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Abstract
In this paper, a hybrid whale optimization algorithm based on the Lévy flight strategy
(LWOA) and lateral inhibition (LI) is proposed to solve the underwater image matching
problem in an unmanned underwater vehicle (UUV) vision system. The proposed image
matching technique is called the LI-LWOA. The whale optimization algorithm (WOA)
simulates encircling prey, bubble-net attacking and searching for prey to obtain the global
optimal solution. The algorithm not only can balance the exploration and exploitation but also
has high calculation accuracy. The Lévy flight strategy can expand the search space to avoid
premature convergence and enhance the global search ability. In addition, the lateral inhibition
mechanism is applied to conduct image preprocessing, which enhances the intensity gradient
and image characters, and improves the image matching accuracy. The LI-LWOA achieves
the complementary advantages of the LWOA and lateral inhibition to improve the image
matching accuracy and enhance the robustness. To verify the overall optimization performance
of the LI-LWOA, a series of underwater image matching experiments that seek to maximize
the fitness value are performed, and the matching results are compared with those of other
algorithms. The experimental results show that the LI-LWOA has better fitness, higher
matching accuracy and stronger robustness. In addition, the proposed algorithm is a more
effective and feasible method for solving the underwater image matching problem.

Keywords Whale optimization algorithm (WOA) . Lévy flight strategy . Lateral inhibition (LI) .

Underwater imagematching

1 Introduction

Image matching is a popular research area in pattern recognition, image analysis, remote
sensing and computer vision. The purpose of the image matching is to convert the
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template image to a position in the original image and evaluate the match between the
template image and the original image by maximizing the similarity measure of the two
images. That is, image matching is a technique that determines the small regions of an
image that match another image. The existing image matching methods mainly include
the following: intensity-based methods and feature-based methods [31, 32]. Intensity-
based methods match the position in the original image by moving the template image
and maximize the similarity between the matching image and the original image.
Feature-based methods use certain features, such as edges, contours, textures, entropy,
energy, color and corners, as the basic unit of the image for matching. Computer vision
and image matching technology are closely related. Unmanned underwater vehicles
(UUVs) with vision systems have been widely used to collect underwater image infor-
mation and perform data processing and analysis for image information [15, 24, 26, 28].
The three-dimensional model of a UUV equipped with a vision system is given in Fig. 1.
Underwater image matching is not only the premise and foundation of image processing
and machine vision but also an important operation for feature extraction, recognition
and target tracking. The purpose of underwater image matching is to match the relevant
position in the original image according to the template image, and the matching
accuracy and matching success rate are used as important criteria. Whether the feature
extraction and matching of binocular images taken underwater can be performed quickly
and accurately becomes the core and difficulty of the research. Therefore, underwater
image matching is one of the important research topics. Recently, many optimization
algorithms have been proposed to solve the image matching problem, such as the bat
algorithm (BA) [29], biogeography-based optimization (BBO) [21], the imperialist com-
petitive algorithm (ICA) [11], particle swarm optimization (PSO) [13], the sine cosine
algorithm (SCA) [18], the spotted hyena optimizer (SHO) [8], and states of matter search
(SMS) [7].

