Multimedia Tools and Applications (2021) 80:2931-2949
https://doi.org/10.1007/511042-020-09750-4

®

MQTT protocol employing 10T based home safety Check for
system with ABE encryption HRgales

Vatsal Gupta' (@ - Sonam Khera? - Neelam Turk?

Received: 13 January 2020 /Revised: 21 August 2020 / Accepted: 27 August 2020 /
Published online: 18 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

This project aims towards the usage of MQTT (Message queueing telemetry transport)
protocol in IoT (Internet of things) along with adopting a feasible means of encrypting the
message transfers in applications. The lightweight nature of MQTT protocol makes
possible the transfer of information speedily and hence, has now being used in applica-
tions related to IoT, WSN (Wireless sensor networks), and M2M (Machine to machine)
communications. Here, MQTT is deployed between ESP-8266 Wi-Fi SoCs namely-
NodeMCU ESP-8266 12E and ESP-01 8266 Wi-Fi modules. Both communicate using
the MQTT protocol using the internet via Wi-Fi. The ESP-8266 Wi-Fi SoCs have
completely revolutionized approach towards IoT because of numerous advantages. This
project also includes the usage of 2 sensors namely- PIR (Passive InfraRed) motion
detector sensors and an MQ-5 gas sensor which sense human presence and some gases
respectively. These sensors read the environment around them for the required informa-
tion, systems encrypt that information and subsequently, transmit the data over the
internet to the MQTT broker stationed at the cloud. This encrypted data is then sent to
a central node- NodeMCU ESP-8266 12E which decrypts it and then alerts the user about
any mishappening, through the Blynk app.

Keywords 10T - MQTT protocol - ABE encryption - KP-ABE - WSN - ESP - PIR - MQ-5 - Blynk -
cloudMQTT

> Vatsal Gupta
vatsal.gupta97 @ gmail.com

Sonam Khera
sonamkhattar@yahoo.co.in

Neelam Turk
neelamturk @ gmail.com

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-09750-4&domain=pdf
https://orcid.org/0000-0001-7465-4101
mailto:vatsal.gupta97@gmail.com

2932 Multimedia Tools and Applications (2021) 80:2931-2949

1 Introduction

Internet of Things is a very commonly used term whenever someone talks about emerging
technologies. It is often mentioned that the future of technology can be symbolized by ABCD-
I meaning “Artificial Intelligence, Block chain, Cloud, Data analytics — Internet of things” in
reports such as in [3]. Many advancements have not been achieved on these five topics.
Perhaps suggesting that they are still evolving, they have much potential in the future market.
IoT is both hardware and software-based. Applications of IoT are endless and so are its
solutions. There is not any fixed way to make an IoT system from given specifications. Some
IoT applications include smart homes, smart wearables, smart highways, smart grids, smart
vehicles (Internet of Vehicles), smart industries (Industrial Internet of Things) etc. Realization
of any of these applications in the real world can only be done by infusing hardware devices
with processing power and networking or simply saying, making electronic items smart. The
idea of IoT is not new, it is just that this field has a variable timeline because everyday new and
advanced concepts come up. Making things smart means that the items/devices need to be
equipped with a “brain of its own” to take logical decisions, networking means, and sometimes
memory. We are putting memory as an option because nowadays, cloud computing is picking
up pace in the IT (Information and Technology) sector. This project aims at smart home
security along with small usage of cloud memory. IoT, when clubbed with WSNs (Wireless
Sensor Networks) provides major advantages to traditionally employed systems. In [9], M.
Kocakulak and I. Butun provided an overview of WSN towards IoT, like advantages,
disadvantages, potential, and applications. In fact, in [12], L. Mainetti et al. suggested new
installations in the already existing IoT networks and migration to an all-IP based environment.
They also aid in developing smart and hybrid systems in highly important applications like in
defence, as concluded in [11]. For networking, Wi-Fi (Wireless Fidelity) is used and for
message transfer over the internet, MQTT (Message Queueing Telemetry Protocol) protocol is
used, unlike conventional HTTP (HyperText Transfer Protocol) protocol. Although MQTT
protocol has its competitors, we chose MQTT over others because of its popularity, simplicity
of use and experienced open source support. For enhanced security in this MQTT application,
we propose the use of encryption methods which is suitable for IoT and is compliant with
MQTT protocol. We decided to work on ABE (Attribute Based Encryption) as explained in
[6]. Conventional SSL/TLS with certificates and session key management is not a good option
as storing and managing the certificates and key exchanges are cumbersome in cases of
networking between heterogeneous devices. Additionally, SSL/TLS experience different
bouts. Thus, an ideal security mechanism to be used in the IoT environment employing the
MQTT protocol must be lightweight and most importantly, overcome the shortcomings of the
MQTT protocol from a security point of view. In this regard, [13] has done significantly well
and their method is referred in this project. The MQTT protocol is chiefly used with devices
which are memory, bandwidth, and computational powers constraint. Hence IoT devices such
as sensors and new-age small size microcontrollers, like we have used, benefit a lot by mainly
saving time instead of creating web servers and then communicating via HTTP requests which
are heavy in comparison with MQTT requests. Such communication protocols like MQTT
greatly reduce the load on the processor, Wi-Fi communication chip, or circuitry and thus
bring down latency between message transmission from one source and message reception at
the receiver’s end. Furthermore, the usage of Blynk app for handheld smartphone control and
status checking immensely helps the user by creating alerts, especially for cases whenever a
sensor detects something unconventional or unusual.

@ Springer

Multimedia Tools and Applications (2021) 80:2931-2949 2933

2 Literature survey

Internet of things, a very synchronous word which can be heard in every technological area, is
expected to be market of 100 billion dollars till 2050. IoT is expanding its horizons very
rapidly, so much that new terms like IoV (Internet of Vehicles) and IIoT (Industrial Internet of
Things) have started to progress. Out of numerous applications, smart homes systems largely
occupy the IoT scenario and so, in this project, home security has been taken up as a topic.
Like in [8], A. Jose and R. Malekian mentioned some useful points towards the improvement
of smart home security. In it, they used motion sensor, proximity sensor, contact sensor,
temperature & humidity sensor, gas sensor along with Zigbee as the communication device
and NodeMCU & Arduino as microcontrollers. The real-world scenario clearly explains the
need for such a system. Infiltration/Robbery attempt can be fully blocked if one sets up such a
smart home security system employing PIR (Passive InfraRed) sensors, wherein an illegal
attempt would be known to the user as soon as the attempt is made. This enables the user to
either warn the infiltrator about his/her information of the illegal act or help approach the
police about the illegal move. Adding about the other sensor, the leakage of domestic use gas
would get detected if one uses the MQ-5 sensor, properly calibrated. Both these sensors work
satisfactorily, and quite promptly. Other devices used in this project are NodeMCU ESP-8266
board, 3 ESP-01 8266 Wi-Fi modules. All are explained in the upcoming sections.

ESP8266 is produced by the manufacturer, Espressif Systems in China. ESP8266 is a Wi-Fi
enabled SoC (System on Chip) with full TCP/IP stack and microcontroller capability.
ESP8266 is capable of functioning in a wide operating temperature range, making them
durable in industrial applications. Being an SoC type of chip and self-contained with Wi-Fi
networking capability, it can be used either as a standalone processor or a slave to another
microcontroller. One of the main applications of this microchip is its usage in wireless sensor
networks, in which networking and power consumption are the main issues.

Many modules have been built by Espressif Systems which are based on this ESP8266
microchip. Some other manufactures along with Espressif Systems, like NodeMCU, Wemos,
and Adafruit, built development boards with ESP8266 as its working heart. In this project, one
of ESP8266 module named as ESP-01 8266, produced by a third-party manufacturer Ai-
Thinker has been used.

ESP-01 8266 is a self-contained SoC, 8 pin Wi-Fi module that doesn’t require a micro-
controller to be controlled about its inputs and outputs. It can work as a single component of
any IoT related work or can be interfaced with a microcontroller or a development board. Such
compact modules can engine major transformations like IoT and WSN (wireless sensor
networks) in the real world, which has already been mentioned above and described in [9].
As a future aspect, if extended to a larger area, it may utilize other ESP8266 compatible
modules according to the user requirements and other functionalities.

Figure 1 shows the picture of the Wi-Fi module used as sensor nodes. Furthermore, one of
the development boards- NodeMCU ESP8266 is quite popular amongst makers. Its more
advanced than Ai-Thinker module.

As can be seen in Fig. 2, NodeMCU board has greater number of pins than the Ai-Thinker
Wi-Fi module ESP-8266. It means that it has greater number of GPIO (General Purpose Input/
Output). NodeMCU board also has a larger amount of RAM and Flash memory.

Some differences between NodeMCU board and ESP-01 8266 Wi-Fi modules are shown in
Table 1.

@ Springer

2934 Multimedia Tools and Applications (2021) 80:2931-2949

Fig. 1 ESP-01 8266 Wi-Fi Module

Sensors: Sensors play the most important role in the vast field of IoT. Their usage has
become a common thing, as simple combinations of power source, wires, connectivity devices
and passive elements cannot be used alone to achieve what we desire. Sensors collect, detect,
measure, alert, and do other numerous tasks in an IoT ecosystem. The “thing” in IoT can
justifiably be referred to these sensors. 2 sensors used in this project are motion detector
sensors and a gas sensor.

PIR (Passive Infrared sensor) HC-SR 501: It is a 3-pin motion detector sensor capable of
sensing infrared radiation from a living body which comes in its field of view. It works entirely
by detecting infrared radiation (radiant heat) emitted by or reflected from objects. This sensor
is small, inexpensive, require low power, easy to use, and are reliable when put to work in
suitable conditions. A detailed explanation regarding PIR sensors intrinsic working is given in
[1]. PIR sensor is made of pyroelectric sensor which can detect the presence of infrared
radiations. All bodies emit radiations, although hotter bodies emit more radiation than other
bodies. Humans radiate this thermal energy with a wavelength of approximately 8 um to
12 um (micrometer) at all times. This radiation is sensed by the pyroelectric sensor placed

aAnAaeOoN ‘
00 01 02 0[&.81;»;;::: 05 06 07 :e’m 4

Fig. 2 NodeMCU

@ Springer

Multimedia Tools and Applications (2021) 80:2931-2949 2935

Table 1 Differences between the 2 Microcontroller chips

Characteristics NodeMCU ESP-8266 v1.0 ESP-01 8266

GPIO pins 11 2 (+2 if Tx and Rx pins are not used)
Analog-Digital pin(s) 1 0

Memory 128 KB 32 KiB instruction, 80 KiB user data
Flash memory 4 MB 1 MB

USB to serial converter Yes. CP2102 is used. No

Is breadboard friendly Yes Not so much

Form factor Big Small

Cost Costlier than ESP-01 8266 Cheaper than NodeMCU board

inside a translucent dome-shaped lens. At the top of the sensor, one may find an infrared filter.
It suitably selects the wavelength which it has to work on and since it has to mainly detect
human presence, this filter selects between 8 um to 12 um.

Figure 3 shows the front and back views of the PIR sensor. One of the most important
components of the PIR sensor module is the Fresnel lens that is placed on the top of the
rectangle-shaped IR filter window. It is a specially designed lens with beehive structure,
intended to magnify the range of the sensing array. The Fresnel lens can make the PIR module
to have a maximum sensing range of 7 m and an angle of 110°x70°. The on-board potenti-
ometers can be used to adjust the sensing intensity and approximate sensing range. In this
project, both were kept at a high position to make sure that range is maximum and even slight
radiation from a fast-moving living being can be detected. PIR sensor module works best in
low noise, low lighted areas and they find their application in automatic lights, security
systems, lifts & lobbies, etc.

MQ-5: 1t is one of the members of the MQ family of gas sensors, primarily deployed to
sense the concentration of natural gas, town gas and liquified petroleum gas. It also has a small
sensitivity for smoke and alcohol. Fuels such as natural gas, town gas and liquified petroleum
gas are being used in different parts of the world for various domestic and industrial purposes
and so, a unified sensor such as MQ-5 was held suitable for this. In this project, the
concentration of piped natural gas (PNG), which is being used as cheaper and cleaner fuel
in Indian households, had to be primarily sensed. It can sense the above-mentioned gases in
parts-per-million (ppm) in range 200-10,000 ppm. As this sensor can sense many gaseous
compounds and the analog type output can range from 0 to 1023, this sensor cannot be
normally used to measure the concentration in ppm (range: 200—10,000 ppm). Therefore, it is
required to be calibrated for suitable values and for this, the graph (Rg/Rq v/s concentration in

Fig. 3 Front and back views of PIR sensor

@ Springer

2936 Multimedia Tools and Applications (2021) 80:2931-2949

ppm) in the datasheet comes conveniently handy. Along with some calculations explained in
[5], we could properly calibrate the sensor for methane gas concentration.

The front and back views of the MQ-5 sensor module is shown in Fig. 4.

MQTT protocol: MQTT (Message Queueing Telemetry Protocol) is a lightweight M2M
(machine to machine), publish/subscribe type protocol, designed in 1999 by 2 IBM employed
engineers- Andy Stanford-Clark and Arlen Nipper for connecting oil pipeline telemetry
systems over satellite. It was started as a proprietary protocol, until 2014 when MQTT version
3.1.1 was officially declared an OASIS standard [2]. MQTT follows publish/subscribe meth-
odology. It is a very lightweight and binary protocol, and due to its minimal packet overhead,
MQTT excels when transferring data in comparison to other similar protocols like HTTP. This
comparison is also summarized in [14]. It is more suitable for asynchronous communication
model. MQTT becomes more important when it is used with resource and bandwidth-
constrained devices. Thus, IoT devices become perfect consumers of the MQTT protocol.
The format of the message header is shown in the following table [7].

The fact that MQTT control message length is comparatively short, is supported by Table 2.
Various message types are used in this protocol and are distinguished via way of means of the
MQTT message header. Message type ‘0000’ cannot be used as it’s far reserved for the future.
Variable Header carries the username and password flag (can facilitate user authentication),
upon placing them, corresponding values also are included in the payload.

There are two main terms associated with MQTT- broker and client. All the devices which
are to utilize MQTT protocol are called MQTT clients. A single client can be a publisher or a
subscriber or both but can behave like any one of it at a time. An MQTT broker acts as a
distributor by establishing a connection between different MQTT clients in its own virtual
space.

The basic working of MQTT protocol can be simply understood from Fig. 5. As can be
seen from the figure, the different electronic devices/sensors communicate with the devices
(laptop, tablet, or phone) via MQTT protocol. A brief explanation about certain terms related
to MQTT is given below:

AW
L=

Fig. 4 Front and back views of MQ-5 sensor

@ Springer

Multimedia Tools and Applications (2021) 80:2931-2949 2937

Table 2 MQTT control message length

Bit 7 6 5 4 3 2 1 0
Byte 1 Message type DUP QoS Retain
Byte 2 Remaining Length

Variable Header

Payload

Broker: 1t is the most vital part of any MQTT connection. An MQTT broker is either hosted
on a device which could manage the entire communication scenario or on the cloud. Cloud-
based brokers are more popular than device-based brokers. The broker is responsible for
receiving all messages, filtering the messages, determine who is subscribed to each message,
and then directing the message to those subscribed clients. In this project, the broker would
also function as a PKG (Public Key Generator) to generate master secret key and access
policy. It publishes the public parameters for each attribute of the access policy.

Client: Clients simply communicate with the broker. An MQTT client runs an MQTT
library or an SDK and connects to an MQTT broker over a network. There are over a dozen
libraries available for C, C++, Go, Java, C#, PHP, Python, Node.js, and Arduino. Both
publisher and subscriber are called MQTT clients. Each client would have to identify itself
before the PKG along with its own set of attributes.

Topic: Topics are something about which an MQTT client publishes, and they are also
which clients subscribes to as well. Topics are the way one registers interest for incoming
messages or how one specifies where one wants to publish the message. It acts as the central
distribution hub for the publishing and subscribing messages. A client publishes data to a
specific topic. The message attached with to topic is sent to the MQTT broker via the internet.
This specific topic has to be subscribed by another client (although publishing and subscribing
to the same topic is allowed) which then gets the message from the MQTT broker. Topics are
simple, hierarchical strings, encoded in UTF-8, and delimited by a forward slash. For example,
“building1/staircase/lights” and “building1/room1/proximity” are valid topic names.

There are several MQTT brokers available, Eclipse Mosquitto™ being the most popular
one. In this project, we used a cloud-based broker named CloudMQTT. We used cloud-based
broker because for device hosted broker, an additional, more powerful board having more
memory, preferably Raspberry Pi had to be used. Usage of new hardware would also take
along with itself the attached shortcomings. To subtract those shortcomings, a cloud-based

Fig. 5 Working of MQTT protocol

@ Springer

2938 Multimedia Tools and Applications (2021) 80:2931-2949

broker was used. To get started with a broker, one simply needs a hostname/IP and port of the
broker. A client starts by creating a TCP/IP connection to the broker by using either a standard
por or a custom port defined by the broker’s operators. As in our case, CloudMQTT provided
the server “postman.cloudmqtt.com”, to run on port- “13524”. A unique username and
password are also provided when one creates an instance in CloudMQTT, which is used
when programming clients. As already mentioned, MQTT is a lightweight protocol, meaning
that its minimal control message can be of size 2 bytes and can carry maximum 256 MB if
needed. Its communication is TCP protocol-oriented although it’s another variant- MQTT-SN
is used for other transports such as UDP or Bluetooth. Owing to its lightweight nature, MQTT
sends connection credentials in plain text format and does not comprise of any measures for
security or authentication. Security or Authentication can be provided by the underlying TCP
transport protocol using measures to shield the integrity of transferred message/information
from interception or replication. MQTT message transfer also comprises any one of three
levels of QoS (Quality of Service). This QoS support is solely provided by the broker. Even
though TCP/IP provides guaranteed data delivery, data loss can still occur if a TCP connection
breaks down and messages in transit are lost. Therefore, MQTT adds 3 quality of service levels
on top of TCP. The three QoS levels are described below:

O QoS

O QoS level 2

level 1
O QoS
level 0
“QoS of
network
(TCP/IP)

QoS level 0: At most once. The message is sent only once and neither the client nor the
broker takes additional steps to acknowledge delivery. It is much like “fire and forget”
methodology. Needed where readings like from temperature sensor is to be regularly pub-
lished. Then the loss of a single value is not critical since the regular sending of data from
sensors will anyway integrate the values over time and loss of individual samples becomes
irrelevant.

QoS level 1: The message is resent by the sender multiple times until its acknowledged but
here, duplicity is unavoidable. Needed where a single state change is vital. Like we used
proximity sensors in our project whose sensitivity is adjusted at maximum. Any change of
state from O to 1 becomes critical for home security so that change must be not be left
unnoticed by the system.

QoS level 2: This is the highest level of QoS in MQTT. It incurs the largest overhead in terms
of control messages. The sender and receiver participate in a two-level handshake to certify only
one copy of the message is received. This level is mostly not included with free of cost broker
instances. It is used in applications where duplicate events could lead to incorrect actions.

As mentioned in the introduction, for additional privacy and security, methods of encryp-
tion were employed. For this, lightweight ABE is preferred primarily because it supports

@ Springer

http://postman.cloudmqtt.com

Multimedia Tools and Applications (2021) 80:2931-2949 2939

broadcast encryption. Broadcast encryption means that with one encryption, a message is
transported to multiple intended users and so, suitable for IoT applications. ABE are of two
types: CP-ABE (Ciphertext Policy based ABE), and KP-CBE (Key Policy based ABE). Both
these schemes are very different and thus, have their share of applications. Attributes here can
be understood as ‘country in which the device is kept” or ‘typical climate of the place in which
that device is kept’. As can be understood from [15], generic publish-subscribe (pub-sub)
model employed for the IoT environment received a piracy provision based on ABE. In that,
the message payload is encrypted using AES (Advanced Encryption System) and AES key is
encrypted by means of ABE, ensuring that payload and ciphertext sizes are the same. In [13],
the authors aimed at optimizing complex operations of ABE by using suitable cryptography
parameters rather than performing double encryptions.

As mentioned earlier also, variable header in the MQTT protocol message format carries
the username and password flag (facilitates user authentication). However, these values are not
encrypted in the message and as a result, are now no longer secure. While referencing [13], the
authors are seen to have added type of encryption methods and have proposed SMQTT which
uses earlier reserved ‘0000” message header.

