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Abstract
Indoor object detection in real scene presents a challenging computer vision task; it is also a
key component of an ICT autonomous displacement assistance of Visually Impaired People
(VIP). To handle this challenge, a DCNN (Deep Convolutional Neural Networks) for indoor
object detection and a new indoor dataset are proposed. The novel DCNN design is based on
a pre-trained DCNN called YOLO v3. In order to train and test the proposed DCNN, a new
dataset for indoor objects was created. The images of the new dataset present large variety of
objects, of indoor illuminations and of indoor architectural structures potentially unsafe for a
VIP independent mobility. The dataset contains about 8000 images and presents 16 indoor
object categories. Experimental results prove the high performance of the proposed indoor
object detection as its recognition rate (a mean average precision) is 73,19%.

Keywords Indoor object detection and recognition . Deep convolutional neural networks
(DCNN) . Visually impaired people (VIP) mobility . Indoor navigation

1 Introduction

Indoor object detection and indoor scene understanding are basic tasks for many applications
including autonomous robot navigation [48] and mobility assistive devices for people with
visual impairments (VIP) [17].
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For independent mobility, the VIPs need to perceive relevant objects of their nearest space.
As the VIPs are not able to see landmarks or such (indoor) objects, an assistive device must
indicate their presence.

Indoor objects’ perception in real indoor scene is a challenging task as many complex
problems such as background complexity, occlusions, viewpoint changes, etc. should be taken
into account. To address this problem, a fully labeled indoor object dataset was elaborated with
a goal of their detection. This dataset consists of 8000 indoor images containing 16 different
and the most frequent indoor landmark objects and classes.

Moreover, the robotic and human navigation assistance requires a real-time processing. A
Deep Convolutional Neural Networks (DCNN) may be a solution to achieve such temporal
performance.

Deep CNN combines two concepts: Deep Learning and Convolutional Neural Networks.
Such combination integrates millions of values of parameters which underlay the acquired
images presentation, parameters which are relevant to perform a specific task and which are
taken into account during the training phase.

Furthermore, DCNN exhibits big difference from other traditional approaches for object
detection. Indeed, a DCNN models use powerful adhoc objects’ representations by providing
good features extraction process in each layer of the network.

The great particularity of Deep Learning models is the hierarchical representation of
features. This means that features computed in intermediate layers can be reused in different
applications and tasks, while features found by the last layers are specific and a function of the
targeted application and the dataset are used. The convolution part of a DCNN (layers closer to
the input layers) refers to general features, while the classification part (layers closer to the
outputs) refers to specific features.

Deep learning models can be divided into two principal parts: region proposal-based
models (such as R-CNN [15], Fast R-CNN [16], Faster R-CNN [43] and Mask R-CNN
[19]) and proposal-free methods (such as YOLO [42], YOLO 9000 [41], and YOLOv3
[40], and SSD [35]).

The efficiency and the accuracy of object detection with the deep learning models is that
DCNN extracts per-pixel features through a large number of images during the training
process, although deep structures CNN models ensure a good extraction of the most relevant
image features.

State-of-the-art models of deep learning widely rely on large-scale dataset such as
ImageNet [9], MS COCO [33], PASCAL VOC 2007 [13], and VOC 2012 [14], and all of
them generally fail in the indoor object detection; indeed, listed images’ datasets present
complex scenes. However, despite of the variety of backgrounds, multiple indoor objects,
multiple positions, different scales, etc. the considered objects are samples of classic situations
and do not consider specific needs of visually impaired people (VIP).

This paper proposes a new fully labeled dataset for indoor object detection and recognition,
and relevant to VIP mobility. The originality of the proposed dataset comes from the inclusion
of new characteristics of a 3D scene not considered so far, and relevant to VIP mobility. Such
new training data will robustify the object recognition and may be used in any (assistive)
navigation system. This paper presents the first approach evaluating YOLOv3 architecture on
indoor object detection. Our aim from this work is to provide the Visually impaired person
with a robust indoor object detection system to help them to more explore and interact with
their surrounding environments and to more integrate in the daily life. Our proposed work
achieved very encouraging results in term of detection accuracy and speed which meet the VIP
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mobility requirements. Also, the proposed work achieved high detection performances in
challenging conditions as: extreme lighting conditions, heavy occlusion, high intra and inter-
class variation.

The remainder of the paper is organized as follows: Section 2 reviews related works on
indoor object detection. Section 3 presents the proposed multi-class indoor object detection
and recognition dataset. In Section 4, the proposed approach for indoor objects detection based
on a pre-trained DCNN is presented. Section 5 outlines the experimental evaluation of the
proposed approach and discusses the obtained results. Finally, Section 6 concludes the paper
and proposes further extensions of the work.

2 Indoor object recognition: related works

Many researchers and academics show their big interest in real time indoor object detection.
The challenge is to detect correctly and accurately the object in an image or in a video.
Generally, the indoor environments are different from the outdoor scenery. Indoor scenery is
composed generally of a wide range of background elements and different interior decorations.

Since the appearance of RGB-D sensors, such as Kinect cameras, that provide not only
image color but also depth information, many works based on RGB-D sensors have been used
to guide the robot indoor navigation [25]. However, the detection becomes very challenging
when it is used for recognition of specific objects or unknown obstacles in unfamiliar natural
environments [20].

Frequently, depth sensors have been widely used for object detection and recognition
during the simultaneous localization and mapping (SLAM). Chae et al. [6] introduced a
framework for indoor object recognition for SLAM in indoor scenery.

Many others classic works rely on indoor objects detection based on machine learning
techniques [30, 37]. However, this category of methods usually contributes to some complex
pipeline design which make them highly depended on computational resources and of a very
high computational cost; the real-time constraint is usually not met.

During the last few years, DCNN models have gained a great attention in many computer
visions tasks. This approach has been used for indoor object recognition [10, 11], for indoor
object segmentation [8, 44], detection tasks [46], internet of things (IoT) [31] grasping force
prediction [36] and authentication systems [24, 32]. In order to enhance indoor object
detection, it is necessary to build and create new reliable classification and detection systems.
Kim et al. [27] trained a deep CNN model, ConvNet that will be used for autonomous indoor
navigation of robots. Another work based on DCNN models, which focuses on objects’
prediction knowing their poses (and named PoseNet), was introduced by Kendall et al. [26].
This model combines the strengths of DCNN models with SLAM techniques, with the respect
of a hard-real-time constraint.

Chen et al. [7] presented a new visual indoor positioning system based on CNN models. To
better address the problem of indoor positioning, authors proposed a localization method
which consists of features extraction using DCNN and pose estimation.

Sho et al. [45] proposed an indoor positioning deep learning-based system in order to
satisfy the increasing demand for these types of systems. Authors adopted DCNN to imple-
ment their orientation-free positioning system. Their hybrid system is based on a location part
with wifi and fingerprint images; a CNN is used to classify locations.
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After many years of research in the field of deep neural networks, DCNNs still present the
best choice for many computer vision problems. DCNN are widely used for indoor scene
recognition [34]. To design their scene classification system authors used ResNet with all its
versions (Renet-50, ResNet-101, ResNet-152) [18], datasets ImageNet 11 K [29] and places
365 [49] for training. Bashiri et al. [3] developed a detection system dedicated to detect three
objects (doors, stairs and sign) using deep learning method. Their construction of an appro-
priate representation of a specific environment still presents a challenging issue in the robotic
field. Escalona et al. [12] present a 3D object detection system based on RGB-D cameras.
They used the semantic labeling image concept which is very suitable for human-robot
interaction as it facilitates the interaction of the robot with the surrounding environment.

Over the last few years, data-driven DCNN outperform the classic approaches. Many
indoor object detection approaches was proposed. However, none of them is suitable for
independent mobility of VIP. The next section presents a novel efficient indoor objects
detection approach based on a DCNN model. In addition, a new dataset was created to train
and test the proposed detection system.