Yang et al. proposed an image matching algorithm based on a convolutional neural
network to aid in AUV navigation, and the feasibility and veracity have been verified
[30]. Chen et al. present a novel feature descriptor for visible and infrared image
matching based on log-Gabor filters, and the result was that the method was effective
[6]. Bürgmann et al. demonstrated a deep learning approach to solve the matching of
terra SAR-X derived ground control points to optical image patches, and automatically
and reliably obtained matches with pixel-level localization accuracy [5]. Yan et al.
proposed a hybrid matching algorithm of QPSO and gray relational analysis to solve
vision-guided AUV docking, and the results showed that the proposed algorithm gained
the best matching position [27]. Dou et al. conducted a robust image matching algorithm
based on the wavelet transform and scale-invariant feature transform, and the results
showed that the proposed algorithm improved the matching accuracy [9]. Xu et al.
present real-time stall detection of a centrifugal fan based on symmetrized dot pattern
analysis and image matching, and the results showed that the proposed algorithm can
meet the need for timely and accurately rotating stall detection of a centrifugal fan [25].
Wu et al. developed a robust and efficient multisource image matching method based on
the beat-buddies similarity measure, and the results showed that the method can achieve
higher computational efficiency and better matching performance [23]. Sun et al. pro-
posed underwater image matching with efficient refractive-geometry estimation in glass-
flume experiments, and the results demonstrated that the proposed method was effective
and significantly improved the underwater image matching accuracy [20]. Jung applied
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the k-center algorithm to solve hierarchical binary template matching, and the results
showed that the algorithm obtained better detection and strong stability [12]. Luo et al.
present a hybrid spotted hyena optimizer based on lateral inhibition to solve image
matching, and the results indicated that the proposed algorithm is more effective and
feasible than other algorithms [17]. Abualigah designed a feature selection and enhanced
krill herd algorithm to solve text document clustering, and the experimental results
showed that the method was effective and feasible [1]. Abualigah et al. applied the
improved krill herd algorithm for the text clustering, and the results showed that the
proposed method obtained promising and precise results [2]. Abualigah et al. proposed a
new feature selection method based on the particle swarm optimization algorithm to
improve document clustering, and the results showed that the proposed method enhanced
the effectiveness of the text clustering technique [3].

The whale optimization algorithm (WOA) [19] is inspired by the bubble-net hunting
strategy, which simulates encircling prey, the bubble-net strategy and the search for prey
to obtain the global optimal solution. The WOA has high calculation accuracy and strong
robustness. The Lévy flight strategy [4] improves the exploration ability of the WOA.
The lateral inhibition is effective for solving image enhancement and edge extraction
[14]. The proposed algorithm is applied to solve the underwater image matching prob-
lem, which can effectively balance the global search ability and the local search ability to
avoid falling into the local optimum. Ten underwater images are used to verify the
effectiveness and feasibility of the proposed algorithm. The experimental results show
that the overall optimization performance of the proposed algorithm is superior to those
other algorithms. Meanwhile, the proposed algorithm has higher matching accuracy and
stronger robustness. This research work will lay a solid foundation for pattern recogni-
tion and image analysis.

The remainder of this article is divided into following sections: Section 2 discusses the
basic principle of the whale optimization algorithm. Section 3 describes the Lévy flight
strategy whale optimization algorithm. Section 4 details the lateral inhibition mechanism.
Section 5 presents the hybrid LWOA and lateral inhibition. The experimental results and
analysis are conducted in Section 6. The results and discussions are provided in
Section 7. Finally, conclusions and future research are given in Section 8.

2 The basic principle of the whale optimization algorithm

Taking inspiration from the bubble-net hunting strategy for global optimization, the whale
optimization algorithm is a novel nature-inspired meta-heuristic optimization algorithm that
mimics the social behavior of humpback whales including encircling prey, the bubble-net
attacking strategy and the search for prey to effectively search in the solution space [19]. When
finding prey, the humpback whales first gradually shrink the area in a conical logarithmic
spiral motion around the prey and swim towards the prey. Finally, the prey is captured within a
certain range. The model of bubble-net feeding behavior is given in Fig. 2.

2.1 Encircling prey

Humpback whales can quickly surround prey after finding prey and continuously
update the position. The best hunting position of the humpback whales is the location
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of the target prey or close to the best target prey. The location update is expressed as
follows:

D
!¼ C

!� X *
�!

tð Þ−X! tð Þ
��� ��� ð1Þ

X
!

t þ 1ð Þ ¼ X *
�!

tð Þ−A!� D! ð2Þ

where t denotes the current iteration, X∗ denotes the position vector of the optimal
solution, X denotes the current position vector, || denotes the absolute value, and ⋅
denotes element-wise multiplication. A

!
and C

!
denote coefficient vectors and are

respectively expressed as follows:

A
!¼ 2 a!� r!− a! ð3Þ

C
!¼ 2 � r! ð4Þ

where r! denotes a random vector in [0, 1], and a! denotes the control parameter that linearly
decreases from 2 to 0 during the iteration.

2.2 Bubble-net attacking strategy (exploitation phase)

The bubble-net attacking of humpback whales is achieved according to the shrinking
encircling mechanism and the logarithmic spiral position updating. The shrinking encircling

mechanism is defined by Eq. 2, where A
!

is a random vector in [−a, a]. The logarithmic spiral
position updating is used to capture the prey by calculating the distance between the humpback
whale and the prey, which effectively enhances the local search ability. The location update is
expressed as follows:

D
0�!
¼ X *

�!
tð Þ−X! tð Þ

��� ��� ð5Þ

X
0�!
t þ 1ð Þ ¼ D

0�!
⋅eblcos 2πlð Þ þ X *

�!
tð Þ ð6Þ

where D
0�!
denotes the distance of the ith whale to the prey, l denotes a random value in [−1,

1], and b denotes a constant for defining the shape of the logarithmic spiral.
Assume that there is a probability of 50% of choosing between either the shrinking

encircling mechanism or the logarithmic spiral position updating. The model is expressed as
follows:

X
!

t þ 1ð Þ ¼ X *
�!

tð Þ−A!� D! if p < 0:5

D
0�!
� ebl � cos 2πlð Þ þ X *

�!
tð Þ if p > 0:5

(
ð7Þ

where p denotes a random number in [0, 1].
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2.3 Search for prey (exploration phase)

To ensure the global search ability of the WOA, if A
!��� ��� > 1, we can randomly select one whale

individual as the optimal solution to update the positions of other whales. The position is
expressed as follows:

D
!¼ C

!� X rand
���!−X!

��� ��� ð8Þ

X
!

t þ 1ð Þ ¼ X rand
���!−A

!� D! ð9Þ
where X rand

���!
denotes a random position vector (a random whale) selected from the current

population.
To better describe the solution process, the pseudo code of the WOA is given in Algorithm 1.
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3 Lévy flight strategy whale optimization algorithm (LWOA)

The Lévy flight strategy is a special random walk strategy that combines the local search using
a short walking distance with an occasional global search using a longer walking distance [4].
To improve the calculation accuracy and avoid premature convergence, the Lévy flight
strategy whale optimization algorithm (LWOA) is proposed. The Lévy flight strategy can
expand the search scope, increase the population diversity and easily jump out of the local
optimum. Therefore, the LWOA effectively balances exploration and exploitation to determine
a global optimal solution. The Lévy flight strategy is introduced to update the position of the
humpback whales after updating all positions. The position is expressed as follows:

X
!

t þ 1ð Þ ¼ X
!

tð Þ þ μsign rand−1=2½ �⊕Levy ð10Þ

where X
!

denotes the position vector at iteration t; μ denotes a uniformly distributed random
number; sign[rand − 1/2] has only three values of −1, 0 or 1; and ⊕ denotes the entry-wise
multiplication.

The random step length of the Lévy flight is determined by a Lévy distribution:

Levy∼u ¼ t−λ; 1 < λ≤3 ð11Þ
where λ denotes a power coefficient. The Lévy flight strategy has a heavy-tailed probability
distribution, and the LWOA has a strong global search ability. Mantegna’s algorithm is used to
calculate the generated random step length of the Lévy flight strategy.

s ¼ μ

vj j1=β
μ∼N 0;σ2

μ

� �
v∼N 0;σ2

v

� � ð12Þ

where s denotes the random step length, β is 1.5, and μ and v obey normal distributions. σu and
σv are respectively expressed as follows:

σu ¼ Γ 1þ βð Þ⋅sin πβ=2ð Þ
β⋅Γ 1þ βð Þ=2½ �⋅2 β−1ð Þ=2

" #1=β

σv ¼ 1 ð13Þ

where Γ denotes the standard Gamma function.

Fig. 1 Three-dimensional model equipped with a vision system
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The combination of the Lévy flight strategy and the WOA can realize their complementary
advantages to overcome the defect of falling into a local optimum. The overall performance of
the proposed algorithm has been greatly improved. The pseudo code of the LWOA is given in
Algorithm 2.

4 Lateral inhibition mechanism

Hartline et al. has proposed the lateral inhibition mechanism based on experimental research of
electrophysiology for the limulus’ vision [14]. Each microphthalmia of the limulus’
ommateum is a receptor. The release of the surrounding receptors has a suppressive effect
on the receptor. The inhibitory effect has a spatial superimposition on space. In general, the
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effect on a certain receptor is inversely proportional to the distance between them, which
proves the inconsistency of the receptor activities.

There is an inhibitory field around every microphthalmia of limulus’ ommateum. The effect
is mutual: each receptor is a proximity receptor of its neighbors. While suppressing its
neighboring receptor, it is also inhibited by its neighboring receptor. Furthermore, it is found
that each microphthalmia has maximum and minimum values where the light intensity
changes significantly, that is, bright places seem to be brighter and dark places seem to be
darker. The lateral inhibition is used to process the matching image and the original image,
which enhances the spatial resolution and improves the efficiency and accuracy of image
matching.

The classical lateral inhibition model is expressed as follows:

rp ¼ ep þ ∑
n

j¼1
kp; j r j−rp; j

� �
; p ¼ 1; 2;…; n; j≠p ð14Þ

To apply this mechanism to solve image processing, the model is defined as two-dimensional
and grayscale, and the gray value of pixel (m, n) in images is expressed as follows:

R m; nð Þ ¼ I0 m; nð Þ þ ∑
M

i¼−M
∑
N

j¼−N
αi; jI0 mþ i; nþ jð Þ ð15Þ

where αi, j denotes the lateral inhibition coefficient of pixel (i, j) to the central pixel, I0(m, n)
denotes the original gray value of pixel (m, n), R(m, n) denotes the gray value of pixel (m, n)
after being processed by lateral inhibition, and M ×N denotes the scale of the receptive field.
The schematic diagram of the lateral inhibition model under the condition that M =N = 2 is
given in Fig. 3.

The size of the selected receptive field is defined as 5 × 5. The competing coefficient of
lateral inhibition is expressed as follows:

Fig. 2 Bubble-net feeding behavior of humpback whales
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R m; nð Þ ¼ α0 � I0 m; nð Þ þ α1 ∑
1

i¼−1
∑
1

j¼−1
I0 mþ i; nþ jð Þ−I0

�
m; n

�" #

þ α2 ∑
2

i¼−2
∑
2

j¼−2
I0 mþ i; nþ jð Þ− ∑

1

i¼−1
∑
1

j¼−1
I0
�
mþ i; nþ j

�" # ð16Þ

The vision nerve cells are on the same input plane and the competing coefficients are close to
zero. The lateral inhibition modulus satisfies:

α0 þ 8α1 þ 16α2 ¼ 0 ð17Þ
where α0 = 1, α1 = − 0.075, and α2 = − 0.025. The following matrix is selected as the modulus:

U ¼
−0:025
−0:025
−0:025
−0:025
−0:025

−0:025
−0:075
−0:075
−0:075
−0:025

−0:025
−0:075

1
−0:075
−0:025

−0:025
−0:075
−0:075
−0:075
−0:025

−0:025
−0:025
−0:025
−0:025
−0:025

2
664

3
775 ð18Þ

The modulus template U is combined with R(m, n), and it obtains a new grayscale of the
image. The edge of the image is extracted by the following equation:

Fig. 3 Schematic diagram of the lateral inhibition model under the condition that M =N = 2
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F m; nð Þ ¼ 0 R m; nð Þ≤T
255 R m; nð Þ > T

�
ð19Þ

where T denotes a user-defined threshold value according to practical situations, and F(m, n)
denotes the final gray value of pixel (m, n).

5 Hybrid LWOA and lateral inhibition

5.1 The fitness function of LI-LWOA

The search strategy and similarity measurement play important roles in the image
matching. The fitness value is defined to calculate the fitness value of each search
agent according to different situations and real practices. If the image is relatively
large, the calculation of the fitness value is extremely time-consuming. The schematic
diagram of the template process is given in Fig. 4.

To overcome this shortage, the fitness function based on the lateral inhibition image
processed is expressed as follows:

f m; nð Þ ¼ 1

PQ
∑
P−1

i¼0
∑
Q−1

j¼0
I mþ i; nþ jð Þ ð20Þ

where P ×Q denotes the size of the template image (m, n), and it is the coordinate of the pixel

Fig. 4 Schematic diagram of the template process
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in the original image; and I(m + i, n + j) denotes the processed gray value of pixel (m + i, n + j)
via Eq. (19). If P ×Q denotes the size of the template image and A × B denotes the size of the
original image, the scopes of the coordinates in the original image for image matching are 1 ≤
m ≤ A − P + 1 and 1 ≤ n ≤ B −Q + 1, respectively. The maximum value f(m, n) denotes the best
solution of the image matching.

5.2 The procedure of LI-LWOA

The LWOA has a stronger exploration ability and higher search efficiency, and the lateral
inhibition mechanism can obviously perform background suppression and target enhancement.
The LI-LWOA realizes complementary advantages between the LWOA and the lateral
inhibition mechanism to solve the image matching problem. The main procedures of the LI-
LWOA are given in Algorithm 3. The detailed flow chart of the LI-LWOA for image matching
is given in Fig. 5.

6 Experimental results and analysis

6.1 Experimental setup

The numerical experiment is set up on a computer with an Intel Core i7-8750H 2.2 GHz CPU,
a GTX1060, and 8 GB of memory running on Windows 10.

6.2 Parameter setting

To verify the effectiveness and feasibility of LI-LWOA, the proposed algorithm is applied to
solve the underwater image matching problem. Meanwhile, the LI-LWOA is compared with
other algorithms, such as the LI-BA, LI-BBO, LI-ICA, LI-PSO, LI-SCA, LI-SHO and LI-
SMS. The superiority of the LI-LWOA is determined through experimental comparison. The
control parameter settings for each algorithm are given in Table 1. These important control
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parameters of all algorithms are representative empirical values and are derived from the
original papers.

7 The results and discussions

For each algorithm, the size of the population is 100, the maximum number of iterations is 300
and the number of independent runs is 30. The stopping criterion has been carefully selected to
assure compatibility with similar works reported in the literature [10, 16]. Ave and CR

Start

End

p<0.5?

Verify if any search agent travels

beyond the search space and adjust it

t=t+1

Initialize the population of

whales, initialize control

parameters a, A, C, l and p

Calculate the fitness of each

search agent and obtian the

best search agent x*

Update the control

parameters a, A, C, l and p

Calculate the fitness of each agent and

update X* if there is a better solution

t<tmax?

|A|<1?

Bubble-net attacking strategy,

update position of current

search agent via Eq. (6).

Contraction encirclement
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current search agent via Eq.

(2).

Random search strategy,

update position of current

search agent via Eq. (9).

Obtain the optimal solution X*
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End

Obtain the original
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Image preprocessing

using Lateral Inhibition

according to (16)-(19)

and save new images
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grayscale

Filter the images to

suppress the noise

Use LWOA to find the
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Output the result
Update the position of the current search

agent based on the Lévy flight by Eq. (10).

No

Yes

Fig. 5 Flow chart of the LI-LWOA for image matching
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represent the average value and correct rate, respectively, and they are used as an important
criteria to assess the success of underwater image matching. To reflect the overall optimization
performance of the LI-LWOA, the proposed algorithm is compared to other algorithms
according to average value and correct rate. The threshold for image edge extraction is set
as T = 110, and the purpose of optimization is to successfully match the template image to the
original image. The coordinate information of the template image fixed in the original image
determines whether the image matching is successful. The comparative optimization results

Table 1 Control parameter settings for each algorithm

Algorithms Parameters Values

LI-BA [29] Pulse frequency range f [0, 2]
Echo loudness A 0.25
Decreasing coefficient γ 0.5

LI-BBO [21] Maximum immigration rate I 1
Maximum emigration rate E 1
Maximum mutation rate mmax 0.001
The number of elitisms K 3

LI-ICA [11] The initial number of colonies of nthempire Nc 100
The most powerful countries selected as the imperialists Nimp 10
The total number of colonies Ncol 90
The distance amplification β 2
The predefined angle γ π/4
A position small number ξ [0.1, 0.5]

LI-PSO [13] Constant inertia ω 0.3
First acceleration coefficient c1 1.4962
Second acceleration coefficient c2 1.4962

LI-SCA [18] A constant a 2
A random number r2 [0, 2π]
A random number r3 [−2, 2]
A random number r4 [0, 1]

LI-SHO [8] A random vector h
! [0,5]

A random vector rd1�! [0,1]
A random vector rd2�! [0,1]

A random vector M
! [0.5,1]

LI-SMS [7] Control parameter for the gas state ρ [0.8,1]
Movement parameter for the gas state β 0.8
Collision parameter for the gas state α 0.8
Threshold parameter for the gas state H 0.9
Control parameter for the liquid state ρ [0.3,0.6]
Movement parameter for the liquid state β 0.4
Collision parameter for the liquid state α 0.2
Threshold parameter for the liquid state H 0.2
Control parameter for the solid state ρ [0,0.1]
Movement parameter for the solid state β 0.1
Collision parameter for the solid state α 0
Threshold parameter for the solid state H 0

LI-LWOA [4, 19] A constant a [0, 2]
A random vector r [0, 1]
Coefficient vector A [−1,1]
Coefficient vector C [0, 2]
A constant b 1
A random number l [−1,1]
A random number p [0, 1]
A power coefficient λ (1,3]
A random number β 1.5
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obtained using the LI-LWOA and other algorithms are given in Table 2. The optimal average
values and the best correct rates are expressed in bold.

The WOA has stronger robustness and better optimization performance, which can effec-
tively switch between exploration and exploitation to obtain the optimal solution in the search
space. The Lévy flight strategy has a strong global search ability to avoid premature conver-
gence, and it is introduced into the WOA to further improve the calculation accuracy. The
lateral inhibition mechanism can enhance the image characters and improve the matching
accuracy. The LI-LWOA is applied to solve the underwater image matching problem, and it
seeks to obtain a larger average value and a higher correct rate. A larger average value
indicates that the optimization algorithm has higher calculation accuracy. A higher correct
rate indicates that the optimization algorithm can obtain the matching position information in
the original image according to the template image. To verify the optimization effect of the LI-
LWOA, the proposed algorithm is compared to other algorithms based on the average value
and correct rate. Table 2 gives the comparative optimization results. For images 1, 2, 3, 4, 8
and 9, the average value and correct rate of the LI-LWOA are better than those of other
algorithms, and this shows that the LI-LWOA is able to obtain better functional target values
and a higher matching effect. For image 5, the average value and correct rate of the LI-LWOA
are consistent with those of the LI-SHO, and the correct rate is optimal. Meanwhile, their
average values and correct rates are significantly better than those of the LI-BA, LI-BBO, LI-
ICA, LI-PSO, LI-SCA and LI-SMS, which shows that the LI-LWOA can obtain the best
average value and correct rate. For images 6 and 10, the average value and correct rate of the
LI-LWOA are the best among those of all algorithms. The correct rate of the LI-LWOA and
the correct rate of the LI-ICA are the same, which shows that the LI-LWOA has better
experimental results and stronger robustness. For image 7, the average value of the LI-
LWOA is superior to those of other algorithms, but the correct rate of the LI-ICA is worse
than that of the LI-ICA, which shows that the LI-LWOA has higher calculation accuracy. To
summarize, the LI-LWOA not only has a better average value, a higher correct rate and
stronger robustness but also is an effective and feasible method for solving the underwater
image matching problem.

The p value Wilcoxon rank-sum test is used to verify whether there is a significant
difference between the two sets of data [22]. Table 3 gives results of the p value Wilcoxon
rank-sum test. If p < 0.05, this indicates difference between two sets of data is very significant.
If p ≥ 0.05, this indicates difference between two sets of data is not significant. N/A indicates
“not applicable”, which means that the test cannot be performed because both algorithms

Table 3 Results of the p value of the Wilcoxon rank-sum test

LI-LWOA vs LI-BA LI-BBO LI-ICA LI-PSO LI-SCA LI-SHO LI-SMS

Image 1 1.3156E-08 1.2313E-02 6.1697E-03 3.3595E-06 8.1197E-03 1.7919E-03 6.1038E-05
Image 2 4.1580E-10 1.0285E-06 9.1812E-01 1.1439E-10 1.2427E-07 2.1315E-03 8.9512E-05
Image 3 1.9053E-08 5.6944E-07 8.2633E-03 5.9617E-09 4.5139E-07 1.9001E-02 7.3143E-06
Image 4 3.1121E-08 2.0578E-08 1.3238E-03 1.6149E-07 5.9831E-06 5.5849E-06 1.1857E-06
Image 5 1.5791E-08 5.7091E-11 1.9056E-06 1.1784E-07 2.8030E-07 N/A 3.0480E-07
Image 6 1.5238E-08 5.3557E-10 3.8251E-02 1.5199E-07 2.6127E-06 3.0852E-02 7.8487E-04
Image 7 2.6399E-07 2.7624E-09 8.3052E-01 3.2869E-09 9.0822E-07 7.8734E-02 2.4578E-07
Image 8 1.0058E-08 9.7596E-11 3.3168E-04 1.7235E-11 5.2592E-10 5.8118E-03 5.0699E-06
Image 9 4.3325E-08 7.2702E-12 2.2846E-06 1.0338E-10 1.5497E-08 8.3636E-05 3.8432E-10
Image 10 2.3462E-06 4.4937E-09 N/A 2.7988E-11 4.8343E-10 9.0513E-02 1.2978E-08
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successfully obtain the optimal value in all runs. The p values of the Wilcoxon rank-sum test
are applied to ensure the robustness and effectiveness of the data. The data obtained by the LI-
LWOA are compared with those of other algorithms. The p value is less than 0.05 in most
cases, which indicates that there is a significant difference between the LI-LWOA and other

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Comparative results for Image 1. a Original image (900 × 598). b Template image (186 × 77). c Original
image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The final
template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 1
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algorithms and the data are not obtained by chance. The LI-LWOA is a better optimization
algorithm for solving the underwater image matching problem.

The goal of image matching is to match the template image to the original image by
maximizing the similarity measure of the two images. Underwater image matching research
not only provides a clear research direction for feature extraction, recognition and target
tracking but also lays a solid foundation for pattern recognition and image analysis. The
comparative results with the original images are shown in Figs. 6a, 7a, 8a, 9a, 10a, 11a, 12a,
13a, 14a and 15a and the template images are shown in Figs. 6b, 7b, 8b, 9b, 10b, 11b, 12b,

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Comparative results for Image 2. a Original image (720 × 469). b Template image (78 × 78). c Original
image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The final
template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 2
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13b, 14b and 15b. The original images and the template images processed by the lateral
inhibition are given in Figs. 6c, d, 7c, d, 8c, d, 9c, d, 10c, d, 11c, d, 12c, d, 13c, d, 14c, d and
15c, d, respectively. The lateral inhibition mechanism is used to preprocess the original images
and the template images, which can improve the resolution of the main matching
background, ameliorate the distortion of the sensory information and enhance the
edges of the images. Therefore, the lateral inhibition can effectively improve the
matching success rate and efficiency of the template images. The final template
matching results obtained by the LI-LWOA are given in Figs. 6e, 7e, 8e, 9e, 10e,
11e, 12e, 13e, 14e and 15e. The WOA uses the bubble-net hunting strategy to
perform global optimization, which results in higher calculation accuracy and a better
matching effect. The Lévy flight strategy enhances the exploration to a certain extent.
Meanwhile, the lateral inhibition mechanism has the ability to enhance the characters

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Comparative results for Image 3. a Original image (1000 × 500). b Template image (116 × 93). c Original
image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The final
template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 3
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of images. The proposed algorithm is applied to solve the underwater image matching
problem and has important experimental value. For all algorithms, the size of the

(c) (d)

(e) (f)

(a) (b)

Fig. 9 Comparative results for Image 4. a Original image (774 × 580). b Template image (123 × 75). c Original
image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The final
template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 4
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(c) (d)

(e) (f)

(a) (b)

Fig. 10 Comparative results for Image 5. a Original image (552 × 448). b Template image (58 × 59). c Original
image processed by the lateral inhibition. d Template image processed by the lateral inhibition. (e) The final
template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 5
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population is 100, the maximum number of iterations is 300 and the number of
independent runs is 30. The LI-LWOA can successfully obtain the position informa-
tion that needs to be matched in the original image, which indicates that the proposed
algorithm has strong robustness and stability. Table 2 shows that the LI-LWOA has
better average values and correct rates compared with other algorithms, which indi-
cates that the LI-LWOA has high optimization efficiency to obtain a better matching
effect. The evolution curves of comparative results for images are given in Figs. 6f,
7f, 8f, 9f, 10f, 11f, 12f, 13f, 14f and 15f. The LI-LWOA has higher calculation
accuracy compared with those of the LI-BA, LI-BBO, LI-ICA, LI-PSO, LI-SCA, LI-
SHO and LI-SMS. The results show that the LI-LWOA has superior exploration and

