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Abstract
Selection of useful bands plays a very important role in hyperspectral image classifica-
tion. In the past decade, metaheuristic algorithms have been used as promising methods
for solving this problem. However, many metaheuristic algorithms may provide unsatis-
factory performance due to their slow or premature convergence. Therefore, how to
develop algorithms well balancing the exploration and exploitation, and find the suitable
bands precisely is still a challenge. In this paper, a new hybrid global optimization
algorithm, which is based on the Wind Driven Optimization (WDO) and Cuckoo Search
(CS) is proposed to solve hyperspectral band selection problems. Both WDO and CS
have strong searching ability and require less control parameters, but easily suffer from
premature convergence due to loss of diversity of population. The proposed approach
uses the Chebyshev chaotic map to initialize the population at initial step. The population
is divided into two subgroups and WDO and CS are adopted for these two subgroups
independently. By division, these two subgroups can share suitable information and
utilize each other’s pros, thus avoid premature convergence, and obtain best optimal
solution. Furthermore, the Levy flight step size in CS algorithm is adaptively adjusted
based on fitness value and current iteration number, which helps in boosting the conver-
gence speed of algorithm. The experimental results on three standard benchmark datasets
namely, Pavia University, Botswana and Indian Pines, prove the superiority of the
proposed approach over standard WDO and CS approaches as well as the other tradi-
tional approaches in terms of classification accuracy with fewer bands.
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1 Introduction

Recent advances in imaging techniques allow hyperspectral sensors capable of gathering
spectral information in hundreds of narrow and contiguous bands, covering a broad range of
wavelength in the spectrum. The increasing availability of hyperspectral images has gained
huge success in the field of remote sensing. Hyperspectral image is three-dimensional (3-D)
image cube (the third dimension denotes spectral band) comprises huge amount of spectral as
well as spatial information to recognize and discriminate spectrally unique materials [30]. The
enormous spectral bands of hyperspectral images provide redundant information, further entail
huge storage cost and heavy computational burden. Besides, spectral bands are strongly
correlated, i.e., more number of bands may not always result in significant discriminating
capability for classification purpose. Therefore, reducing the dimensionality is a vital process
to discard the redundant bands and make it less time-consuming for classification [4, 29, 32].

Generally, reduction in the dimensionality can be achieved with either feature extraction or
feature selection (also known as band selection). Feature extraction is the process of reducing
the dimension by mapping the data from original higher dimensional space to new lower
dimensional space. Approaches like, Principal component analysis (PCA), Independent com-
ponent analysis (ICA), Discriminant analysis, and transform based approaches have been
widely used [14, 24, 43, 44]. However, these approaches generally alter the physical meaning
of original data since the data in the low-dimensional space correspond to their linear combi-
nations but do not original individual bands. Band selection approaches to pick set of most
suitable bands from pool of bands may be preferred when the physical meaning of bands needs
to be preserved [28, 31, 36]. Recently, many band selection approaches have been proposed
[15, 45]. There exists two most commonly used ways for selection of optimal band subset. The
first strategy includes the individual band evaluation, and the second strategy includes the band
subset evaluation. Individual evaluation consists of clustering based approaches and ranking
based approaches. In the individual band evaluation, the score (which signifies the importance
of the band) of an individual band is measured according to its degree of relevance. Band
clustering approaches form cluster of similar bands and select representative band [25, 46],
whereas, in ranking based band selection approaches, the bands are selected based on the
ranking [8, 47]. A hierarchical clustering approach is most commonly used band clustering
approach, which is based on Ward’s linkage [18]. This technique employs mutual information
(MI) between the bands to pick most informative bands. Kamandar and Ghassemian [36]
proposed a novel band selection technique that maximizes relevance of selected bands and
minimizes redundancy between them (mRMR), which further leads to excellent classification
performance. Jia et al. [12] proposed a new hyperspectral band selection approach based on
Relief-F algorithm and discards less informative bands.

Intelligent algorithms try to evaluate a complete subset of bands rather than individually selecting
the bands. Generating such subsets is known to be an NP-hard problem. Therefore, such problems
are solved by employing nature-inspired algorithms. In band selection, popular nature-inspired
algorithms include Firefly algorithm [38], Artificial Bee Colony(ABC) [48], Wind Driven Optimi-
zation (WDO) [27], Genetic Algorithms (GA) [16], Particle Swarm Optimization (PSO) [37],
Cuckoo Search (CS) optimization algorithm [33, 34], Gray Wolf Optimization (GWO) [22], and
so on. These approaches consider the band selection problem as a combinatorial optimization
problem which is solved by formulating an appropriate fitness function or objective function. The
objective function assesses the band subsets and provides the degree of their goodness. Objective
function needs careful determination as it has an influence on the performance of the system. It can
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be dependant or independent on the on learning algorithm. Hence, the objective function can be
modelled by dependant evaluation criteria (depends on a predefined learning algorithm) [20, 39]or
independent evaluation criteria such as such as, information measures (divergence, entropy or
mutual information) [7, 42], distance measures (Bhattacharya distance, Kullback–Leibler diver-
gence, Jeffries–Matusita distance, Hausdorff distance, and Spectral AngleMapper (SAM)) [13, 22],
and dependency measures (correlation measures, similarity measures) [6, 53]. Selection of an
effective search strategy is a crucial task in the band selection problem. To optimize the defined
objective function, an appropriate optimization algorithm must be chosen to converge to the global
optimal solution and escape out of the local optimum.