3 Proposed multi-class indoor object detection and recognition dataset
(IODR)

Several indoor object datasets were proposed in the literature. Bachiri et al. [4] proposed a new
indoor dataset used for indoor object classification presenting 20,000 indoor images and
containing 3 indoor classes (door, sign, stairs). Quattoni et al. [39] proposed a new dataset
used specially to deal with indoor scene recognition problems. This dataset presents 15,620
images with 67 indoor scene categories. Xiao et al. [47] proposed an extensive database named
“Scene UNderstanding” (SUN) containing 899 scene categories with over 130,519 images, it
is especially used for scene understanding. Their dataset present various categories such as
indoor urban and nature’s categories. Indoor datasets used to solve indoor object detection
problems, are constrained by the indoor dataset present that do not capture a variety of indoor
objects while covering the challenging situations as luminosity invariance, occlusion and
various objects positions. For this fact, we will collect and fully label an indoor object dataset
that will cover various challenging situations to be used in a second time to test and train the
proposed indoor object detection system.

The Multi-class Indoor Object Detection and Recognition (IODR) Dataset presents a new
fully labeled indoor object dataset [1]. This fully annotated dataset (§3.1) can be highly
recommended for training and testing different DCNN models (§3.2) while prototyping a
new indoor navigation assistance system.

3.1 Data preparation and annotation

The biggest challenge is to provide to VIPs the relevant information on their indoor navigation
environment. Some images of the proposed dataset are collected from the NAVIIS project
[21]; new indoor images contain vital indoor objects for VIP mobility (identified with the VIP)
with different lighting conditions and complex backgrounds. The dataset was labeled using
LabelImg software [22]. The new original dataset encompasses 8000 indoor annotated images
where 16 indoor object classes are considered.
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Figure 1 presents an example of the proposed annotation process via labelImg tool: objects
are delimited by their rectangular bounding box (with their coordinates in image defined in
video streaming modes).

The proposed dataset is composed of many categories of indoor objects. It contains 8000
indoor images captured, which present different lighting conditions, to obtain a very robust
(scene illumination invariant) dataset. Two resolutions are present in the dataset:1616 × 1232
and 4592 × 3448.

The collected dataset contains 16 main landmark objects that are usually present in any
indoor scene especially in corridors. They are: doors, light switches, smoke detector, chair, fire
extinguisher, sign, window, heating, electricity box, stairs, table, security button, trash can,
elevator and notice table. All images are in the .jpg format.

The proposed dataset provides various characteristics important for the VIP mobility, it is
original in term of:

– Light invariance: objects are taken under different lighting conditions (day, night,
blurred).

– Geometrical change invariance: the objects are taken under different angles and poses.
– Objects provided in in the proposed dataset are vital for VIP indoor mobility.
– Occlusion: parts of the objects are hidden or overlapped by other objects.
– Highlighting the presence of dangerous situations to ensure a safe mobility for the VIP

person as the downstairs.
– The proposed dataset is very suitable to develop new robust indoor object detection

systems.
– High inter and intra-class variation.

Figure 2 illustrates the wide intra-class variation between doors in the proposed dataset. Doors
present many shapes, many poses, many colors, different textures). Annotations were done on
different doors poses, their status (opened or closed), the material used is under different
textures (wood, glass, iron). The biggest strength of the proposed dataset is that it provides
many challenging conditions in order to perform a robust training to deal with different indoor
environments belonging to various buildings and to be relevant to VIP mobility.

Fig. 1 LabelImg annotation example: .jpg image (left picture) and its annotated equivalent (bbox) (right picture)
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In contrast to the exiting indoor datasets, the proposed dataset provides many challenging
conditions taken into account as: heavy occlusions, different lighting conditions, complex
background, etc.… in order to increase the robustness of the indoor object detector. Also, the
proposed dataset provides a high inter and intra-class variation to build an accurate detector.
The proposed dataset is highly recommended for multi-objects problems as it provides various
indoor object classes.

3.2 Training and testing subsets

After the selected dataset annotation, training and testing configurations must be prepared. The
dataset was divided into train and test sets. For the training set, 66% of the dataset was reserved
and the rest was used as testing set. The proposed dataset contains 16 indoor object classes.
Table 1 presents all the indoor object classes with all classes’ names and IDs to ensure a better
scene understanding of the indoor images. The original images included in the dataset are
selected with respect to two main issues of VIP mobility: firstly, providing the most relevant
indoor objects and landmarks, and secondly, providing a good annotation to better understand
the indoor scene.

4 Proposed architecture for indoor object detection

Deep learning models have proved their big performances in the computer vision area in
particular for object detection tasks. Precise and fast indoor object detection and recognition, in

Fig. 2 Doors intra-class variation

Table 1 Indoor object class names and IDs present in the collected indoor dataset

Class 

Name

Window notice table elevator Door electricity 

box

sign light trash can

Class

ID

0 1 2 3 4 5 6 7

Class 

image

Class 

Name

Stairs security 

button

table smoke 

detector

heating fire 

extinguisher

light switch Chair

Class 

ID

8 9 10 11 12 13 14 15

Class 

image
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images and videos, is a very important task as it supports the VIP understanding and
interaction with the external world.

YOLOv3presents the best compromise between speed and accuracy for object detection
[40], and makes YOLOv3 the best choice for this type of applications especially indoor
navigation assistance to visually impaired persons. Indoor assistance navigation systems
require (fast) real-time object detection as well as the high accuracy of the detection as the
secure displacements should be targeted.

As the classic DCNN training requires a long time, the proposed system will use the
transfer DCNN learning training technique [38] which uses less data. Indeed, transfer learning,
a fast component in artificial intelligence and especially in deep learning field, is usually
expanding in using deep CNN pretrained models.

This section provides an overview of the Darknet-53 used by YOLO v3 as a feature
extractor (§ 4.1) followed by details of the proposed architecture which is used for indoor
object detection (§ 4.2).

4.1 YOLO V3 backbone: Darknet-53

YOLO v3 presents a custom fully convolutional neural network named “Darknet-53” [40]. It
makes use of residual blocks, of connections’ skipping and of up-sampling and allows to
detect fine-grained features in images. Darknet-53 originally presents 53 convolution layers
trained on ImageNet [9]. Darknet-53 is mainly composed of 3 × 3 and 1 × 1 convolution layers

Table 2 Darknet-53 Architecture contents

Type Filter size Stride Output size

Convolution 32 3 × 3 1 256 × 256
Convolution 64 3 × 3 2 128 × 128

1 x
Convolution
Convolution

Stride

32 1 × 1
64 3 × 3

1
1

128 × 128

Convolution 128 3 × 3 2 64 × 64
2 x

Convolution
Convolution

Stride

64 1 × 1
128 3 × 3

1
1

64 × 64

Convolution 256 3 × 3 2 32 × 32
8 x

Convolution
Convolution

Stride

128 1 × 1
256 3 × 3

1
1

32 × 32

Convolution 512 3 × 3 2 16 × 16
8 x

Convolution
Convolution

Stride

256 1 × 1
512 3 × 3

1
1

16 × 16

Convolution 1024 3 × 3 2 8 × 8
4 x

Convolution
Convolution

Stride

512 1 × 1
1024 3 × 3

1
1

8 × 8
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with skip-connections. Table 2 lists all processing layers of the Darknet-53, while Fig. 3
outlines the architecture of its residual blocks.

First, the top of the network uses a convolution layer with a 3 × 3 kernel size. It down-
samples image size by using the strided convolution instead of using pooling layers. As
mentioned in [2] using the strided convolution instead of pooling is more efficient in term
of memory and temporal performances.

Darknet-53 deploys also a set of residual blocks where each block is composed of 3 × 3 and
1 × 1 convolution layers. Table 3 provides a comparison of performance of Darknet-53 and
ResNet [18] in term of accuracy and BFLOP occupancy.

From Table 3 it can be easily found that the Darknet-53 implementation is more efficient
than that of ResNet-152 [18] as it achieves 1457 BFLOP per second which makes it two times
faster than ResNet-152 with the same accuracy.

4.2 YOLOv3 for object detection

YOLOv3 [40] is the 3rd version of the YOLO family [41, 42]. This version shows many
temporal and accuracy improvements. YOLOv3 adopts an architecture based on two consec-
utive powerful Darknet-53 convolution layers whatleadsto106 convolution layers. