ ¼ R Κ; 90ð Þ; if m > n ð5Þ
where R(A, B) is a rotation operation that rotates A by B degrees.

Table 2 Rolling test videos (|.| denotes the cardinality of a set)

Training group Testing group

Rolling
degrees

Video
Name

Duration
Time
(Sec)

|frames| |I-
frames|

Video
Name

Duration
Time
(Sec)

|frames| |I-
frames|

0 Tr01 14.67 440 15 Te01 05.57 167 6
90 Tr02 15.57 467 16 Te02 05.80 174 6
180 Tr03 15.57 467 16 Te03 05.67 170 6
270 Tr04 18.07 542 19 Te04 05.43 163 6
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5 RPRNU obtaining: Each reference PRNU (RPRNU) factor of a training video with N
frames is obtained by averaging the PRNU factors from frames in the same video. Because

Θ is a complex of independent random noises, the term ∑
N

i¼1
Θ= I i− f I ið Þð Þ½ � =N in Eq. (4)

can be erased.

RPRNU ¼
XN
i¼1

bΚ=N
¼

XN
i¼1

I i− f I ið Þð Þ= f I ið Þ½ �=N þ
XN
i¼1

Θ= f I ið Þ½ �=N

¼
XN
i¼1

I i− f I ið Þð Þ f I ið Þ= �:
h

ð6Þ

The steps of the PRNUmatching process are similar to the reference PRNU extraction process.
First, each video in the testing group is processed as the first four steps in the reference PRNU
extraction process. Finally, the SPCE value between each PRNU factor of the testing frame
and each RPRNU factor using the following Eqs. [16].

SPCE RPRNU ;Κð Þ ¼ ρ2 RPRNU ;Κ; 0; 0ð Þ � sign ρ RPRNU ;Κ; 0; 0ð Þð Þ
1

mn− Nmaxj j ∑
ms;nsð Þ∉Nmax

ρ2 RPRNU ;Κ;ms; nsð Þ
; ð7Þ

ρ U ;V ;ms; nsð Þ ¼
∑
x;y

Ux;y−U
� �

Vxþms;yþns−V
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
x;y

Ux;y−U
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
x;y

Vxþms;yþns−V
� �2

s ; ð8Þ

where ρ(U, V;ms, ns) denotes a cross-correlation function standing for the range of indices, x,
y, ms, ns, is 1 ≤ x, ms ≤m, 1 ≤ y, ns ≤ n. Uand V respectively denotes the sample mean of Ux, y

and Vx, y. sign(.) stands for a signum function. Nmax is a small neighborhood around the origin.
The results are shown in Fig. 1. In Fig.1, the x-axis is the frame order of a testing video and

the y-axis is the SPCE value obtained by Eqs. (7) and (8). The testing video which has the
same rolling degree corresponding to the training video obtains the highest SPCE value. In
other words, the higher the SPCE value is, the more similar between testing and training
videos. As the description in Section 1, the SPCE threshold is needed for SCV. We refer to the
SPCE analysis in Goljan et al.’s [8]. In [8], they identify the distribution of the SPCE value
between two PRNU factors, extracted from two different images shot by the same device, is
approximately equal to a chi-square distribution with one degree of freedom. In other words,
the SPCE threshold should be larger than 41.82 to verify two different images shot by the same
device when the device population is about 10 billion, Pr {SPCE >41.82} ≈ 10−10. The
statistical analysis is shown in Table 3 where the SPCE value in Mean or Max field is shown
in bold when it is larger than 41.82.
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According to the “Max” field in Table 3. The testing videos with rolling 0 or 270 degrees
and the training videos with rolling 0 or 270 degrees are verified as the same device. The

(a) Testing video: Te01 (roll 0 degrees)

(b) Testing video: Te02 (roll 90 degrees)

(c) Testing video: Te03 (roll 180 degrees)

(d) Testing video: Te04 (roll 270 degrees)

