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Abstract
Video description is to translate video to natural language. Many recent effective models for
the task are developed with the popular deep convolutional neural networks and recurrent
neural networks. However, the abstractness and representation ability of visual motion fea-
ture and language feature are usually ignored in most of popular methods. In this work, a
framework based on double-channel language feature mining is proposed, where deep trans-
formation layer (DTL) is employed in both of the stages of motion feature extraction and
language modeling, to increase the number of feature transformation and enhance the power
of representation and generalization of the features. In addition, the early deep sequential
fusion strategy is introduced into the model with element-wise product for feature fusing.
Moreover, for more comprehensive information, the late deep sequential fusion strategy is
also employed, and the output probabilities from the modules with DTL and without DTL
are fused with weight average for further improving accuracy and semantics of generated
sentence. Multiple experiments and ablation study are conducted on two public datasets
including Youtube2Text and MSR-VTT2016, and competitive results compared to the other
popular methods are achieved. Especially on CIDEr metric, the performance reaches to 82.5
and 45.9 on the two datasets respectively, demonstrating the effectiveness of the proposed
model.
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1 Introduction

Video description aims to translate and re-express the visual content with natural language,
which belongs to a high-level understanding task in computer vision since the representa-
tional visual data is transformed into more abstract language. And it has bright prospect in
early education, visual assistant, automatic explanation and intelligent interactive environ-
ment development. However, the task depends on various techniques of computer vision, as
well as methods in the field of natural language processing, resulting in complicated process
and more challenges.

So far there are diversified frameworks and models for bridging the vision to language.
In the early days, the template based frameworks [17, 23] and semantic transferring based
frameworks [51] are developed to generate sentence with stereotyped structure or similar
samples from query database built in advance. Actually, the descriptions usually lack flex-
ibility in sentence pattern and using word, leading to insufficient semantics. Afterwards,
inspired by the task of machine translation, the video is treated as source language while
the description to be generated is regarded as target language. In addition, the framework
of “encoding-decoding” is employed to complete the conversion procedure from vision to
language. The generated sentence with this solution is flexible in both sentence pattern and
word picking, as well as in semantics since the pipeline maybe more close to expression
habits of human. Moreover, the success of deep learning offers another opportunity of per-
formance breakthrough for video description. Usually, the convolutional neural networks
(CNN) are employed to extract feature of video for encoding, and then the visual feature
is fed into recurrent neural networks (RNN) for decoding and generating candidate words
one by one [5, 27, 28, 46]. Besides, more complicated hybrid models are further developed,
combined with attention mechanism [6, 12, 16], visual attributes [8, 29, 52] and novel train-
ing strategies [9, 13] based on the pipeline, and the quality of generated sentence are also
further improved.

However, different from image, the video contains not only static visual feature but
the more important motion feature. Generally speaking, the special long-short term mem-
ory (LSTM) [19] network is frequently used to model the sequence of CNN feature for the
motion feature. In the pipeline, the visual feature is generally facing forward propagation
directly in LSTM networks, causing that the final representation is insufficient abstractness
and poor representative ability, as well as the inadequate semantics in generated sentence
in current models because a single LSTM unit possesses limited memory and the feature
lacks enough non-linear transformation. Additionally, during decoding for candidate sen-
tence, each word is predicted directly from LSTM at each time step, affecting the prediction
accuracy of word in that the similar limited representative ability of language feature.

Facing the challenges, a double-channel language feature mining model is proposed for
video description in this work (as shown in Fig. 1). For more abstract and discriminative
representation of visual content and language at each time step, the output of sequential
network is transformed again for motion feature extraction and candidate sentence gener-
ation. Concretely, the CNN feature of each frame is fed to the bottom LSTM firstly, and
the output is sent to the added deep transformation layer (DTL) for visual representation
enhancing, rather than directly to the top LSTM. For language modeling, in addition to
the added DTL between the stacked two LSTMs, another DTL is appended on the top
LSTM for language representation enhancing. Also, a DTL is embedded into the branch for
extra language feature mining to further strengthen the power of language representation.
Besides, the method of sequence cooperative decision [41, 42] is employed to fuse the shal-
low module (the top module in Fig. 1) and the deep module (the bottom module in Fig. 1)
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Fig. 1 The framework overview of the proposed double-channel language feature mining model(In visual
encoding stage, there are t1 time steps, which indicates that t1 frames are fed to the network. During language
decoding, t2− t1− 1 (l) time steps are contained. The LSTMlm’ is the language feature mining branch, and
DTL is the deep transformation layer (a fully connected layer))

for boosting the accuracy of word prediction. In each module, the element-wise product
strategy is employed for feature fusion. Finally, the outputs of the two modules are fused
with weight average. In conclusion, the main contributions of this work includes the below
aspects.

– A double-channel language feature mining model is developed in this work, where the
usually employed two stacked LSTMs are disassembled by embedding an extra deep
transformation layer (DTL) between them. The visual feature and language feature are
transformed deeply with multiple DTLs after they are modeled by sequential network,
enhancing the power of abstractness and representation.

– For comprehensive information, the scores from shallow module and relatively deep
module are incorporated by sequence cooperative decision method, boosting the accu-
racy of word prediction. In each module, an early deep sequential fusion is employed
with element-wise product operation, while the output probabilities from the two
modules are fused with late deep sequential fusion with weight average.

– Experiments are implemented and ablation study is conducted on two public datasets
including Youtube2Text and MSR-VTT2016, and competitive results compared to the
state-of-the-art models are achieved, demonstrating the effectiveness of the proposed
model. Additionally, the proposed method can be transferred to other frameworks
easily, offering another solution of performance improvement for vision-language tasks.

The rest of this work is organized as follows. Section 2 introduces the related works about
visual captioning. The motivation, proposed methods including visual and language deeply
transforming and double-channel language mining are described in detail in Section 3. The
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experimental results and discussion are presented in Section 4. Finally, Section 5 concludes
the paper and prospects the future works.

2 Related works

Translating a video into natural language based on the visual content has been researched
for decades. In early works, the researchers learn from the observation that there are many
invariant sentence structures are frequently used in daily communication, and the techniques
of computer vision such as object detection, pedestrian recognition and action classifica-
tion are employed for the semantic ontologies and actions, following that the corresponding
words are filled into the predesigned sentence templates [17, 23]. The framework is con-
venient and possesses high accuracy of predicted words. However, the generated sentence
patterns are always inflexible and rigid, and the semantics and readability are greatly limited
because of the fixed templates. In the other hand, another solution of semantic transferring
is proposed for improving the flexibility of generated sentence. A query database including
as many “video-description” pairs as possible is collected firstly, then the similar lan-
guage components for the query video are retrieved with visual retrieval technique and the
new description sentence is recomposed [51]. However, the method depends on the query
database too much, and when there are no similar query pairs, great deviations between the
generated sentence and the real video content may occur. Actually, the method based on
semantic transfer is a coarse granularity of semantic entity division, which leads to the great
limitation of the entities recombining, and then the quality of generated sentence will be
affected.

Afterwards, the framework of “encoding-decoding”, which is for machine translation,
is employed to generate sentence for video. The techniques in computer vision are usually
used to extract visual feature for encoding, while the RNN networks is frequently employed
to predict word one by one for decoding. This method divides semantic entities from smaller
granularity (word-level), and the accuracy of predicted word, richness of semantics and flex-
ibility of sentence pattern are all improved greatly. The deep learning offers another chance
to boost the performance of model for video description since more abstract and powerful
representation can be extracted. Nowadays, the framework of CNN+LSTM has been the
most popular selection for the task [5, 27, 28, 46]. For modeling more accurate relation
between visual region and language, the attention mechanism is introduced into the frame-
work, where the visual information is selectively fed to the next time step according to the
current prediction. This method reduces or even removes the unrelated or weakly related
visual information that restrain the accuracy of word prediction at each time step, improv-
ing the quality of the generated sentence [6, 12, 16]. On the other hand, the visual attributes
are also frequently collected from the references for different visual content that treated
as specific visual objects or entities, and the attributes are detected in the video firstly,
following the embedding of corresponding words in the sentence during decoding [29,
52]. Besides, the more effective memory unit such as Transformer is designed for paral-
lel optimization and long-term dependency, offering another solution for image and video
description [20, 44]

The methods mentioned above present effective attempts in the using of visual infor-
mation. However, little attention has been paid to the processing and application of visual
and language features. In this work, a double-channel language feature mining based video
description model is developed. In detail, a deeper transformation layer (which is abbre-
viated as DTL) is implemented on sequential network to filter of the visual and language
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features to enhance the abstract and representative ability, so as to improve the accuracy
and semantics of generated sentence. Furthermore, the sequential fusion method [41, 42] is
employed to further boost the accuracy of word prediction, in which the benchmark model
without deeper transformation layer and the model with the layer are incorporated and each
word is predicted according to outputs from the two models at each time step, enhancing
the robustness of the whole generating framework.

3 Proposed DC-LFMmodel

3.1 Motivation

Supposed that there are m frames in a video, and the frame sequence is denoted as
{f1, f2, · · · , fm}. And the feature sequence is {v1, v2, · · · , vm} after that the frame
sequence is transformed by a pre-trained CNN model. In current popular models such as
LSTM-YT [47], S2VT [46] and deep fusion [48], the architecture with two stacked LSTMs
is usually employed as the basis. In the pipeline, the CNN feature vt of the frame ft is firstly
given to the bottom LSTM as x1

t at the t time step in the S2VT model, and the output h1t of
the hidden state of the bottom LSTM is then fed to the top LSTM as the x2

t . When all the
frames are exhausted, the word feature wi of the ith word in a sentence with length l and the
hidden output from the bottom LSTM are both sent to the top LSTM at the m + i time step.

However, the output (hidden state) from the bottom LSTM layer is fed to the top LSTM
layer directly at each time step, which indicates that the top LSTM layer at current time
step is equivalent to state of the next time step of the bottom LSTM layer. As an example
in Fig. 2, LSTM2 1 in the top LSTM layer and LSTM1 2 in the bottom LSTM share the
same input which is from LSTM1 1. It indicates that the top LSTM is just an extension of
the time step and does not play a practical role in the model. For visual feature encoding,
the method may limit the power of the final visual representation since there lacks enough
linear and non-linear deep transformation. In the same way, during word prediction, the
output of hidden state is employed to send to a prediction layer (a fully connected layer)
directly, resulting in poor representation of language feature.

Facing the problem, a DTL layer is embedded between the two stacked LSTMs during
visual feature encoding, where the output of hidden state from bottom LSTM is fed to
the DTL directly, then the output of DTL is given to the top LSTM for further non-linear
transformation. The module is marked as DT-MV for simplicity. Regarding to the stage of
language modeling, the DTL in visual module is reserved since the two modules share the
same architecture actually, and another DTL is appended on the top LSTM layer to enhance

Fig. 2 The two stacked LSTMs architecture
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the language representation (the module is named DT-ML for simplicity). Additionally, for
mining richer language information, an extra LSTM is employed which just models the
language. Same as the above mentioned language modeling, another DTL component is
appended on the LSTM layer, and the output of the LSTM is fed to the DTL directly, then the
transformed feature from the DTL is employed as the extra language representation, instead
of the output from LSTM (the module is denoted by DT-LFM). The outputs of DT-ML and
DT-LFM are fused with element-wise product operation. Then the fused feature is given to
another DTL for further enhancing the abstractness of the final representation (where the
fusion model is marked as DT-DFM). However, in consideration of that more abstractness
may result in more details missing [40], the proposed DT-DFM and the model without any
DTL (denoted as B-DFM) are further integrated. In detail, the output probabilities DT-DFM
and B-DFM are fused by element-wise addition for word prediction at each time step.

3.2 Deeper transformation component of visual encoding

In most models such as deep fusion [48], the S2VT framework [46] is employed as the basis
and another branch for language feature mining is combined to supplement more language
information, improving the coherence and semantics of generated sentence. Additionally,
the model lowers the parameter scale of the modules for visual feature dimensionality reduc-
tion and language feature embedding respectively, enhancing the efficiency of the model.
In the pipeline, the CNN feature vt1 of the frame ft1 is firstly given to the bottom LSTM
as x1

t1 at the t1 time step in the S2VT model, and the output h1t1 of the hidden state of the
bottom LSTM is then fed to the top LSTM as the x2

t1. When all the frames are exhausted,
the word feature wt2 and the hidden output from the bottom LSTM are both sent to the top
LSTM at the t2(t2 > t1) time step.

In the whole procedure, there are no other extra linear or non-linear transformation func-
tion between the two LSTM layers, and the temporal feature from the bottom LSTM is fed
to the top LSTM directly. During extraction of visual motion feature, the output h11 from the
bottom LSTM is as x2

1 and given to the top LSTM for initializing its memory cell at the first
time step. While at the following time steps, the top LSTM continuously receives the out-
put of the bottom LSTM. Generally, the output h2t1 from the top LSTM at the t1 time step
is equivalent to the output h2(t1+1) of the bottom LSTM at the t1 + 1 time step. It indicates
that the top LSTM is just an extension of the time step and does not play a practical role in
the model.

In order to enhance the representative ability of sequence feature and make the visual
features for the following language model from the two LSTMs in different feature spaces,
a deeper transformation component for visual encoding is proposed and the architecture is
shown in Fig. 3. In detail, the output from the bottom LSTM is sent to a deeper transfor-
mation layer at each time step, and the sequence feature is then fed to the top LSTM after
non-linear transformation. In the bottom LSTM, the visual feature at the t1 time step is just
as h1t1 during forward propagation. And the visual motion feature vB contains more motion
details due to the fact that there is no extra linear and non-linear transformation layer, and
thus the feature has the more power ability of fine-grained representation for the actions,
scene transformations. But the generalization ability of the feature is not satisfactory. How-
ever, the feature space of the output x2

t1 from the DTL at the t1 time step in the top LSTM
has been transferred after non-linear transformation. Consequently, the final output vT pos-
sesses stronger generalization ability, though part of details may be lost. When all frames
are exhausted, the vB and vT will be fed into the language model as h1(m+1) and h2(m+1)
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Fig. 3 Deeper transformation component for visual encoding (DT-MV)

respectively at the subsequent m + 1 time step, making the model not only describe the
video in detail but also enrich the semantics of description on the whole.

Let W 1
dtl and B1

dtl denote the weight matrix and bias vector in DTL1 respectively, and
the input x2

t1 for the top LSTM at the t1 time step can be written as (x1
t1)

1:

x2
t1 =

⎡
⎢⎢⎢⎣

(x1
t1)

1

(x1
t1)

2

...
(x1

t1)
d

⎤
⎥⎥⎥⎦ = DTL1

(
W 1

dtlh
1
t1 + B1

dtl

)
. (1)

where the d is the number of hidden units in DTL1, and DTL1(·) is the transformation
function which includes the fully connected layer and non-linear activation layer. For sim-
plification, the module is denoted as DT-MV (Deeper Transformation based Model for
Visual encoding), which is for the motion feature encoding.

3.3 Deeper transformation component for language decoding

As presented in Fig. 4, the CNN feature sequence {v1, v2, · · · , vm} of the video is trans-
formed by DT-MV and the output is as the final visual representation and fed to the
decoding stage at the m + 1 time step. The “BoS” is the begin token of a sentence, and
{w1, w2, · · · , wn} is the embedding feature sequence of word in the sentence, where n is
the number of words and wi is usually obtained by “one-hot” method. During training, the
number of the time steps in the whole network (including visual motion encoding and lan-
guage decoding) is fixed (supposed that the number is ST ). The sum of the frames and
words are calculated before encoding and decoding in consideration of that the lengths of
different sentences may be different. If m + n + 1 ≤ ST (where the m + n + 1 time step is
for the end token of sentence), the CNN feature of all frames and embedding feature of all
words will take part in training; while if m + n + 1 > ST , the language feature should be
in consideration firstly and all of them will be fed into the network, and the rest time steps
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Fig. 4 Deeper transformation component for language decoding (DT-ML)

are left to the visual features due to their redundancy. At test time, the limitation for time
step will be removed because the length of the generated sentence is unknown, and thus the
feature of all frames will participate in the motion encoding in the network.

And the visual feature vB continues to be forward propagation in time steps at the bottom
LSTM layer. Meanwhile, the visual information is sent to the top LSTM according to the
existing memory. On the other hand, the output of the bottom LSTM will be given to the
top LSTM with the embedding feature for optimization of language model in traditional
models. Though the language feature will be transformed again by the top LSTM, the final
feature lacks powerful generalization ability as before caused by insufficient number of non-
linear transformations. In addition, extra visual noises may be introduced into the model
since there is visual information in the top LSTM, and then the accuracy of predicted words
will be reduced, as well as semantics of the final generated sentence.

In this work, the DTL1 layer is preserved during decoding stage. Meanwhile, a DTL2

layer is appended on the top LSTM, where the visual representation is incorporated with the
word embedding feature and fed to the DTL1 as multi-modal feature at each time step. In
this way, the multi-model feature is more abstract in that it is transformed again. Particularly,
the abstractness and representative ability of the language feature are both improved greatly
after filtering with the DTL1 layer. Besides, the visual noises are also filtered and suppressed
since the output of the top LSTM is given to another DTL rather than the final classification
layer for word prediction, improving the accuracy of word prediction and semantics of the
whole sentence. Similarly, the DTL2 is also employed to conduct re-transformation of the
multi-modal features for the final word decision and further enhancing the generalization
ability of the model.

For DTL1, the input is the multi-modal feature mr1m+t2 can be obtained by the concate-
nation operation of the hidden output h1m+t2 from the top LSTM and the word embedding
feature wt2 at the m + t2(1 ≤ t2 ≤ n + 1) time step. And the formula is:

mr1m+t2 = Con(h1m+t2, wt2), (2)

33200



Multimedia Tools and Applications (2020) 79:33193–33213

where the function Con(·) is for feature concatenation. While for mr2m+t2, it can be
calculated by

mr2m+t2 = DTL2(W 2
dtlh

2
m+t2 + B2

dtl), (3)

in whichW 2
dtl andB2

dtl stand for the weight matrix and bias vector respectively, and DTL2(·)
is the deeper transformation function. For simplification, the module is denoted as DT-ML
(Deeper Transformation based Model for Language decoding).

3.4 Language feature mining based on deeper transformation and deep fusion

In the module of DT-ML, the word embedding feature and visual representation are coop-
erated together for word prediction. The method bridges the visual content and language
and makes the language module find the corresponding word in its memory according to
visual information at each time step. However, extra visual noises may be introduced into
the model, and the word sequence and original structure may be destroyed in certain since
there is no independent sequential modeling of word feature. For reliving this limitation,
another single LSTM layer is specially developed to model the language in deep fusion
framework [48] and mine the latent language sequential feature. However, the word fea-
ture is just transformed with a single LSTM and has the similar trouble in DT-ML module,
limiting the representative ability of feature. On the other hand, if multi-layer LSTM net-
work is implemented, the parameters cannot be optimized sufficiently caused by gradient
dispersion.

The deeper transformation method is also employed to meet the above challenge in this
work. As shown in Fig. 5, the output at each time step is transformed and filtered again with
DTL′

lm rather than word prediction directly after the modeling of word feature in a LSTM
layer. At the m + t2 time step, the output lrm+t2 of DTL′

lm can be calculated by

lrm+t2 = DTL′
lm(Wlm

dtlh
lm
m+t2 + Blm

dtl), (4)

where Wlm
dtl and Blm

dtl represent the weight matrix and bias vector in DTL′
lm layer respec-

tively. For the convenience of presentation, the module is abbreviated as DT-LFM (Deeper
Transformation based Language Feature Mining module).

The DT-LFM is just for modeling the language, which makes the model more sensitive
to the internal structure and gets more accurate semantic information in sentences. But the
module is not directly used for candidate sentence generation. On the other side, although

Fig. 5 Deeper transformation based language feature mining module (DT-LFM)
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the DT-MV and DT-ML have the ability of sentence generation, the accuracy of word pick-
ing is unsatisfactory because of interference of the left visual information in DT-ML. Given
all that, the three modules including DT-MV, DT-ML and DT-LFM are incorporated subtly
to exploit their advantage and compensate each other. Also, another DTL is employed on
the top of the model to calculate the probability score at each time step for word prediction.

As presented in Fig. 6, the multiplication operation is employed when the three com-
ponents are combined, instead of the addition operation in traditional models like deep
fusion [48]. At the m + t2 time step, the outputs mr2m+t2 and lrm+t2 from DT-ML and DT-
LFM respectively are fused by element wise multiplication, and the output rfm+t2 can be
written as

rfm+t2 = mr2m+t2 ⊗ lrm+t2. (5)

Then the product is fed into DTLp to conduct feature filtering and calculate the probability
score for word decision. The module is marked as DT-DFM (Deeper Transformation based
Deep Fusion Module) for simplification.

3.5 Double-channel fusion based on language feature mining

The DTL is employed in all the three components including DT-MV, DT-ML and DT-LFM,
as well as the module DT-DFM, to enhance the abstractness of visual motion feature and
language feature, and boost the semantics of candidate sentence generated by the final DT-
DFM model. However, the more abstract of features actually indicates that more details
maybe lost in the process of more linear and non-linear transformations. In contrast, the
overall performance maybe limited in the model without multiple DTL (which is denoted
as B-DFM), but more details will be remembered and may superior to the DT-DFM on the
accuracy and appropriateness of word picking. Then the DT-DFM and B-DFM are incor-
porated to reconcile the contradiction. The sequence cooperative decision method [41, 42]
is employed to predict the word at each time step, where the output probabilities of the two
models are fused with weighted average.

As shown in Fig. 7, the output probability vector pt2 from DT-DFMt2 and the p′
t2 from

B-DFMt2 are fused by element wise weighted average at the m+ t2 time step, and the word
corresponding to the position of the maximum fusion probability is the final prediction for
the current time step.

where, for the fusion probability vector, the following formula is employed.

p
f

t2 = λ1pt2 + λ2p
′
t2, (6)

in which the λ1 and λ2 are the harmonic factors, and they conform the constrain of λ1 +
λ2 � 1. The fused model is denoted as DC-LFM (Double-Channel based Language Feature
Mining model) for convenience.

Fig. 6 Deeper transformation based deep fusion model
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Fig. 7 Double-Channel based language feature mining model (DC-LFM)

Let O denote the objective function of the whole model, and it can be written as

O = min
�

L((V , S);�), (7)

where L stands for the loss function, and � = (θmd, θbd) is the parameter set, in which θmd

and bd represent the parameter sub set of DT-DFM and B-DFM respectively. The V is the
CNN feature set of videos, while the S indicates the reference sentence set. The objective
of the whole model is to minimize the L according to the algorithm of back propagation
through time (BPTT) . At the kth iteration, the L can be calculated with

Lk = 1

N

N∑
i=1

|Si |∑
j=0

logp(wj+1|(E(Vi), w1:j ); �), (8)

in which the N is the number of samples in one iteration (batch size), and Si is the
length (number of words) of the reference sentence corresponding to the ith video. When
j = 0, the w0 denotes the token of beginning of sentence (“BoS”). The Vi stands for the
CNN feature sequence of the ith video, and the function E(·) represents the module of
DT-MV which is for visual motion encoding.

During training, the error signal from loss function L will be back propagated to DT-
DFM and B-DFM simultaneously for updating the parameter sets of md and bd . In this way,
the two modules will complement each other. The B-DFM can be optimized sufficiently by
more effective error signals though there are no extra DTLs since the gradients are computed
by both of B-DFM and DT-DFM. On the other side, the DT-DFM refers the visual and
language details from B-DFM. So the generated sentence not only concerns the details but
also semantics in the whole.

At test stage, the function of Softmax is employed to calculate the output probability
vectors of DT-DFM and B-DFM, then the fusion score vector is computed by (6) and the
corresponding word is picked for prediction. At the t2 time step, the formula for the fusion
probability (pr

t2)
(DT/B) that the rth word in the vocabulary belongs to the current state is

(pr
t2)

(DT/B) = exp((θr )
T C

DT/B
r )∑|V|

s=1 exp((θs)T C
DT/B
s )

, (9)

where the (θr )
T is the weight vector belonging to the rth hidden unit in classification layer,

and C
(DT/B)
r is the output of the unit in DT-DFM or B-DFM module, while the |V| is the

size (number of words) of vocabularyV. When the calculation of fusion probability vector is
completed, a dummy label corresponding the maximum score is mapped to the appropriate
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word in vocabulary and as the final predicted word at the current time step. Given that G(·)
is the mapping function, the formula for word selecting can be written as

wt2 = G(max(pf

t2) �→ V). (10)

Besides, the beam search algorithm which belongs to a heuristic search method is
employed to further improve the accuracy of word prediction and semantics of generated
sentence in this work.

4 Experiment

Multi group experiments are conducted to evaluate the effectiveness of the proposed model.
The experimental environment and configuration are introduced firstly in this section, as
well as the used datasets and evaluation metrics. Then the experimental results are presented
and the generated sentences are analyzed subjectively. Finally, the statistical results on a few
popular metrics are provided, indicating the effectiveness and superiority of the proposed
model.

4.1 Experimental setting

The popular deep learning framework Caffe [21] is employed to implement the benchmark
and our proposed model. To speed the convergence of the model, 2 NVIDIA TITAN X
GPUs are used for training and test. The CNN model is pre-trained firstly on ImageNet [35]
to prevent the model to stick to over fitting, and then the model is continue fine-tuned
on MSCOCO2014 [26] with LRCN framework [14] to make the model sensitive to the
sentence patterns and frequently used words. The jointly modeling strategy is employed
to avoid local optimum during fine-tuning of the model, where the visual deep model and
language model are optimized together. Afterwards, the visual feature model is taken out
separately to extract the CNN feature of video frame. In this work, GoogLeNet [39] and
ResNet152 [18] are used as the visual models, and the CNN feature from the last pooling
layers with the dimension of 1024 and 2048 respectively in the two models are as the visual
representation of the video frame. In order to achieve a good trade-off between redundancy
of video frames and sufficiency of visual content for video pre-processing, we follow the
practice in [46, 47]. Concretely, one frame is sampled every 10 frames (1 frame in every 10
frames) in each video. Then the sampled frames are fed to GoogLeNet or ResNet152 for
visual features and as the input for LSTM.

Three models are developed based on the deep fusion framework [48] in this work. In the
first place, the benchmark model (B-DFM) is implemented for comparison, and the settings
are similar to deep fusion, where the dimension of visual feature is reduced to 512 before
it is fed to LSTM network and the dimension of embedding feature of each word is set to
300. Secondly, the evaluation of proposed DT-DFM is conducted. The number of output in
every used DTL is set to the same as the output dimension of LSTM connected to it for
dimension consistency, which indicates that the number of output in each used DTL is 1024.
Finally, the DC-LFM which is consists of B-DFM and DT-DFM is implemented, where the
harmonic factor for fusion is empirically set to 0.5.