Tschannerl et al. [42] proposed a modified discrete gravitational search algorithm based a
novel unsupervised band selection approach employing maximum information minimum
redundancy (MIMR) criterion which outperformed original MIMR with clonal selection
algorithm. ABC approach is utilized to address problem of band selection [48]. An improved
subspace decomposition is suggested to obtain intuitive band subspaces and ABC is employed
as a search strategy. Xu et al. proposed a hybrid band selection approach by combining
differential evolution (DE) and PSO in order to effectively combine characteristics of PSO and
DE [49]. Sawant et al. [27] used a novel metaheuristic algorithm known as WDO, which is
inspired atmospheric motion. WDO has excellent exploitation ability, but loses population
diversity as gravitational force used in WDO pulls particles back to the origin. To address this
limitation, PSO is combined with WDO and a novel band selection approach based on WDO
and PSO is presented in [27]. Medjahed [21] proposed a binary version of CS algorithm to
ensure that the selected band subset had a significant classification capability. Medjahed et al.
[22] utilized a highly efficient metaheuristic algorithm called as GWO to reduce the dimen-
sionality of hyperspectral image. This procedure has found a better band combination by
optimizing five different objective functions. However, these algorithms also have their own
limitations. A random population initialization strategy used in above algorithms may lead to
the sluggish optimization response and fail to obtain the global optimum solution.

Recently, developing hybrid meta-heuristic algorithms has been gaining increasing attentions for
researchers [10, 41, 49]. By combining two or more meta-heuristics, hybrid optimization approach
can expand the performance of individual algorithm, and they seem to be more effective in solving
complex optimization problems [1, 5, 9]. WDO and CS are population based meta-heuristic
algorithms with different search mechanisms. WDO inspires from atmospheric motion and utilizes
actual physical equations to search the solution space, whereas CS uses the Levy flight randomwalk
to generate new solutions. The internal search mechanisms results in different characteristics of the
two algorithms, i.e., WDO favours global exploration while CS is good at local exploitation.
Considering the ability of these two algorithms, a hybrid approach based on WDO and modified
CS, called WDOMCS, is proposed to speed up the convergence rate and enhance the optimization
performance of the hybrid algorithm, aimed for selecting suitable bands with better classification
performance. The main contributions of this manuscript are summarized as follows:

1) The proposed hybrid optimization algorithm utilizes the Chebyshev chaotic map for
generation of initial population which helps circumventing the problem of premature
convergence.

2) By population division, WDO and CS employ information sharing mechanism which
decreases the risk of falling into a local optimal solution.

3) An adaptive step size is employed in Lévy flight random walk which helps enhancing the
global searching ability of the standard CS algorithm.
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4) A band selection approach for hyperspectral image classification based on WDOMCS is
proposed, and the classification accuracy is the optimal with fewer bands.

The remaining part of the manuscript is organized as follows, a brief description about wind
driven optimization, cuckoo search algorithm and chaotic map is provided in Section 2.
Section 3 discusses the proposed WDOMCS algorithm in detail. Experimental analysis of
the standard datasets is discussed in Section 4 and lastly, Section 5presents the conclusions.

2 Technical background

In this section, the technical background of wind driven optimization, cuckoo search algorithm
and chaotic map is discussed.

2.1 Wind driven optimization

WDO is population based nature inspired metaheuristic optimization algorithm proposed by
Bayraktar et al. [2, 3]. It is easy to implement and highly effective in solving multi-modal and
multidimensional problem. The inspiration for WDO comes from atmospheric motion where wind
blows in order to balance the imbalances in air pressure. Air flows from high pressure point to low
pressure point at a velocity which is proportional to pressure gradient. Based on the above theory,
WDO algorithm is derived. It starts with Newton’s second law of motion which states that the
acceleration of an air particle as produced by a total force (Ft) is directly proportional to the
magnitude of the total force, in the same direction as the total force according to Eq. (1).

ρa ¼ ∑ F
!

t ð1Þ
Where, ρ is the air density for an infinitesimal air particle and a is the acceleration of an air
particle. The relationship of air pressure with the air particle’s density and temperature is given
by the ideal gas law,

P ¼ ρRT ð2Þ
Where, P is the pressure, R is the universal gas constant and T is the temperature.

There are various forces that are responsible for movement of air particles mainly including
pressure gradient force (FPG), friction force (FF), gravitational force (FG) and Coriolis force
(FC).The physical equations of the above mentioned forces are expressed as,

FPG ¼ −∇PδV ð3Þ

F F ¼ −ρα f u ð4Þ

FG ¼ ρδVg ð5Þ

FC ¼ −2Ω� u ð6Þ
Where, ∇P represents the pressure gradient, δV is finite volume of the air particle, urepresents
the velocity vector of the wind, and αf is the friction coefficient, grepresents the gravitational
acceleration, and Ω is rotation of the Earth.
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By including all four forces FG, FPG, FC, and FFin the right hand side of Eq. (1) and Eq. (1)
can be expressed as,

ρ
Δu
Δt

¼ ρδVg þ −∇PδVð Þ þ −2Ω� uð Þ þ −ρα f u
� � ð7Þ

The acceleration a in Eq. (1) is expressed as, a ¼ Δu
Δt . By assuming Δt = 1 for simplicity and for

dimensionless and weightless air particle, δV = 1, the Eq. (7) can be expressed as,

ρΔu ¼ ρg þ −∇Pð Þ þ −2Ω� uð Þ þ −ρα f u
� � ð8Þ

By substituting Eq. (2) in Eq. (8),

P
RT

Δu ¼ P
RT

g þ −∇Pð Þ þ −2Ω� uð Þ þ −
P
RT

α f u
� �

ð9Þ

For simplicity, pressure P is replaced by pressure value of air particle at current location Pcurr,

and then Eq. (9) can be represented as,

Δu ¼ g þ −∇P
RT
Pcurr

� �
þ −2Ω� u

RT
Pcurr

� �
þ −α f u
� � ð10Þ

In WDO algorithm, velocity and position of air particle update their corresponding values at
each iteration. Hence, change in the velocity Δu can be written as, Δu = unew − ucurr, where,
ucurr is the velocity of air particle at current iteration and unew is the velocity of air particle at
next iteration. Then the velocity update equation will be,

unew ¼ 1−α f
� �

ucurr
� �

−g þ −∇P
RT
Pcurr

� �
þ −2Ω� u

RT
Pcurr

� �
ð11Þ

Consider, xcurr is current location of air particle, xnew is new location of air particle, g→ and ∇P
are vectors, which can be broken down in direction and magnitude as g = |g|(0 − xcurr),− ∇
P = |Popt − Pcurr|(xnew − xcurr), Popt is optimum pressure, Pcurr is the pressure of current location.
The influence of the Coriolis force (Ω × u) is replaced by the velocity influence from another

dimension, uother dimcurr . Then, all the coefficients are combined together, c = −2RT and the
velocity update equation in Eq. (11) will be expressed as,

unew ¼ 1−α f
� �

ucurr
� �

−g xcurrð Þ þ RT 1−
1

i

����
���� xnew−xcurrð Þ

� �
þ −cuother dimcurr

i

� �
ð12Þ

Then the air particle location update equation will be,

xnew ¼ xcurr þ unew � Δtð Þ ð13Þ
Where, i is rank among all air parcels based on their pressure values and xnew is the new
updated location for next iteration. WDO is similar to other nature inspired optimization
algorithms with few control variables that need to be adjusted. When standard WDO is applied
to solve the hyperspectral band selection problem, the description of WDO parameters used in
the algorithm is given in Table 1 and the hyperspectral band selection using standard WDO is
given as Algorithm 1.
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Algorithm 1: Hyperspectral band selection optimized by WDO 

Input: Hyperspectral data 

Output: The set of n selected bands (Global best solution)

Step 1. Initialization of parameters

WDO parameters: Ps (Population size), T (number of iterations), RT (RT coefficient), 

(The friction coefficient), max (Maximum allowed speed), (Gravitational constant), 

(Constant in the update equation)

Step 2. Initialize populations

Generate random initial population (initial set of bands) with Ps air particles, 

Assign random position and velocity to each particle

Evaluate the objective function 

Step 3. Identify the best particle along with its position among all particles in initial 

population.

Step 4. Rank the air particles

Step 5. while (t<T)

Update the velocity according to (12)

Update the position by (13)

Evaluate the objective function

Identify the best solution among all particles

Rank the air particles

Update global best

If ( )

Store the corresponding position as best position

End if

End while

Step 6. Print the global best solution (set of n selected bands).

1730 Multimedia Tools and Applications (2021) 80:1725–1748



2.2 Cuckoo search algorithm

CS is population based bio-inspired metaheuristic algorithm proposed by Yang and Deb
[51] as the solution for the global optimization problems. The inspiration for CS comes
from the breeding behavior of some cuckoo species. Cuckoo bird put sits eggs in the
nests of other bird. If a cuckoo egg is discovered by host bird, then host bird either
throws the foreign eggs away or abandons the nest and constructs a new nest. In the
standard CS algorithm, each egg of the host bird in a nest represents a solution, and a
cuckoo egg denotes a new solution. If a new solution is better than the one in the nest,
the worse one will be replaced with new solution. Therefore, the development of the
CS algorithm is based the following three main rules: (1) Each cuckoo places one egg
in an arbitrarily selected nest. (2) The best nest with good quality eggs is transferred to
the next generation. (3) The number of available host’s nests is fixed. The host bird
determines the cuckoo egg by a probability of pa ϵ [0, 1]. If the host bird finds a
cuckoo egg, the host bird can abandon the nest or throw the egg away, and construct a
completely new nest.