(c) (d)

(e) (f)

(a) (b)

Fig. 11 Comparative results for Image 6. a Original image (1024 × 578). b Template image (101 × 80). c
Original image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The
final template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 6
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(c) (d)

(e) (f)

(a) (b)

Fig. 12 Comparative results for Image 7. a Original image (800 × 640). b Template image (85 × 128). c Original
image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The final
template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 7
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(c) (d)

(e) (f)

(a) (b)

Fig. 13 Comparative results for Image 8. a Original image (1024 × 768). b Template image (138 × 70). c
Original image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The
final template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 8
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local maxima avoidance to solve the image matching problem efficiently and accu-
rately under different environments.

Statistically, the WOA simulates encircling prey, the bubble-net strategy and search for
prey to obtain the optimal fitness values. The WOA has a strong exploration ability and
exploitation ability. The Lévy flight strategy expands the scope of the spatial search and

(c) (d)

(e) (f)

(a) (b)

Fig. 14 Comparative results for Image 9. a Original image (800 × 533). b Template image (57 × 56). c Original
image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The final
template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 9
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enhances the global search ability, which improves the calculation accuracy and optimiza-
tion efficiency of the WOA. The LI-LWOA is used to solve the underwater image matching
problem. It not only obtains better matching accuracy and fitness values but also can
accurately match the template image to the original image. The LI-LWOA solves under-
water image matching for the following reasons. First, the LWOA has the advantages of a
simple structure, few control parameters and an easy implementation. Second, the logarith-
mic spiral updating position is based on the distance between the humpback whale and prey
to capture prey, and so the LWOA has a strong local search ability. The position updating

(c) (d)

(e) (f)

(a) (b)

Fig. 15 Comparative results for Image 10. a Original image (940 × 612). b Template image (100 × 90). c
Original image processed by the lateral inhibition. d Template image processed by the lateral inhibition. e The
final template matching result obtained by LI-LWOA. f Evolution curves of comparative result for Image 10
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mechanism of the humpback whale is used to update the position according to the optimal
whale’s position, and so the LWOA has a strong global search ability. Third, for control

parameter A
!��� ���, if A

!��� ��� > 1, the humpback whale will search for prey randomly to avoid

premature convergence. This parameter can effectively adjust the global search ability and
the local search ability to enhance the optimization performance. In addition, the underwater
image matching problem requires that the algorithm has a higher exploitation ability to
avoid falling into the local optimum in the whole optimization process. This is because the
search space of each image is different in image matching. The LI-LWOA can obtain a
better average fitness value and a higher matching success rate when solving the image
matching problem.

8 Conclusions and future research

The purpose of image matching is to obtain the position that needs to be matched in an original
image based on a template image by maximizing the similarity measure of the two images. In
this paper, the Lévy flight strategy is introduced into the whale optimization algorithm to
improve the calculation accuracy and the optimization performance. The combination of the
WOA based on the Lévy flight strategy and the lateral inhibition mechanism is proposed,
which can effectively achieve complementary advantages to avoid premature convergence and
obtain the global optimal solution. To verify the overall optimization performance of the LI-
LWOA, the proposed algorithm is applied to solve the underwater image matching problem.
The average value and the correct rate are used as important evaluation indicators. Compared
with other algorithms, the LI-LWOA obtains a better average value and a higher correct rate.
The experimental results indicate that the LI-LWOA can effectively balance the exploration
and exploitation to obtain the global optimal solution. Meanwhile, the LI-LWOA has stronger
robustness and stability than other methods, and its effectiveness and feasibility have been
verified to solve the underwater image matching problem.

In future work, the LI-LWOA will be used to solve the imaging problems of complex noisy
marine environments, such as complicated patterns, real-world images, stereo matching and
feature tracking. The proposed algorithm can be achieved using a parallel embedded processor.
We will conduct an experiment to localise a certain target in an image different from the
original one. In addition, we will pay more attention to the theoretical analysis and further
study the convergence and application of the LI-LWOA to the image matching problem.
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