At the training stage, the number of time steps including visual motion feature encoding
and language decoding is fixed to 80 (ST = 80) since the number allows the model to fit
multiple videos in a single mini-batch and is helpful to speed up the whole training process
and convergence, which also follows the practice in [46, 47] actually. In the view of visual
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data redundancy, all the words in reference should be sent to LSTM, and the rest time
steps are for visual motion feature encoding. Suppose that the length of reference is sk , and
the number of the rest time steps is 80 − sk . Let lk be the number of video frames after
sampling, and when lk > 80 − sk , the frames exceeding the limit will be truncated. While
if lk < 80 − sk , the extra time steps will be fed with < pad >. At test time, the limitation
on time steps of LSTM is removed, which indicates that all frames will take part in visual
motion feature encoding and the following word prediction.

In the whole pipeline of model optimization, the frequently used stochastic gradient
descent method is employed to update parameters. The learning rate is initially set to
2 × 10−3, which will be reduced to 0.5 times every 40 K iterations in the following train-
ing. For Youtube2Text dataset [7, 17], the maximum of iteration is 200K, while the value
is set as 300K on MSR-VTT2016 dataset [55] due to its larger scale samples. The Dropout
is employed to prevent the model to fall into over fitting on the both datasets, and the drop
ratios are assigned to 0.5 and 0.3 according to our empirical observation. Besides, the beam
search algorithm is used to further improve performance, and the size of searching pool is
set to 5, following the practice in other popular works.

4.2 Evaluation dataset andmetric

Two popular public datasets including Youtube2Text and MSR-VTT2016 are employed to
evaluate the proposed model. As for Youtube2Text, there are 1,970 video clips and the cor-
responding reference sentences annotated by human. We follow the practice in S2VT [46],
where 1200 clips and references are as training set, and 670 video clip-reference pairs are
for testing. The rest pairs are for validation. Regarding to MSR-VTT2016 dataset, 10,010
video clips are contained, and each clip has 20 references. According to using protocol,
6,513 clip-reference pairs are for model optimizing, while 497 pairs are used to find hyper
parameters, and the rest pairs are used as test set. During training, the pairs in validation set
will be put back to the training set when the model converges, then the model is fine-tuned
on the new training set until iteration reaches to the convergence point. The vocabulary used
in deep fusion model [48] is employed in this work, and the size is 72,700.

Four metrics including BLEU [30], METEOR [4], ROUGE-L [25] and CIDEr [45] are
employed to conduct objective evaluation on the proposed model. For BLEU, the number of
n-Gram (n ∈ (1, 2, 3, 4)) matches between references and candidate sentences is counted,
then the ratio of the number and the counts of n-Gram in candidate sentences is calculated.
Generally speaking, the higher the ratio, the higher quality of generated sentences. As for
METEOR metric, the maximum of matches is computed firstly according to exactly match,
synonymous match and word-stem match of the words in references and candidate sen-
tences. Afterwards, the match with the least number of intersections in the two matches in
order is selected to generate match set. Then, the ratio between size of the set and num-
ber of words in references is computed as recall rate, meanwhile the ratio between size of
the set and number of words in candidate sentences is as precision rate. Finally, the har-
monic mean value is calculated as the score. Different fromMETEOR, the longest common
subsequence is employed to calculate the recall and precision in ROUGE-L. In contrast,
inspired by “consensus” concept, different n-Gram tuples are assigned different weights to
mark their significance in CIDEr metric. And the matching degree between references and
candidate sentences is measured according to cosine distance. In addition, a few examples
generated by our proposed model are presented in this work for subjective evaluation. The
advantage and limitation of our model are discussed and analyzed in the way of providing
comparison of references and generated sentences.
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4.3 Experimental result and discussion

A number of generated sentences are in exhibition firstly in this section to demonstrate the
superiority of the proposed model according to comparison with the real visual content,
reference and generated sentences by the benchmark model. Then the performance of the
proposed model on different metrics with different CNN feature is presented. Finally, the
comparison with other popular models is also shown and analyzed.

4.3.1 Example and discussion

As shown in Fig. 8, a few examples from Youtube2Text dataset including the video clip-
reference pairs, generated sentences with benchmark model (which is denoted as “B”) and
proposed DC-LFM model (which is denoted as “P”) are in exhibition. From the intuitive

Fig. 8 Examples of the reference (from Youtube2Text dataset), generated sentence with benchmark model
and the proposed DC-LFM model (with ResNet152 feature)
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Table 1 Performance of the
proposed model on Youtube2Text
dataset (with GoogLeNet feature)

Model B1 B2 B3 B4 METEOR ROUGE-L CIDEr

B-DFM 77.4 64.4 53.4 42.5 31.2 67.5 62.1

DT-DFM 75.8 63.4 53.2 42.8 31.6 66.8 66.7

DC-LFM 77.9 65.6 55.2 44.7 31.6 68.4 66.1

observation, the generated sentences with DC-LFM are more accurate and decent than that
with the benchmark model in that there are more deviations in the sentences compared to the
visual content. For instance, the “kicking” is used as predicate in Fig. 8a, but it is obviously
inappropriate for the object (“basketball”). In contrast, the verb of “playing” is picked with
DC-LFM. And in Fig. 8b, the predicate (“swimming”) and object (“pool”) are predicted
accurately with the benchmark model. However, the model provides false subject. Compar-
atively, the DC-LFMmodel describes the video content exactly and completely. In addition,
the generated sentences from DC-LFM are more comprehensive and richer semantics. As
an example in Fig. 8e, the DC-LFM well describes not only the action (“adding”) of the
subject, but also the object (“ingredients”) and whereabouts (“bowl”).