In the standard CS algorithm, initially m number of random nest locations are generated
representing potential solution, Xi for a cuckoo i. A new solution Xi + 1 is generated by adopting
Lévy flight random walk as follows:

Xiþ1 ¼ Xi þα⨁levy λð Þ ð14Þ
Where, α > 0 is a step size scaling factor; the product of ⊕ means entry wise multiplication;
levy (λ) is a random walk with the random step length which is drawn from a Lévy
distribution. The Levy flight step size coefficient α, which controls the scale of the flight by
multiplication and is related to the size of the solution space of the objective function. When a
Lévy step is generated using a random number generator, it is first multiplied by α before it is
used to generate a new egg. The cuckoo laying eggs corresponds to a new solution set and this
is analogous to generating new solutions for a cuckoo i. The levy (λ) is calculated using
Mantegna’s algorithm as follows:

levy λð Þ ¼ μ

νj j1=λ
ð15Þ

Table 1 Description of WDO parameters

Term Description

Air particle An individual member, whose coordinate values indicates solution to
the optimization problem or one group of band combination

Population An assembly of a predetermined number of diverse air particles
Position The coordinates of an air particle
Velocity The amount of position displacement per iteration
Pressure A number assigned to air particles, which establishes how well an air

particle meets the desired design performance.
Here it act as objective function or fitness function

Ranking Shorting the air particle at each iteration based on their pressure values
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Where, λ is fixed parameter with value 3/2. Furthermore, μ and ν are drawn from a normal
distribution with zero means and an associated variance, as follows:

σμ ¼ Γ 1þ λð Þsin πλ=2ð Þ
Γ 1þ λ=2ð Þλ2 λ−1ð Þ=2� �

" #1=λ

;σν ¼ 1 ð16Þ

Where, Γ(∙) is the standard Gamma function.
As standard CS is applied to solve the hyperspectral band selection problem, each cuckoo

represents a band of hyperspectral data and each nest represents a solution of the problem (set
of selected bands). Discovery probability pa indicates each band has probability of pa to be
successful. The hyperspectral band selection using standard CS is given as Algorithm 2:
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2.3 Chaotic map

Chaos is the behavior of nonlinear systems which exhibits randomness and ergodic behavior.
Chaotic map is an exceptional solution to the dynamic behavior of the systems that are highly
sensitive to the random initial seeds [35]. Most of metaheuristic optimization algorithms
involve random initialization of seeds and are highly dependent on initial conditions. So, if
the initial solutions are not well selected, they lead to local minimum and poor results. The
randomness at initial step leads the algorithm to premature convergence and easily gets trapped
into a local optimal solution. Yang proposed a chaotic map based global optimization
algorithm which employed chaotic variables instead of random variables, and improved the
efficiency of the algorithm [50]. Ergodicity and non-repetition of chaos enables the chaotic
map in maintaining the diversity in the population and tackles the problem of premature
convergence.

A chaotic map is a mathematical function that shows some kind of chaotic behavior over
time characterized by,

Xtþ1 ¼ f Xtð Þ ð17Þ
In the chaotic sequence given in equation (4), chaotic variable Xt + 1 at time t + 1 depends on
chaotic variable Xt at time t. There are several chaotic maps [40], such as iterative chaotic map
with infinite collapses (ICMIC), tent map, logistic map, Chebyshev map, gauss map. The
Chebyshev chaotic map used in this study is based on preliminary trials. Chebyshev map is
defined as:

Xtþ1 ¼ cos a:cos−1 Xtð Þ� � ð18Þ
Where, a is finite constant.

3 Proposed band selection approach

Consider the hyperspectral image dataset which is represented as, χϵRH×W×N, where, H and
W are the height and width of hyperspectral image respectively and N is the total number of
spectral bands or the feature dimensions. Assume that k classes in the hyperspectral data are
denoted as, Ω = [Ω1,Ω2,Ω3,…..Ωk] and n be the selected number of bands denoted as,
Xi = [b1, b2, b3,…..bn]. The following subsection discusses in detail the proposed WDOMCS
band selection algorithm, and the objective function.

3.1 Objective function or fitness function

The goal of the proposed band selection approach is to explore a finite set of possible subset of
bands that maximize the classification accuracy. In this study, the classification accuracy of the
classifier is used as an objective function. Classification accuracy is defined as follows [17]:

E ið Þ ¼ Accuracy ¼ ∑jH�Wj
k¼1 Evaluate pkð Þ

total number of pixels
ð19Þ
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Where, assess (pi) is the function used to classify pixels pk.

Evaluate pkð Þ ¼
1 if classify pkð Þ ¼ Ω

0 otherwise

8<
: ð20Þ

Classify (pk) is the function that gives the class of pk. For the pixel pk with true class, the
function assess (pk) = 1, and 0 otherwise.

3.2 The proposed WDOMCS band selection algorithm

Although the standardWDO and CS have their own features and benefits, they also have some
limitations. CS has relatively strong local exploration capabilities, but algorithm suffers from
premature convergence and gets trapped into local optimal solution. The WDO algorithm has
strong exploitation ability, thus combining the searching capabilities of both algorithms seem
to be good approach which will certainly lead to the development of better performance
algorithms.

The standard WDO and CS start with random population initialization which may
cause repeated calculations and can easily fall into local optimal solution. For the
optimization problem, the final solution is very sensitive to the initial population. By
using the chaotic map, the property of the non-repetition and ergodicity accelerate the
search speed by exploring all search space efficiently. Furthermore, a scaling factor α
of Lévy flight distribution used in Eq. (14) is fixed in a standard CS algorithm. This
parameter has a great influence on the global optimal solution. A large value of α
allows cuckoo to explore search space rigorously at the risk of slower convergence. A
smaller value of scaling factor causes an algorithm to get stuck into a local optimum
solution, thereby leading to premature convergence. Therefore, the selection of the
appropriate step size is indispensable to avoid local optimal solution and to enhance
the speed of convergence. The scaling factor αnew can be formulated as,

αnew ¼
∝L þ ∝U−∝Lð Þ f i tð Þ− f w tð Þð Þ

f avg tð Þ− f w tð Þ ; f i tð Þ≤ f w tð Þ
∝U
t
; f i tð Þ > f w tð Þ

8><
>: ð21Þ

Where,
t is the iteration number.
∝L and ∝U are predefined lower and upper limits of step size, respectively.
favg(t) is the average fitness value of all nests.
fi(t) is the fitness value of ith nest.
fw(t) is the worst fitness value.
The new nest location is computed from Lévy flight and Eq. (1) is re-written as,

Xi t þ 1ð Þ ¼ Xi tð Þ þαi t þ 1ð Þ⨁levy λð Þ ð22Þ
It is evident from this adaptation strategy, the moment current solution reaches a near
optimum solution, the cuckoos upgrade their exploration around the current best
solution using a smaller step size. On the other hand, a large step size is used when
the current solution is less satisfactory than the average fitness value in order to inspire

1734 Multimedia Tools and Applications (2021) 80:1725–1748



the cuckoos to explore a search space more rigorously. The term t is involved to
encourage more exploitation. Also, the position and fitness value of the new cuckoo
egg remain unchanged if it goes out of the search space. In this manner, CS can make
full use of the previous excellent host bird’s nests. Therefore, inclusion of adaptive
Lévy flight in the standard CS can help the algorithm quickly converge to the global
optimal solution.

In this manuscript, a hybrid metaheuristic algorithm called WDOMCS is proposed
aiming at combining both the exploration of CS and exploitation of WDO. In general,
hybrid optimization algorithms can utilize the characteristics of the original algorithm.
The main goal of hybridization is to complement each other’s characteristics. The
hybridization approach is as follows: In the beginning, the initial population is gener-
ated using Chebyshev chaotic map, and the whole population is divided into two equal
subgroups, Group A and Group B. WDO and modified version of CS are adopted for
these two subgroups independently. By division, these two subgroups can share suitable
information and utilize each other’s pros, thus avoid premature convergence, and obtain
best optimal solution. The steps involved in the WDOMCS are presented in Algo-
rithm 3. The flowchart of WDOMCS process is shown in Fig.1.
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The whole population is equally divided into two subgroups (Group A and Group 

B). Individuals in each subgroup are randomly assigned by the population to utilize 

for the Steps 5 and 6.

Step 5. WDO process

j =1: Ps/2 (all individuals in Group A)

Update the velocity and position of each individual (each air particle) using equation 

(12) and equation (13), respectively

Evaluate the Enew (i) using equation (19)

Identify the best solution among all individuals and rank the individuals

Update global best

If (Enew (i)> E(i))

Replace current solution with the new solution 

End if
Get the current global best solution

Step 6. MCS process

j =1: Ps/2 (all individuals in Group B)

Generate a new solution via adaptive Levy flights using equation (22)

Evaluate the objective Enew (i) using equation (19) 

If (Enew (i)> E(i))

Replace current solution with the new solution 

Discard the worst nests according to probability pa

End if
Get the current global best solution

Step 7. New solution update

After the two subgroups are updated, merge them into one population and store the 

global optimal value.

Step 7: Stop criteria

Determine whether the maximum number of iterations is reached. If not, return to 

step 2, otherwise Print the global best solution (set of n selected bands).
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4 Result and discussion

The proposed WDOMCS algorithm was tested on three different hyperspectral remote sensing
datasets, Indian pines, Pavia University and Botswana [11] for assessment of the effectiveness
of the proposed band selection approach. Details of the datasets and comprehensive results are
discussed in following subsections.

4.1 Dataset description and experimental setup

Table 2 summarizes the details of the standard bench-mark hyperspectral datasets, Indian
pines, Pavia University and Botswana.

All the experiments are conducted using MATLAB platform version R2018b on Intel Xeon
processor 2.90 GHz CPU along with 128 GB RAM in Windows 10 (64 bit) environment. The
performance of the proposed method is compared with those of the other five metaheuristic
band selection approaches, i.e. GA, PSO, GWO, WDO, and CS.

Fig. 1 Flowchart of WDOMCS process
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In the beginning, 10% number of samples of each land cover class from the Indian pine
dataset, Pavia University and Botswana datasets are randomly chosen as training samples for
validation of the efficacy of the proposed technique with less amount of labelled data. The rest
of the samples are considered as testing data. The experimentation is conducted ten times for
the evaluation of the average of Overall Accuracy (OA), Average Accuracy (AA), class-wise
accuracy, and kappa coefficient κ. To perform the classification task using selected bands, one-
against-all Support Vector Machine (SVM) is employed as classifier [23]. The SVM classifier
is selected due to its excellent performance when dealing with small-sized training data. To
compare fairly, we have conducted the experiments on the final bands searched by their
methods, but using the same classifier of SVM. In SVM, Radial Basis Function (RBF) is used
as its kernel function. The parameters C and γ in SVM are determined using fivefold cross
validation method. The parameters of each algorithm are summarized in Table 3.