Fig. 1 The rolling analysis
experimental results
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testing videos with rolling 90 or 180 degrees and the training videos with rolling 90 or 180
degrees are verified as the same device. That means the rotation normalization step can make
the RPRNU factor extracted from the video with rolling 90 degrees as rolling 180 degrees and
the RPRNU factor extracted from the video with rolling 270 degrees as rolling 0 degrees.
However, the experimental results also show that the testing video with rolling 180 degrees
and the training video with rolling 0 degrees cannot be verified as the same device even both
videos shot by the same device. In addition, the testing videos with rolling 270 degrees and the
training videos with rolling 90 degrees cannot be verified as the same device. That means there
still exists a rolling effect on PRNU analysis. The videos with rolling 180 degrees may cause a
false-negative result in PRNU analysis. To erase the rolling effect on PRNU analysis, we add
Eq. (9) in the SPCE computing step in PRNU matching process,

MSPCE SPN ;Κð Þ ¼ max SPCE SPN ;Κð Þ; SPCE SPN ;R Κ; 180ð Þð Þð Þ ð9Þ
where max(,) stands for a function that returns maximum among the given numbers.

The modified SPCE (MSPCE) value of each frame would be the maximum value of the
original SPCE value and the SPCE value obtained between its PRNU factor with rolling 180
degrees and each RPRNU factor. Table 4 shows the experimental result. The result shows that
the training video and the testing videos with four kinds of rolling degrees could be verified as

Table 3 The details of the rolling experimental results (Min, Max, Mean, and Std respectively denote the
minimum, the maximum, the sample mean, and standard deviation of the SPCE values)

Reference PRNU Testing video: Te01 (roll 0 degrees) Testing video: Te02 (roll 90 degrees)
Min Max Mean Std Min Max Mean Std

Tr01 95.09 953.92 445.24 153.75 −8.54 3.96 −0.94 1.96
Tr02 −10.09 3.89 −0.44 1.55 −0.02 683.81 204.54 148.59
Tr03 −14.73 7.7 −0.83 2.8 −8.98 199.56 36.83 37.42
Tr04 27.69 399.41 123.75 66.45 −13.76 5.77 −1.69 2.87
Reference PRNU Testing video: Te03 (roll 180 degrees) Testing video: Te04 (roll 270 degrees)

Min Max Mean Std Min Max Mean Std
Tr01 −11.06 7.34 −0.28 2.19 −0.05 190.02 68.25 47.63
Tr02 −0.69 256.24 44.28 34.91 −1.57 16 3.63 3.66
Tr03 261.27 2339.93 1369.69 460.03 −0.93 19.06 4.04 3.99
Tr04 1.24 50.49 14.21 8.55 14.93 2289.67 1144.74 530.29

Table 4 The details of the updating rolling experimental results (Min, Max, Mean, and Std respectively denotes
the minimum, the maximum, the sample mean, and standard deviation of the MSPCE values)

Reference PRNU Testing video: Te01 (roll 0 degrees) Testing video: Te02 (roll 90 degrees)
Min Max Mean Std Min Max Mean Std

Tr01 95.09 953.92 445.24 153.75 −3.77 150.30 30.53 28.1
Tr02 1.08 199.58 59.64 42.23 0.15 683.81 204.54 148.58
Tr03 8.18 207.84 52.16 31.27 −3.89 199.56 37.20 37.07
Tr04 27.69 399.41 123.75 66.45 −8.57 62.83 6.98 11.86
Reference PRNU Testing video: Te03 (roll 180 degrees) Testing video: Te04 (roll 270 degrees)

Min Max Mean Std Min Max Mean Std
Tr01 0.00 75.13 25.15 16.8 0.2 190.02 68.26 47.61
Tr02 0.36 256.24 45.14 33.98 0.5 115.52 45.35 28.46
Tr03 261.27 2339.93 1369.69 460.03 0.21 301.63 113.86 69.76
Tr04 4.26 431.97 119.07 77.16 14.93 2289.67 1144.74 530.29
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the same device when they are shot by the same device. Therefore, the rolling effect on PRNU
analysis can be eliminated.