In the setup phase, the PKG gets registrations from all the clients connected, be they
subscriber or a publisher. These clients provide the PKG with a unique identity along with its
attributes. PKG also generates a master secret key set and public parameters in accordance
with the CP/KP-ABE scheme and publishes public parameters along with the universal
attribute set U (all the attributes which a client device provides to the PKG are a subset of
U). After this, an access policy gets designed by the publisher device. Since here, the client
devices are limited and lie at the same access level and topics and the subscriber is known a
priori, KP-ABE scheme held suitable for the encryption part. Publisher directs the access tree
to PKG and it generates the keys and its policy accordingly. Subscribers now get their set of
keys for all the required policies a priori.

During the communication phase, a client can perform publish, subscribe, unsubscribe and
ping operations. The publish operation sends a binary block of data- the content, to a topic that
is defined by the publisher. The subscribe operation subscribes the client to one or more topics
so that it may receive all the messages pertaining to that topic. The unsubscribe operation
unsubscribes the client from the topic that the user wishes to. Lastly, ping roughly translates
“are you alive/yes [am alive” to the server. This is the only function which helps maintain a
live connection and ensure the TCP connection has not been shut down by a gateway or router.

Publisher client encrypts data using public parameters and produces ciphertext conferring to
KP-ABE. When transmitting a message or an alert, publisher embeds encrypted data as
payload. It’s then sent to the broker. Broker and the publisher then exchange acknowledge-
ment packets to confirm delivery. Broker forwards all messages to their respective subscribers
and deletes data and informs the publisher. Subscriber decrypts the messages if it satisfies
access policy using its private attribute keys. Following KP-ABE, subscriber device verifies
whether it following the access policy. In case it satisfies, then it asks the PKG for a
corresponding key set. PKG authenticates the demand and sends the key to the subscriber.

2 essential functions when working with MQTT protocol are- reconnectmgqttserver and
callback function. A short description of both the function is given below:

reconnectmqttserver(): This function is mentioned in the void loop() body in the starting so
that it runs firstly, as the void loop() body runs in an infinite loop. It takes in no parameters and
also returns nothing. Its sole work is to check the client’s connection with the broker and
establish the connection again in case the client gets disconnected due to any reason.

@ Springer

2940 Multimedia Tools and Applications (2021) 80:2931-2949

callback(): This function is called by the underlying MQTT library when a new message is
received from the broker (for a topic the user has subscribed to). Its takes in 3 parameters-
topic, payload and length. Topic refers to the topic under which the message has come.
Payload refers to the actual incoming message and length refers to the length of the incoming
message plus 1 (for the last null terminator \0”). A loop is usually run from the first character
until the last character and stored in a user initialized character array, which is then used for
further processes.

Drawing conclusions from [13, 14], MQTT advantages, disadvantages, and its applications
are discussed below.

MQTT Advantages:

1. According to measurements in 3G networks, the throughput of MQTT is 93 times faster
than HTTP’s.

2. Ideal for constrained networks. It works without any glitches where connections are of

low bandwidth, high latency, contain data limits and are quite fragile.

Low size of control message packet which makes packet transmission seamless.

It is less complex and easy to implement in IoT related devices.

Suitable for deployment in a demilitarized zone (DMZ).

Has 3 levels of QoS for enhanced acknowledgments.

Its LWT (Last Will and Testament) feature is highly useful when the user needs to know

about clients’ abrupt disconnection from the network.

8. Has a flexible subscription pattern.

NV AW

MQTT disadvantages:

1. MQTT lacks important security features. At the time it was being made, the connection
was not needed to be secured, as told by Stanford-Clark. MQTT has minimal authenti-
cation features. Username and passwords are sent in clear text and any form of secure use
of MQTT must employ SSL/TLS.

2. Authentication of clients with client-side certificates is not included in MQTT protocol, to
regulate who owns a topic and who can publish a message on it. This makes it very
smooth to inject harmful messages, either deliberately or by mistake, into the system.

3. The Broker needs to be 100% available all the time. Since all the clients have to report to
the broker, so any unavailability of the broker would prove to be lethal for the whole
system.

4. Interoperability between different employed systems. Message payloads are binary in
MQTT, with no information as to how they are encoded. Hence, problems can arise
especially in open architectures where different applications from different manufacturers
are supposed to work seamlessly with each other.

5. There is no way for the subscriber to know who sent the original message unless that
information is contained in the real message.

MQTT Applications: the following are some of the real world MQTT applications:
1. Facebook has used aspects of MQTT in Facebook Messenger for online chat. However, it

is unclear how much of MQTT is used or for what.
2. Amazon Web Services announced Amazon IoT based on MQTT in 2015.

@ Springer

Multimedia Tools and Applications (2021) 80:2931-2949 2941

3. Adafruit launched a free MQTT cloud service for IoT experimenters and learners called
Adafruit 10 in 2015.

4. Microsoft Azure IoT Hub uses MQTT as its main protocol for telemetry messages.

5. Open-source software home automation platform Home Assistant is MQTT enabled and
offers four options for MQTT brokers.

6. The OpenStack Upstream Infrastructure’s services are connected by an MQTT unified
message bus with Mosquitto as the MQTT broker.

Blynk: Blynk is a platform with IOS and Android apps to control Arduino, ESP, Raspberry Pi
and various popular development boards over the Internet. It has a digital dashboard where
graphic interfaces for IoT projects can be conveniently built by simply dragging-and-dropping
widgets. One also needs to install the Blynk Arduino Library, which helps generate the
firmware running on a microcontroller. Blynk works with hundreds of hardware models and
connection types like Wi-Fi, Bluetooth, and ethernet. Blynk is highly popular and one can find
support regarding any project over discussion forums of several websites. One could use an
MQTT websocket app just as used in [10] but in this project, we didn’t want to control the
devices but to get real-time data and alerts on our smartphone. These apps like used in [10]
may show the data but they do not really the system over any disconnection or other alerts, and
that is why Blynk app was used.

Fig. 6 NodeMCU functioning as a
subscriber

@ Springer

2942 Multimedia Tools and Applications (2021) 80:2931-2949

L1 e SIEDVAING [

Fig. 7 One of the device functioning as a publisher
3 System model

In this project, 3 PIR sensors are used along with a single MQ-5 gas sensor. These all are
connected to individual ESP-01 8266 Wi-Fi modules. The small Wi-Fi module being used also
hosts a microcontroller which can act as both- a processor as well as a Wi-Fi transceiver. The
sensors collect their required information and the Wi-Fi module connected to it upload the
collected data to the cloud MQTT broker for accessing, parsing and sending the data to its
appropriate subscriber. The MQTT broker here also functions as the PKG. Here only one
subscriber exists and that is the NodeMCU ESP-8266 12E module which has been subscribed
to all the topics. The reason to include this larger module is that its computational capability is

<

Fig. 8 Pictorial block diagram of the whole IoT based subscriber - publisher model

@ Springer

Multimedia Tools and Applications (2021) 80:2931-2949 2943

000600600 &

(b) Publisher side connections

Fig. 9 Physical connections of the whole system. (a) Subscriber side connection. (b) Publisher side connections

greater than the small sized module and for interacting with the Blynk app alone else every Wi-
Fi module had to be registered with the Blynk app along with 3 different authorization tokens.
This hassle was cut down by placing NodeMCU module as a virtual centre while adding more
features.

The actual subscriber system used is depicted in Fig. 6. As MQTT is a publish-subscribe
type communication protocol, the individual ESP-01 8266 which is placed at different
locations, publishes at a particular/unique topic regarding the sensor status. PIR sensors are
placed at the staircase, drawing room, and bedroom and publish their status (whether “0” or
“1”). While the gas sensor wasn’t clubbed with the ESP-01 8266 because this module lacks
analog and PWM pins. So, the MQ-5 gas sensor was clubbed with NodeMCU board directly
but was powered separately as it requires 5(+ 0.1) V and the NodeMCU board could not give
more than 3.3 V.

The actual publisher system used is depicted in Fig. 7 NodeMCU board is subscribed to all
the topics in which the whole network is publishing. This is done so that the Blynk app is
configured to only one board, having the access of all the smaller Wi-Fi modules. Subscription
means that the NodeMCU board will receive all the encrypted messages the modules publish
in accordance with a unique/fixed topic. This decrypted, published data is then sent to the

@ Springer

2944 Multimedia Tools and Applications (2021) 80:2931-2949

Blynk app for user interest. If any suspicious activity is traced, then the Blynk app can notify

the user who could take any action, therefore.

Given in Fig. 8 is a pictorial block diagram of the whole network. It includes all the CPUs,
sensors and the way they are connected to the MQTT server as well as the Blynk server.

START

Initialise the following:
1) Device id as constant character
array
2)Object of class PubSubClient
3) Design an access policy for
KP-ABE
4) Other necessary variables

Connect to MQTT server/broker
using server address and port
number and set callback function
name.

reconnectmqttserver()

loop (until client is
connected)

Connection of client with N
the broker

5000ms
Delay

Yes

v

Receive URI and other
attributes from the clients
and generate master secret

key set according to

KP-ABE. Subscribe to

topics

Check if client is
connected to MQTT
broker

reconnectmqttserver()
function

Call client.loop() function and
send access tree to PKG

Digitally read PIR sensor value and
store it in "pirvalue" variable

check "pirvalue”

[R

Store this value in an array
buffer- "msgmqtt” of size 2.

Store this value in an array
buffer- "msgmqtt" of size 2.

{

{

Encrypt the value using
public parameters and
generate ciphertext
according to KP-ABE.
Publish the payload.

Encrypt the value using
public parameters and
generate ciphertext
according to KP-ABE.
Publish the payload.

Loop Indefinetely-

Fig. 10 ESP-01 8266 publishing sensor readings algorithm

@ Springer

Multimedia Tools and Applications (2021) 80:2931-2949

2945

a

START

Y

Initialise the following:
1) Device id as constant character
array
2) Object of class WiFiClient
3) Object of class PubSubClient
4) Other necessary variables

Connect to Wi-Fi

Connect to MQTT server/broker
using server address and port
number and set callback function
name.

reconnectmqttserver()

loop (until client is
connected)

onnection of client with the
broker

Yes

Receive URI and other
attributes from the clients
and generate master secret

key set according to

KP-ABE. Subscribe to

topics

jeck if client is conneci
to MQTT broker

reconnectmqttserver()
function

Yes

Call client.loop() function

AnalogRead the gas sensor value

Convert the value into
equivalent voltage and then
the ppm value.

|

if(ppm>1000)

1

1) Turn Blynk LED off.
2) Turn Blynk LED on in
green colour.

1) Turn Blynk LED off.
2) Turn Blynk LED on in
red colour.

3) Notify that gas leakage
has been detected.

1000 ms
Delay

v

Y

>

Fig. 11 NodeMCU subscribed to and receiving from the publishing topics algorithm

5000ms
No—|

Figure 9 (a) shows the MQ-5 gas sensor module and NodeMCU ESP 8266 board connected

circuit diagram.

Figure 9 (b) shows the PIR sensor module and ESP-01 8266 Wi-Fi module connected

circuit diagram.

@ Springer

2946 Multimedia Tools and Applications (2021) 80:2931-2949

b allback function wil
parameters topic,
payload and variable
length
Run a loop o store the
incoming payload in a
local variable, say
MQTT_DATA.
Check for topic l
1 topic=esp2/drawing) if topic=esp3/bed
Yes Yes Yes
N Check for 0 N Check for 0 N Check for 0
: MQTT_DATA, —‘ : MQTT_DATA : MQTT_DATA,
Set Blynk LED OFF. Set Blynk LED OFF. Set Blynk LED OFF.
Set Blynk LED ON in red Set Blynk LED OFF Set Blynk LED ON in red Set Blynk LED OFF. Set Blynk LED ON in red Set Blynk LED OFF.
colour. Set Blynk LED ON in colour. Set Blynk LED ON in colour. Set Blynk LED ON in
Notify about an intrusion Green colour. Notify about an intrusion Green colour. Notify about an intrusion Green colour.
on the Blynk app. on the Blynk app. on the Blynk app.

L L,r_l S

Fig. 11 (continued.)

Given below are flowcharts regarding the functioning of both- the publishers and the subscriber.

The flowchart shown in Fig. 10 corresponds to the publisher- one which senses data and
transmits them to the broker. The flow process is depicted and can be easily comprehended.
The first flowchart depicts the full publisher side code. The adjoining flowchart depicts the
reconnectmgqttserver() function. There is no callback function in the flowchart primarily
because it is not required in this only-publisher design.

The flowchart shown in Fig. 11 corresponds to the subscriber- one which gets messages
from the broker. The flow process is depicted and can be easily comprehended. Figure 11 (a)
depicts the full subscriber side code. The adjoining flowchart depicts the reconnectmgqttserver()
function. This reconnectmgqttserver() function also contains the topics the device has to
subscribe to. The next flowchart in Fig. 11 (b) depicts the callback function. Callback function
handles the incoming messages and the further processes with the data are done there only as
shown in the flowchart. The operations included in the callback function are different colored
Blynk LED OFF/ON and alerts on the Blynk app.

4 Experimental results

The subscriber-publisher model used as shown in the system model was carrying out its job of
sensing and notifying whenever it finds something unexpected. The following picture shows
the full control screen.

As can be seen in Fig. 12, 2 widgets have been used: LED and notification. The green
colored LED means that that part is safe and red colored LED means that there the sensor has
found something reportable. The next 4 screenshots demonstrate the working of the alert
system:

@ Springer

Multimedia Tools and Applications (2021) 80:2931-2949 2947

Fig. 12 Full system active in
Blynk app

The above pictures in Fig. 13 demonstrate the working of Blynk app whenever the sensor
tries to alert us something. This along with a message, alerts us through a background alert
music which is fully customizable. The alert system also alerts us about when our device
(NodeMCU board, behaving as virtual center) disconnects from the Blynk server. For
checking the connection status of the sensor modules, one should see if their individual Blynk
LED is blinking or not. If they are blinking then it means that the sensor module is working
fine and if it is not blinking and showing any solid color, then it must be showing the sensor
status, when it was last connected to the MQTT broker. As far as accuracy, speed and latency
are concerned, one could expect very reliable, accurate sensor readings provided they are used
in appropriate conditions. For speed and latency, as they are using MQTT protocol, and
publishing very small messages, the latency one could get is of nearly half a second and that
too when multiple sensor nodes are alerting at the same time.

5 Conclusions and future developments
This paper aims at the usage of MQTT protocol in developing a smart home security system
incorporating KP-ABE encryption that reports its status in real-time. The 2 sensors used here

reported any mishappening almost instantly. The focus was on reliable delivery of a message from
publisher-broker-subscriber model and overcoming the security level drawback of plain MQTT i.e.

@ Springer

2948 Multimedia Tools and Applications (2021) 80:2931-2949

0.6KB/s ©

Intruder alert at Bed room

Intruder alert at Staircase Intruder alert at Drawing room

0K

Gas Leakage detected

Fig. 13 Blynk app showing the notifications/alerts

MQTT protocol functioning when used in a wireless sensors’ network environment. The main
characteristics of the MQTT protocol include low power, low overhead, low complexity, and
asynchronous communication. The project that was finally created, stood firm on all the character-
istics mentioned above and along with KP-ABE encryption and Blynk app, helped securing
message transfers, gave amazing interface to check the status and also facilitated with an alert
system. PIR sensors placed at different locations correctly notified about any bodily movement and
the MQ-5 gas sensor alerted the user on exceeding certain concentration level. The user got a
notification with a message along with an alarming ringtone. The delay in time between the actual
sensing and its notification was one second every time on the first alert. This delay, however,
depends upon the speed of the internet connection too. After the first alert, the other alerts were made
almost instantly. Moreover, the Blynk app also notified the user when did the connection to the
broker get broke. This work can be extended in future as, above all the PIR sensors, a camera
module can be connected so that the user can also watch, about what the PIR sensor is trying to alert.

@ Springer

Multimedia Tools and Applications (2021) 80:2931-2949 2949

This can be achieved by using “Blynk bridge” facility, provided by the Blynk app, although this is a
preliminary idea. Also, an exhaust fan and an alarm speaker can be connected, directly through the
NodeMCU board for exceeded levels of gas concentration and all types of alerts as aimed in this
project respectively.

References

11.

12.

13.

14.

15.

. Bhatt A (2013) Insight-learn the working of a motion sensor or PIR sensor. Engineers Garage. https:/www.

engineersgarage.com/insight/insight-learn-the-working-of-a-motion-sensor-or-pir-sensor/. Accessed 1
Jan 2020
No author (2015) MQTT Basics. MQTT Essentials. https:/www.hivemq.com/mgqtt-essentials/. Accessed 2
Jan 2020

. No author (2019) Technology Trends Dossier. http://cmrindia.com/report/CMR-Technology-Trends-

Dossier-2019.pdf. Accessed 30 Dec 2019

No author MQTT. Wikipedia. https:/en.wikipedia.org/wiki’/MQTT. Accessed 1 Jan 2020

No author. Understanding a Gas Sensor. Jaycon Systems. https://jayconsystems.com/blog/understanding-a-
gas-sensor. Accessed 1 Jan 2020

Goyal V, Pandey O, Sahai A, Waters B (2006). Attribute-based encryption for fine-grained access control of
encrypted data. In: proceedings of the 13th ACM conference on computer and communications security.
ACM, pp 89-98

Grgi¢ K, Speh I, Hedi I (2016) A web-based IoT solution for monitoring data using MQTT protocol. In:
2016 international conference on smart systems and technologies (SST). IEEE, Osijek, pp 249-254

. Jose A, Malekian R (2017) Improving smart home security: integrating logical sensing into smart home.

IEEE Sensors J 17:4269-4286. https://doi.org/10.1109/jsen.2017.2705045
Kocakulak M, Butun I (2017) An overview of wireless sensor networks towards internet of things. In: 7th
annual computing and communication workshop and conference (CCWC). IEEE, Las Vegas, pp 816-821

. Krishna P, Ravi K, Kumar V, Sai Kumar M (2017) Implementation of MQTT protocol on low resourced

embedded network. International Journal of Pure and Applied Mathematics 116:161-166

Kuo Y, Li C, Jhang J, Lin S (2018) Design of a Wireless Sensor Network-Based IoT platform for wide area
and heterogeneous applications. IEEE Sensors J 18:5187-5197. https://doi.org/10.1109/jsen.2018.2832664
Mainetti L, Patrono L, Vilei A (2011) Evolution of wireless sensor networks towards the internet of things: a
survey. In: Sot COM 2011, 19th international conference on software. Telecommunications and Computer
Networks. IEEE, Split, pp 16-21

Singh M, Rajan M, Shivraj V, Balamurlidhar P (2015) Secure MQTT for internet of things (IoT). In: 2015 fifth
international conference on communication systems and network technologies. IEEE, Gwalior, pp 746-751
Rouse M, Gillis A, Waher P. MQTT (MQ Telemetry Transport). loT Agenda. https://internetofthingsagenda.
techtarget.com/definition/MQTT-MQ-Telemetry-Transport. Accessed 2 Jan 2020

Wang X, Zhang J, Schooler E, Ion M (2014) Performance evaluation of attribute-based encryption: toward
data privacy in the IoT. In: 2014 IEEE international conference on communications (ICC). IEEE, Sydney,
NSW, pp 725-730

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Vatsal Gupta' - Sonam Khera? - Neelam Turk?

1

Department of Electronics and Communication Engineering, Maharaja Agrasen Institute of Technology,
Delhi, India

Department of Electronics Engineering, J.C. Bose University of Science and Technology, YMCA,
Faridabad, Haryana, India

@ Springer

https://www.engineersgarage.com/insight/insight-learn-the-working-of-a-motion-sensor-or-pir-sensor/
https://www.engineersgarage.com/insight/insight-learn-the-working-of-a-motion-sensor-or-pir-sensor/
https://www.hivemq.com/mqtt-essentials/
http://cmrindia.com/report/CMR-Technology-Trends-Dossier-2019.pdf
http://cmrindia.com/report/CMR-Technology-Trends-Dossier-2019.pdf
https://en.wikipedia.org/wiki/MQTT
https://jayconsystems.com/blog/understanding-a-gas-sensor
https://jayconsystems.com/blog/understanding-a-gas-sensor
https://doi.org/10.1109/jsen.2017.2705045
https://doi.org/10.1109/jsen.2018.2832664
https://internetofthingsagenda.techtarget.com/definition/MQTT-MQ-Telemetry-Transport
https://internetofthingsagenda.techtarget.com/definition/MQTT-MQ-Telemetry-Transport

	MQTT protocol employing IOT based home safety system with ABE encryption
	Abstract
	Introduction
	Literature survey
	System model
	Experimental results
	Conclusions and future developments
	References