Table 2 Details of Hyperspectral datasets

Dataset Indian Pines Pavia
University

Botswana

The sensor used to capture the scene AVIRIS ROSIS Hyperion
Type of the Sensor Airborne Airborne Space borne
Size of the image 145 X 145 610 X 340 1476 X 256
Number of spectral bands 224 115 242
Number of bands existing when water absorption bands are

removed
200 103 145

Wavelength range 400–2500 nm 430–860 nm 400–2500 nm
Spectral resolution 10 nm 3.7 nm 10 nm
Spatial resolution 20 m 1.3 m 30 m
Number of classes 16 9 14
Number of labelled samples 10,249 42,776 3248

Table 3 Parameters setting of each algorithm

Algorithm Parameters Value

GA Number of genetics 20
Selection ratio 0.8
Crossover ratio 0.9
Mutation ratio 0.01

PSO Population size 20
Number of iterations 100
Cognitive constant (c1) 2
Social constant (c2) 2
Inertia weight 0.2

GWO Number of search agents 20
Number of iterations 100

CS Population size 20
Number of iterations 100
Discovery probability pa 0.25

WDO Population size 20
Maximum number of iterations 100
RT coefficient 3
gravitational constant 0.15
constants in the update equation 0.4
Coriolis effect 0.3
maximum allowed speed 0.3
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4.2 Experimental analysis

This section discusses the classification results obtained by the proposed approach and commonly
used metaheuristic approaches, comparison of the proposed band selection approach with commonly
used band selection approaches, WDOMCS parameter analysis and convergence analysis.

4.2.1 Classification performance

The classification results obtained by the proposed band selection approach WDOMCS are
compared with other metaheuristic approaches to assess the effectiveness of the WDOMCS. GA,

Table 4 Classification accuracies (%) obtained by the proposed method and competing approaches for Indian
pines dataset

Class Name GA PSO GWO WDO CS WDOMCS

Alfalfa 0.00 63.41 26.19 0 39.02 39.02
Corn-no till 52.93 63.34 58.39 76.88 73.38 80.15
Corn-min till 28.16 53.54 59.57 59.70 65.19 67.73
Corn 14.74 31.92 40.65 32.86 44.13 55.39
Grass-pasture 82.17 82.71 78.62 88.94 90.55 80.41
Grass-tree 94.35 92.84 92.99 94.52 94.06 95.73
Grass-pasture- mowed 17.39 0 76.92 0 0 20
Hay-windrowed 96.87 97.67 96.75 96.27 98.13 98.83
Oat 0.00 0 50.00 0 0 0
Soybean-no till 59.38 37.41 70.05 76.88 67.27 74.25
Soybean-min till 74.13 83.70 71.67 84.51 86.69 86.28
Soybean-clean 32.00 62.10 50.93 67.35 73.17 71.29
Wheat 94.51 94.56 94.59 98.91 97.82 96.73
Woods 92.98 97.10 89.11 96.30 93.32 94.72
Buildings-grass-trees- drives 11.65 41.49 45.40 49.56 52.16 53.89
Stone-steel- towers 73.33 77.10 83.33 93.97 81.92 86.74
OA 64.86 72.59 71.28 79.75 79.81 81.67
AA 51.54 61.19 67.82 63.55 66.05 68.83
κ 58.96 68.23 66.53 76.72 76.79 78.96

Bold value shows the better performance of the proposed method compare to the competing methods in terms of
OA, AA, and κ

Table 5 Classification accuracies (%) obtained by the proposed method and competing approaches for Pavia
University dataset

Class Name GA PSO GWO WDO CS WDOMCS

Asphalt 82.28 90.84 87.80 94.01 94.97 93.24
Meadows 96.91 96.49 95.55 97.35 97.77 98.12
Gravel 43.75 60.61 72.96 82.00 76.33 74.74
Trees 79.73 92.05 83.50 90.71 91.69 93.21
Painted metal sheets 99.16 98.34 99.25 98.51 99.58 98.76
Bare soil 58.25 80.97 72.14 89.63 88.75 90.96
Bitumen 75.47 74.93 84.29 81.11 82.53 84.37
Self-blocking bricks 83.47 85.27 82.64 87.08 90.40 92.42
Shadows 100 99.88 99.88 99.17 99.88 100
OA 84.57 90.21 86.83 93.38 93.79 94.17
AA 79.89 86.60 86.45 91.07 91.33 91.76
κ 78.56 86.96 82.29 91.20 91.73 92.25

Bold value shows the better performance of the proposed method compare to the competing methods in terms of
OA, AA, and κ

1739Multimedia Tools and Applications (2021) 80:1725–1748



PSO, GWO, WDO, CS, and WDOMCS are executed by selecting 20 bands on the Indian Pines,
Pavia University and Botswana dataset. The OA, AA and κ are measured in every case alongside
the individual class accuracies. Results are presented in Tables 4, 5 and 6 and the best value for each
metric is recorded in bold. It is observed from Table 4 that, GA performs worst on Indian Pines
dataset, whereas PSO and GWO show similar performances. It is observed from Table 5 that, GA
and GWO perform worst on Pavia University dataset; however, PSO shows satisfactory perfor-
mance. On the other hand, Table 6 shows that, performance of GA and PSO is inferior to that of
GWO. Moreover, the performance of GWO is almost similar to that of CS.