3.2 PRNU analysis of each frame in a compression video

As mentioned previously, video usually is recorded in a lossy compression format. The
famous video coding standards use three types of video frames, meaning that each group
of pictures (GOP) is comprised of I-, P-, and B-frames. I-frame, intra-coded picture, uses
the intra-frame coding technique that is compressing independently of all other frames.
P- and B-frames, predictive coded picture and bi-predictive coded picture, respectively,
use the inter-frame coding technique that presents redundancies in other frames to
increase compression. That means I-frames usually have more details than P- and B-
frames. Chuang et al. [4] also considered the I-frames are more reliable than P-frames for
PRNU estimation from their experimental results. Moreover, according to Fig. 1, we
discover the SPCE values that are significant to the corresponding PRNU factors are not
smooth and may exist frequent peaks. Through the observation of frames, the SPCE
peaks are obtained from I-frames. Therefore, the bold assumption that I-frames are vital
than other frames in PRNU analysis is proposed. Here, I-frames instead of all frames of
videos (all videos in two groups) are used to analyze the effect of I-frames in PRNU
analysis. I-frames of each video are extracted by the third-party software, ffmpeg, and do
the same experiment for mobile phone rolling. The experimental results are shown in
Table 5. According to Tables 2 and 5, we find that using I-frames in PRNU analysis can
speed up about 24 times on average faster (|frames|/|I-frames|) and maintain similar
accuracy. The more evidence will be shown in Experimental Results and Discussions
section. The lower SPCE may be caused by using fewer I-frames in Eq. (6) while we

could not remove the term ∑
N

i¼1
Θ= I i− f I ið Þð Þ½ � =N in Eq. (4) in the PRNU factors.

4 The proposed method

As mentioned in Section 3, the existence of the rolling effect has an impact on PRNU analysis
and the I-frames have more reliable outcomes than other frames for PRNU estimation. Fig. 2

Table 5 The result of the I-frames experimental results (Min, Max, Mean, and Std respectively denotes the
minimum, the maximum, the sample mean, and standard deviation of the MSPCE values)

Reference PRNU Testing video: Te01 (roll 0 degrees) Testing video: Te02 (roll 90 degrees)
Min Max Mean Std Min Max Mean Std

Tr01 96.7 262.11 167.21 58.07 0.84 31.98 12.27 11.05
Tr02 7.87 62.18 32.29 24.29 8.41 109.38 49.25 33.74
Tr03 5.89 49.31 20.78 17.96 11.3 64.57 24.97 20.05
Tr04 9.75 82.42 41.64 26.67 0.34 13.07 7.25 4.18
Reference PRNU Testing video: Te03 (roll 180 degrees) Testing video: Te04 (roll 270 degrees)

Min Max Mean Std Min Max Mean Std
Tr01 3.63 21.68 14.45 7.45 1.83 76.6 45.11 27.34
Tr02 2.23 31.29 13.74 10.51 2.45 11.5 5.84 3.6
Tr03 7.25 191.83 120.46 78.49 7.22 29.87 19.45 8.98
Tr04 3.63 69.81 29.04 23.08 14.48 186.69 141.01 64.51
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illustrates the flow chart of our proposed SCI method. First, I-frames are extracted from each
video. Then, the adaptive de-noising filter is applied to extract the rough device artifacts and
reduce the effect of shot scenes on residues. Next, the preprocessing and refining PRNU
algorithm is applied to remove the non-unique artifacts. In order to reduce the effect of rolling,
the obtained PRNU frames are rotated to the adaptive direction. For reference videos, the
refined noise residues are averaged and then stored in the database. For testing videos, the
modified SPCE statistics and a theoretical threshold are used to determine the source camera.
Each step of the proposed method will be discussed in more detail in the following
subsections.

& PRNU extraction process: before analyzing the video evidence, the reference source must
be built. The main steps are summarized below.

Step 1. I-frames extraction: in order to decrease the computational cost and maintain the
accuracy of PRNU analysis, the reliable frames, I-frames, of the videos are extracted
in the proposed method. Here, we use the third-party software, ffmpeg, to extract the
I-frames of videos and save in bitmap (BMP) format.

1 Artifacts extraction: By considering the computational cost, accuracy, and whether
the method has been used in court, the Mıhçak et al.’s [22] wavelet-based de-
noising filter is selected in the proposed method. The artifacts are extracted as
Eqs. (3) and (4).

2 Enhancement: the artifacts extracted by step 2 may include non-unique noises. ZM and
WF operations [3] are used to refine artifacts.

3 Rotation normalization: in order to decrease the rolling effect, Eq. (5) is used to obtain
refined artifacts with a consistent rotation.

4 PRNU obtaining: the averaging operation, Eq. (6), is used to remove some independent
and identically distributed noises to obtain the PRNU factors of each corresponding device.
Then, the PRNU factors are stored in the PRNU database as the reference source.