In comparison to reference sentences (which are denoted as “Ref”), it can be observed
that several generated sentences with DC-LFM are more detailed description and accurate.
However, partial visual objects cannot be predicted correctly with the proposed model. For
example, the action (“riding”) of subject and object (“bicycle”) are not detected in Fig. 8c.
Besides, compared with references, the generated sentences are not flexible enough in sen-
tence pattern and word using. The possible reason is that the insufficient training samples
lead to the model sticking to over fitting. On the other side, lots of visual details maybe lost
due to multiple linear and non-linear transformations in CNN and LSTM models, resulting
in the loss of certain flexibility in the sentences though generalization ability is improved of
the model.

4.3.2 Statistical result and analysis

The performances of B-DFM, DT-DFM and DC-LFM on Youtube2Text and MSR-
VTT2016 datasets with GoogLeNet and ResNet152 features are presented in this section.
The performance on each metric is shown in Table 1 on Youtube2Text with GoogLeNet
feature. It is obvious that the performances on B4, METEOR and particularly CIDEr are all
improved when DTL is appended on the benchmark model. However, the B1, B2 and B3
are decreased a little. It indicates that the added DTL makes the feature more abstract and
generated sentences possess richer semantics, but yields to the accuracy of word prediction
since the added non-linear transformation may lead to the loss of a few details. And when
the DC-LFM is employed, the performances on all metrics but CIDEr are improved greatly.
It shows that the B-DFM and DT-DFM can complement each other and better the semantics
and coherence of generated sentences.

Table 2 Performance of the
proposed model on Youtube2Text
dataset (with ResNet152 feature)

Model B1 B2 B3 B4 METEOR ROUGE-L CIDEr

B-DFM 80.6 68.9 59.0 48.5 33.7 70.7 77.3

DT-DFM 78.9 67.1 56.9 46.4 34.0 70.0 79.8

DC-LFM 80.9 69.7 60.0 49.8 34.8 71.3 82.5
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Table 3 Performance of the
proposed model on
MSR-VTT2016 dataset (with
GoogLeNet feature)

Model B1 B2 B3 B4 METEOR ROUGE-L CIDEr

B-DFM 76.5 61.6 48.2 36.8 26.3 58.2 39.6

DT-DFM 76.1 61.5 48.2 37.0 26.7 57.9 40.1

DC-LFM 76.4 61.9 48.6 37.3 26.7 58.5 40.7

Similarly, when ResNet152 feature is used, the performances on METEOR and CIDEr
are both improved with DT-DFM (as shown in Table 2), but the BLEU and ROUGE-L
are decreased. However, the performances on all metrics are improved when B-DFM and
DT-DFM are fused, particularly, the CIDEr reaches to 82.5.

On MSR-VTT2016 dataset, the performance of each model on each metric is similar
to that on Youtube2Text (Tables 3 and 4). DT-DFM possesses better performance on B4,
METEOR and CIDEr than B-DFM, but worse on B1, B2 and ROUGE-L. While the DC-
LFM overcomes the limitation and takes advantage of the merits of B-DFM and DT-DFM,
boosting performance on all metrics. When performance comparison is conducted with
different CNN features, DT-DFM model with ResNet152 feature achieves better perfor-
mance on BLEU and ROUGE-L metrics than B-DFM but yields to that on CIDEr which
usually reflects semantics. The trend is different to that the performance on Youtube2Text
dataset with ResNet152 and GoogLeNet features. It probably because the MSR-VTT2016
is more clean and has less visual and language noises. The more abstract CNN feature from
ResNet152 may lead to certain over fitting when multiple DTL is added on B-DFM. And
thus generalization ability of the model is reduced, affecting the semantics of generated
sentences. However, the performance of DC-LFM is not limited since the two models of B-
DFM and DT-DFM form information complementary, and both of coherence and semantics
are effectively enhanced.

In Tables 5 and 6, the performance comparison to the other state-of-the art models is
provided. It can be seen that the performance of DC-LFM (with ResNet152) outperforms
most of current methods on various metrics on Youtube2Text dataset, particularly it exceeds
the most popular C3D fc7+pool4 model [31] by 11.5 on CIDEr. Additionally, the proposed
model reaches to the almost the similar performance compared to the h-RNN model [58]
on BLEU, and outperforms the C3D fc7+pool4 by 1.6. It proofs that the generated sen-
tences with DC-LFM possess richer semantics and more accuracy, as well as the narrow
semantic gap compared to references. Besides, competitive results are also obtained with
DC-LFM compared to other popular models on MSR-VTT2016. On the whole, the gener-
ated sentences with DC-LFM give consideration to both coherence and semantics. However,
the advantage is not obvious compared with other models on MSR-VTT2016. One of the
most reason is that multi-modal information including visual content, voice is integrated
employed to boost model performance. As an example, the information scores of vision,

Table 4 Performance of the
proposed model on
MSR-VTT2016 dataset (with
ResNet152 feature)

Model B1 B2 B3 B4 METEOR ROUGE-L CIDEr

B-DFM 78.2 63.8 50.2 38.5 27.4 59.5 44.6

DT-DFM 78.5 64.8 51.4 39.4 27.4 59.6 43.7

DC-LFM 79.4 65.8 52.5 40.4 27.8 60.5 45.9
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Table 5 Performance comparison with the state-of-the-art methods on Youtube2Text dataset

Method B1 B2 B3 B4 METEOR CIDEr

FGM [43] – – – 13.7 23.9 –

LSTM-YT [47] – – – 33.3 29.1 –

S2VT [46] – – – – 29.8 –

MM-VDN [54] – – – 37.6 29.0 –

HRNE [27] 79.2 66.3 55.1 43.8 33.1 –

SA [57] 80.0 64.7 52.6 41.9 29.6 51.7

LSTM-E [28] 78.8 66.0 55.4 45.3 31.0 –

Boundary-aware encoder [5] – – – 42.5 32.4 63.5

GRU-RCN [3] – – – 43.3 31.6 67.8

h-RNN [58] 81.5 70.4 60.4 49.9 32.6 65.8

C3D fc7+pool4 [31] – – – 48.2 34.5 71.0

LSTM-GAN [56] – – – 42.9 30.4 –

Li et al. [24] – – – 48.0 31.6 68.8

RecNetlocal(SA-LSTM) [49] – – – 52.3 34.1 80.3

MS-RNN(R) [38] 82.9 72.6 63.5 53.3 33.8 74.8

TDConvED(R) [11] – – – 53.3 33.8 76.4

GRU-EVEhf t+sem(CI) [1] – – – 47.9 35.0 78.1

DC-LFM(GoogLeNet) 77.9 65.6 55.2 44.7 31.6 66.1

DC-LFM(ResNet152) 80.9 69.7 60.0 49.8 34.8 82.5

voice, auditory and tuple are fused together to capture richer video representation in v2t
navigator model [22]. While just the visual content is used in our work in consideration of
pair comparison.

Table 6 Performance
comparison with the
state-of-the-art methods on
MSR-VTT2016 dataset

Method B4 METEOR ROUGE-L CIDEr

ReBiLSTM [5] 33.9 26.2 – –

LSTM-GAN (attention) [56] 36.0 26.1 – –

Li et al. [24] 37.5 26.4 – –

aLSTMs [16] 38.0 26.1 – –

M3-IC [50] 38.1 26.6 – –

MS-RNN(R) [38] 39.8 26.1 59.3 40.9

RecNetlocal (SA-LSTM) [49] 39.1 26.6 59.3 42.7

ruc-uva [15] 38.7 26.9 58.7 45.9

VideoLAB [33] 39.1 27.7 60.6 44.1

Aalto [37] 39.8 26.9 59.8 45.7

v2t navigator [22] 40.8 28.2 60.9 44.8

PickNet(V+L+C) [10] 41.3 27.7 – 44.1

TDConvED(R) [11] 39.5 27.5 – 42.8

GRU-EVEhf t+sem (CI) [1] 38.3 28.4 – 48.1

DC-LFM (GoogLeNet) 37.3 26.7 58.5 40.7

DC-LFM (ResNet152) 40.4 27.8 60.5 45.9
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Table 7 The average time
cost (ms) for each video
captioning of the baseline
model (B-DFM) and the
proposed models (DT-DFM and
DC-LFM) with ResNet152
feature

Model Time consuming (ms)

B-DFM 57.81

DT-DFM 53.23

DC-LFM 101.78

4.3.3 Time cost of different models and analysis

Ablation study about the time cost of different models is conducted. For practice details,
the models including B-DFM, DT-DFM and DC-LFM are tested on Youtube2Text dataset,
and the running time of all sentences generated (670) are recorded. Then the average time
consuming is as the cost for each video. The results with ResNet152 feature and GoogLeNet
feature are as shown in Tables 7 and 8 respectively.

From the comparison, it can be observed that the DT-DFM consumes the least time no
matter with ResNet152 feature or GoogLeNet feature. The reason is that the element-wise
product operation saves more time compared to the concatenation operation in B-DFM
though more layers (DTL) are appended on DT-DFM model. For DC-LFM model, the time
cost is relative expensive, with exceeding both the other two models. However, the DC-LFM
consists of B-DFM and DT-DFM, and the time consuming is still lower than the sum of the
other two models regardless ResNet152 feature or GoogLeNet feature is employed.

5 Conclusion

Describing a video with natural language is interesting but challenging since the task
involves not only computer vision but also natural language processing. The breakthrough
of deep learning offers an opportunity to boost generated sentence quality, in particularly
the framework of CNN+LSTM is the most popular solution for video description. However,
the current works usually focus on refinement of visual content by constructing more rea-
sonable mapping relationship between visual information and language to further improve
performance, and the abstraction and representative ability of motion and language fea-
tures are always ignored, leading to that the potentiality is not fully explored. In this work,
deeper transformation layers are appended on both visual motion encoding stage and lan-
guage modeling stage to deepen the model and enhance representative ability of visual and
language features. Besides, the sequential cooperative decision method is applied on our
proposed model to improve robustness. The relatively shallow B-LFM and the proposed
deeper DT-LFM are incorporated into DC-LFM to predict the word collaboratively at each
time step. Experimental results on Youtube2Text and MSR-VTT2016 demonstrate that the
proposed model is more effective compared to not only the benchmark model but also the
state-of-the-art methods. In the future work, the proposed method will be further improved

Table 8 The average time
cost (ms) for each video
captioning of the baseline
model (B-DFM) and the
proposed models (DT-DFM and
DC-LFM) with GoogLeNet
feature

Model Time consuming (ms)

B-DFM 57.81

DT-DFM 53.23

DC-LFM 101.78
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and implemented on other advanced frameworks such as DenseVidCap [36]. Also, the pro-
posed idea will be further extended and applied on a few other interesting multimedia tasks
including data exchange [53], image segmentation [2, 59], object detection [32, 34] and
image dehaze [60].
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