According to the results in Tables 4, 5 and 6, the optimization abilities of WDO and CS are
better than GA, PSO and GWO and the OA value exceeded 80% for Indian Pines dataset, 94%
for Pavia University dataset and 92% for Botswana dataset. WDO and CS require a few control
parameters; however, the exploration ability of both algorithms is restricted to the initial setting.
In WDO, air particles simultaneously walk around the universe, and explore the entire search
space without getting trapped at the boundary. In MCS, adaptive Lévy flight strategy helps to
maintain balance between exploration and exploitation and enhances the searching ability to
obtain global best solution. Although, the WDO and CS give better results, they have not
obtained theoretical optimal value. Thus, WDOMCS obtains the highest fitness value for all
datasets, which illustrates that the excellent optimization ability of WDOMCS in comparison
with other metaheuristic approaches. In contrast to this excellent performance, the classification
performance obtained by the standardWDO and CS algorithm with the random initialization is
inferior to that of proposed WDOMCS approach. This substantial difference indicates that, the
classification performance obtained by the standardWDO and CS algorithm is deteriorated due
to the randomness introduced in the selection of initial population. It is evident from Tables 4, 5
and 6, the proposed WDOMCS algorithm has strong capability to obtain an optimal solutions.
Among all metaheuristic approaches, the proposed WDOMCS algorithm has achieved excel-
lent classification performance in terms of OA, AA and κ. The proposed WDOMCS algorithm

Table 6 Classification accuracies (%) obtained by the proposed method and competing approaches for Botswana
dataset

Class Name GA PSO GWO WDO CS WDOMCS

Water 99.58 100 100 100 100 100
Hippo grass 92.22 84.44 92.22 83.33 82.22 88.75
Floodplain grasses1 91.55 95.11 96.44 96.88 99.55 94.50
Floodplain grasses2 90.15 75.64 96.37 95.85 97.92 99.41
Reeds1 76.44 77.27 83.05 74.38 67.35 88.83
Riparian 68.59 62.80 85.53 72.72 85.12 82.32
Firescar2 93.56 96.13 93.99 96.56 96.13 98.06
Island interior 92.30 84.61 95.60 100 97.80 94.44
Accacia woodlands 87.94 75.53 79.07 94.68 92.19 89.24
Accaciashrublands 80.26 79.37 88.78 89.23 91.92 84.84
Accacia grasslands 94.52 94.16 87.22 94.16 87.59 93.03
Short mopane 96.29 95.06 93.20 87.65 95.06 91.66
Mixed mopane 87.55 90.45 84.64 91.28 85.89 95.79
Exposed soils 91.76 90.58 96.47 100 92.94 100
OA 88.20 85.47 90.06 91.02 90.70 92.64
AA 88.77 85.80 90.90 91.20 90.84 92.92
κ 87.22 84.24 89.23 90.26 89.93 92.02

Bold value shows the better performance of the proposed method compare to the competing methods in terms of
OA, AA, and κ
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has achieved the maximum OA of 81.67% for Indian Pines dataset, 94.17% for Pavia
University dataset, and 92.64% for Botswana dataset. It can be inferred from Tables 4, 5 and
6 that, the use of the initialization strategy, adaptive Lévy flight strategy and hybridization of
WDO and CS have greater influence on the optimization ability of an algorithm.

The classification maps produced by all the above mentioned band selection approaches on
Indian Pines, Pavia University and Botswana dataset are shown in Figs. 2, 3 and 4, respec-
tively. The proposed approach WDOMCS shows a smooth classification map than other
competing band selection approaches. For instance, the region of class “Woods” as shown

(c) 

(f)

(b) 

(e)

(a)

(d)

Fig. 2 Classification map obtained by various methods for Indian Pines dataset. a GA (b) PSO (c) GWO (d)
WDO (e) CS (f) WDOMCS

(a) (b) (c)

(d) (e) (f)

Fig. 3 Classification map obtained by various methods for Pavia University dataset. a GA (b) PSO (c) GWO (d)
WDO (e) CS (f) WDOMCS
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in Fig. 2f (denoted by brown arrow) is smoother than those of the other approaches. Similarly,
the region of class “Meadows” as shown in Fig. 3f (denoted by red arrow) is smoother than
other approaches.

4.2.2 Comparison of the proposed band selection approach with commonly used band
selection approaches

To validate the effectiveness of the proposed WDOMCS approach, the classification perfor-
mance of the WDOMCS is compared with commonly used band selection approaches such as
Ward’s linkage strategy using divergence (WaLuDi) [18], minimum-redundancy maximum-
relevance (mRMR) [19], and Relief algorithm [12]. Figure 5a, b and c present the OA, AA and
κ for three hyperspectral datasets using above mentioned band selection approaches. It is
observed that the classification accuracy by the proposed WDOMCS shows significant

(a) (b) (c)

(d) (e) (f)
Fig. 4 Classification map obtained by various methods for Botswana dataset. a GA (b) PSO (c) GWO (d) WDO
(e) CS (f) WDOMCS
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improvement that by using the full spectral bands, which is higher than 4% for Indian Pines,
13% for Pavia University and 1% for Botswana dataset. More importantly, the number
selected of bands is greatly reduced in comparison with original spectral bands. Among all
the band selection approaches, WDOMCS attains excellent classification performance by
selecting most discriminative bands. Although the number of selected bands is the same,
OA is lower than 80% for Indian Pines, less than 90% for Pavia University and Botswana
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Fig. 5 Overall statistics (OA, AA, k in %) for (a) Indian Pines dataset (b) Pavia University dataset (c) Botswana
dataset
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datasets when using Relief, mRMR, and WaLuDi approaches. Similarly, AA is less than 62%
for Indian Pines, lower than 89% for Pavia University and Botswana datasets when using
Relief, mRMR, and WaLuDi approaches. Furthermore, kappa coefficient is lower than 76%
for Indian Pines, less than 88% for Pavia University and Botswana datasets when using Relief,
mRMR, and WaLuDi approaches. In short, we can say that WDOMCS has the excellent
searching ability and optimization performance, which makes it better choice to solve the band
selection problem.

4.2.3 WDOMCS parameter analysis

The population size Ps, number of iterations Tare the two main parameters influencing the
performance of WDOMCS. Both parameters have been analysed in Fig. 6a and b for a fixed
number of 20 bands on the Botswana dataset. As expected, classification accuracy increases
with increase in Ps and T. They are chosen to be as minimal as possible to attain maximum
optimisation capacity with minimal computational effort. Based on these results, Ps is set to 20
and T is set to 100.

(a)

(b)

Fig. 6 Sensitivity of WDOMCS parameters (a) population size (b) number of iterations
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4.2.4 Convergence analysis

In this section, optimization performance of theWDOMCS is discussedwith respect to convergence
analysis. The proposedWDOMCS includes hybridization of the standardWDO and CS algorithm.
In addition, Chebyshev chaotic map based population initialization phase and one modification to
the standard CS algorithm were adopted to speed up the convergence process. The ergodicity and
stochastic properties exhibited by chaos helps the algorithm to reach its global best optimal solution.
A modification to the standard CS algorithm includes the use of an adaptive Lévy flight strategy
based on the fitness value of previous iteration, which will helps in increasing the convergence rate
by exploring around themost likely solution space. In this section, the influence of eachmodification
on the standard algorithms (M1: WDO algorithm with Chebyshev chaotic initialization, M2: CS
algorithm with Chebyshev chaotic initialization, M3: CS algorithm with adaptive Lévy flight
strategy) are studied. The convergence plots using the above three modifications and the standard
WDO, CS and WDOMCS algorithm for Botswana dataset are shown in Fig. 7. It is evident from
Fig. 7, the use of Chebyshev chaotic map based population initialization have reached a near
attainable global solution without bringing any substantial enhancement to the convergence rate in
comparison with the standard WDO. Similarly, CS algorithm Chebyshev chaotic map based
population initialization attained maximum fitness value without getting trapped in the local
optimum. Whereas, the convergence rate of M2 is slower than that of standard CS algorithm. The
Chebyshev chaotic map based population initialization strategy can improve the searching ability
because it generate non-repeated solution and improve the quality of the initial feasible solution. The
use of adaptive Lévy flights strategy inM3providedmore stable convergence rate. The adaptive step
size encourages the cuckoos to explore more rigorously to find a new solution. However, in
comparison with modification M2, it failed to attain the global optimal solution. Therefore, the
inclusion of all threemodifications to the standardWDOandCS algorithm lead to amore stable and
reliable optimization performance as expected.

All the approaches except WDOMCS have obtained almost same solution at the end iteration;
however convergence speed slightly varies. As can be clearly seen from Fig. 7,WDOMCS algorithm
converges quickly and reaches global optimal solution. The Chebyshev chaotic map generates non-
random population and significantly increases the convergence rate. Adaptive step size helps

Fig. 7 Convergence behaviour of WDOMCS algorithm on Botswana dataset
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algorithm to come out of local optima, overcomes premature convergence and improves quality of
solution significantly. Furthermore, hybridization of the WDO and CS leads to exchange of useful
information across the search space. Therefore, with these modifications, WDOMCS obtains optimal
solution quickly in comparison with other metaheuristic approaches. The fitness curve ofWDOMCS
proved that, the exploitation capability of the algorithm has been enhanced which succeed in reducing
premature convergence problem as well as improving the convergence rate.

5 Conclusion

In this paper, a novel hybrid optimization approach is proposed based onWDO andMCS algorithm
for solving the problem of band selection in hyperspectral image. InWDOMCS, the randomness of
initial population is modified through use of the chaotic map. Furthermore, the searching ability of
CS algorithm is improved by adaptively adjusting the Levy flight step size.WDOMCS can enhance
the ability of exploitation and avoid getting trapped into local optimal solution by dividing the
population, grouping update and combining the population to share the useful information between
individuals. The experimental results have been compared with other band selection techniques
optimized by GA, PSO, GWO, WDO and CS. Compared to GA, PSO, GWO, WDO and CS
algorithm, the WDOMCS is more effective in obtaining better solutions and convergence speed of
WDOMCS is higher. This hybridization presented a better optimization performance and robustness
and significantly enhances the optimization capability of original WDO and CS algorithms.

Although in this paper the hybrid WDOMCS algorithm was implemented for solving the
problem of hyperspectral band selection, there are still many aspects worthy of our study.
Firstly, we will focus on various initialization strategies in order to further improve the
performance of optimization. Secondly, multi-objective optimization model is needed to find
an optimal trade-offs between conflicting issues such as, information preserving and redun-
dancy reducing for choosing optimal band subsets. Also, we will further explore various
strategies for combining spectral and spatial information to improve the classification perfor-
mance. Lastly, we will further explore our proposed approach to various multimedia applica-
tions such as, image segmentation [52], image detection [26], and image dehaze [54].
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