& PRNU matching process: the video evidence is analyzed through the following steps.

Step 1–4 Operations are the same as those in steps 1–4 of the PRNU extraction process.
1 Source device determination: The modified SPCE statistics and the suggestive threshold

value of 41.82 as described in Section 3.1 is used to determine the source device of the

Fig. 2 The block diagram of the proposed method
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targeting video. The detailed operations of MSPCE statistics are shown in Eqs. (7), (8), and
(9).

5 Experimental results and discussions

The public vision dataset [24] is selected to verify the effectiveness of our proposed method.
Vision dataset has 1914 videos in the native format (Facebook, YouTube, and WhatsApp)
from 35 portable devices. Two videos for each portable device are randomly chosen from
native format videos and then each of them is selected to be either the training or testing group.
Some images of both groups are shown in Appendix. Our algorithms are developed in Matlab
R2017 and the experimental platform is Microsoft Windows 7, Intel i7-7600U 2.80 GHz with
16GB Ram.

5.1 Evaluation statistics

In the following experiment, the overall false-positive rate (FPR) and the overall false-negative
rate (FNR) of maximum MSPCE and mean MSPCE statistics are computed to assess the

performance. bΚ j
i is the estimated PRNU factor of the ith frame/I-frame shot by a camcorder j.

I ji is the ith frame/I-frame of a testing video with Nj frames/I-frames shot by a camcorder j

whose PRNU factor is Κj. Given C different testing camcorders, I jip denotes the frame/I-frame
with a maximum of MSPCE value between a testing video shot by the camcorder j and a
testing camcorder p and is defined as

ip ¼ argmax
i

MSPCE Κp; bΚ j

i

� �
≔ ij∀l : MSPCE Κp; bΚ j

l

� �
≤MSPCE Κp; bΚ j

i

� �	 

ð10Þ

The FPR of a testing video shot by the camcorder j based on the maximum statistic of MSPCE
values, FPRmax(j), is defined as

FPRmax jð Þ ¼ 100� ∑
C

p¼1
D1 p; jð Þ=C ð11Þ

D1 p; jð Þ ¼ 1; if p≠ j and MSPCE Κp; bΚ j

ip

� �
> TH

0; otherwise

8<
: ð12Þ

where TH denotes a threshold value, 41.82, in the experiment. The FPR of a testing video shot
by a camcorder j based on the mean statistic of MSPCE values, FPRmean(j), is defined as

FPRmean jð Þ ¼ ∑
C

p¼1
D2 p; jð Þ=C; ð13Þ

D2 p; jð Þ ¼ 1; if p≠ j andMSPCE p; jð Þ > TH
0; otherwise

(
; ð14Þ
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MSPCE p; jð Þ ¼ ∑
i¼1

N j

MSPCE Κp; bΚ j

i

� �
=N j: ð15Þ

The FNR of a testing video shot by the camcorder j based on the maximum statistic of MSPCE
values, FNRmax(j), is defined as

FNRmax jð Þ ¼ 100� ∑
C

p¼1
D3 p; jð Þ=C; ð16Þ

D3 p; jð Þ ¼ 1; if p ¼ j andMSPCE Κp; bΚ j

ip

� �
≤TH

0; otherwise

8<
: : ð17Þ

The FNR of a testing video shot by a camcorder j based on the mean of MSPCE values,
FNRmean(j), is defined as

FNRmean jð Þ ¼ ∑
C

p¼1
D4 p; jð Þ=C ð18Þ

D4 p; jð Þ ¼ 1; if p ¼ j andMSPCE p; jð Þ≤TH
0; otherwise

(
ð19Þ

The overall FPR and FNR as FPRmax ¼ ∑
C

j¼1
FPRmax jð Þ=C, FPRmean ¼ ∑

C

j¼1
FPRmean jð Þ=C,

FNRmax ¼ ∑
C

j¼1
FNRmax jð Þ=C, and FNRmean ¼ ∑

C

j¼1
FNRmean jð Þ=C, respectively, are used to

evaluate the proposed method. Using the SCI/V in forensic investigations, the false-positive
error, well known as the type I error, means the video in litigation is verified to an irrelative
device by mistake. That means it might cause an innocent person to be arrested. In contrast, the
false-negative error, well known as type II error, means the video in litigation is not verified to
its source device. This means the video evidence might be useless. However, the suspect still
can be identified according to other evidence. Therefore, false-positive errors should receive
more attention than false-negative errors in forensic examinations [7].

5.2 Analysis of components of the proposed method

As discussed in section 2, the proposed method is modularized and flexible. In this experiment,
three forms of our proposed methods by adapting different techniques in different steps are

Table 6 The different techniques applied to the three methods

Steps Methods Our1 Our2 Our3

Artifacts extraction Wavelet-based de-noising
filter [22]

Wavelet-based de-noising
filter [22]

BM3D [6]

Enhancement ZM+WF [3] SEA [18] ZM+WF [3]
Source device

determination
MSPCE and TH is 41.82 MSPCE and TH is 41.82 MSPCE and TH is 41.82
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analyzed. Table 6 shows how we apply different techniques to those three forms in our
proposed method, Our1, Our2, and Our3. The averaged processing time shown in Table 7 is
conducted by processing a 1920 × 1080 color image 100 times and then calculates the average
processing time. The videos in two groups, training and testing, each of which has 35 native
format videos from Vision database. They are used to evaluate each form of our proposed
method. The experimental result is shown in Table 8.

The experimental result in Table 7 shows the speed analysis result. Our proposed
method (Our1) is the fastest and more than 8 times on processing time faster than the
second one (Our2). The main reason is the BM3D de-noising algorithm [6] that pro-
cesses in two dimensions cost too much time than the Wavelet-based de-noising filter
that processes in one dimension. The experimental result in Table 8 shows the accuracy
analysis result with zero FPR and very low FNR. According to [7], the false-positive
errors in the forensic examination should receive more attention than false-negative
errors in forensic examinations. It shows that the proposed method is very suitable for
use in forensic investigation.

5.3 Comparison of other works

In this section, our proposed method is assessed in comparison with Yang et al. [27] and Chen
et al. [3]. According to our best knowledge, Yang et al.’s method [27] was applied to the
surveillance video forensic examination in 2010 in Taiwan and Chen et al.’s method [3] passed
the Daubert challenge in July 2011 [8]. Both comparison methods are the only ones that have
been used in real forensic examination cases. The comparative analysis includes two different
aspects, running time and source camera forensic. The videos in two groups used in the
foregoing experiment are used in this comparison experiment.

Table 8 The experimental result of the three methods

Error rate (%) Our1 Our2 Our3

FPRmax 0 0.1796 0.0023
FPRmean 0 0 0
FNRmax 0.0140 0.0163 0.0140
FNRmean 0.0187 0.0280 0.0210

Table 7 The average processing time of the three methods of a 1920 × 1080 color image

Our1 Our2 Our3

Average processing time 1.78 s 76.58 s 14.64 s

Table 9 Running time comparison (sec)

Yang et al. [27] Chen et al. [3] Proposed method

The processing time per frame 0.9804 1.5406 1.7789
The average of processing frames per video 2048.77 2048.77 72.54
Processing time per video 2008.61 3156.33 129.04
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A Running time

The running time of different SCI/V methods is listed in Table 9. First, we ran each scheme to
process 100 frames of a video and calculate the average of running time per frame. Then, the
average of processing frames of videos is calculated. Besides, only I-frames are processed in
our proposed method. Finally, the processing time is obtained by the result of the average
running time multiplied by the average of processing frames. In Table 9, the result shows our
proposed method is approximately 15 times on average faster than our previous work [27] and
24 times on average faster than Chen et al. [3]. So in practice, the proposed method is in great
need, especially for large-scale video forensic investigations.

B. Source camcorder forensic

In this subsection, the accuracy of SCI/V of the proposed method is assessed in comparison
with [3, 27]. The same videos in two groups chosen from Vision Database are used in this
experiment. The MSPCE threshold set to 41.82 is used for all schemes. The experimental
results of FPR and FNR are shown in Table 10. According to [7], false-positive errors should
receive more attention than false-negative errors in forensic examinations. Our proposed
method has zero FPR and lows FNR in the experiment. That means the proposed method
does not cause an innocent person to be arrested and demonstrates our proposed method is
suitable for use in video forensic investigation.

6 Discussions

In this paper, we propose a modularized and flexible method that can adapt different
techniques in different steps. Our proposed method is assessed in comparison with methods

Table 10 The result of the comparison

Error rate (%) Yang et al. [27] Chen et al. [3] Proposed method

FPRmax 0.0350 0.0070 0
FPRmean 0.0047 0.0047 0
FNRmax 0.0093 0.0093 0.0140
FNRmean 0.0140 0.0163 0.0187

Fig. 3 (Best viewed in color) MSPCE analysis result of D03 video using [27]
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of Yang et al. [27] and Chen et al. [3]. Yang et al. [27] used Wiener filter to extract the device
artifacts and skipped the enhancement step. Chen et al. [3] used the Wavelet-based de-noising
filter to extract the device artifacts and the zero-mean and Wiener filter processes to enhance
the extracted artifacts. Therefore, the running time is shorter than the work of Chen et al. [3].
Meanwhile, Chen’ FPR [3] is lower than the work of Yang et al. [27] because of the enhanced
PRNUs. Our proposed method can produce a significant increase in speed and reduce the false
positive rate as compared to those two methods used in the video forensic examination.

Furthermore, we discover MSPCE values are significant to corresponding PRNU factors as
regular peaks. Figs. 3 and 4 demonstrate those regular peaks correspond to MSPACE values
in works of [3, 27], respectively. Through further analysis, these frames which cause the
regular peaks are I-frames. The inter-frame predictive coding process might be the main reason
that causes smaller MSPCE values. Only P- or B-frames use the inter-frame predictive coding
process in video compression. That also proves I-frames used in our proposed method is more
reliable than using P- or B- frames in PRNU analysis.

7 Conclusion and future work

In this paper, a new fast and efficient source camera identification and verification method
based on PRNU analysis had been proposed. Based on the analysis of the device rolling and
the characteristics of frames in videos, fast and efficient processing steps were proposed. The
main contribution of this paper is to our knowledge, we are the first research team to discover
the effect of the camera rolling on PRNU analysis and, in the meantime, consider both cameras
rolling and I-frame of video to increase processing speed and also reduce the false positive rate
as compared to existing methods used in the field of the forensic examination. Experimental
results demonstrated our method can provide low processing time and a very low FPR SCI/V
method for use in video forensics which meets the requirement of forensic examination.

Acknowledgments This work on this paper was supported by the National Science Council, Taiwan, Republic
of China (MOST 107-2221-E-015-003-MY2, MOST 109-2221-E-015-002-).

Appendix

Some I-frames of the videos used for training and testing in the experiments are shown in this
appendix. Figs. 5 and 6 show 2 I-frames of 8 testing videos and 8 testing videos, respectively.

Fig. 4 (Best viewed in color) MSPCE analysis result of D03 video using [3]

6632



Multimedia Tools and Applications (2021) 80:6617–6638

It is worth noting that there exist the similar scenes and colors in videos from different portable
devices in both Figs. 5 and 6.

(a) 1st I-frame of D01                    (b) 36th I-frame of D01

(c) 1st I-frame of D02                    (d) 35th I-frame of D02

(e) 1st I-frame of D04                    (f) 36th I-frame of D04

(g) 1st I-frame of D07                    (h) 25th I-frame of D07

Fig. 5 Some I-frames of the training videos in the experiments
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(i) 1st I-frame of D10                   (j) 29th I-frame of D10

(k) 1st I-frame of D13                   (l) 37th I-frame of D13

(m) 1st I-frame of D20                   (n) 36th I-frame of D20

(o) 1st I-frame of D35                     (p) 36th I-frame of D35

Fig. 5 (continued)

6634



Multimedia Tools and Applications (2021) 80:6617–6638

(a) 1st I-frame of D01                    (b) 36th I-frame of D01

(c) 1st I-frame of D02                    (d) 35th I-frame of D02

(e) 1st I-frame of D04                    (f) 36th I-frame of D04

(g) 1st I-frame of D07                    (h) 25th I-frame of D07

Fig. 6 Some I-frames of the testing videos in the experiments
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(i) 1st I-frame of D10                   (j) 29th I-frame of D10

(k) 1st I-frame of D13                   (l) 37th I-frame of D13

(m) 1st I-frame of D20                   (n) 8th I-frame of D20

(o) 1st I-frame of D35                     (p) 36th I-frame of D35

Fig. 6 (continued)
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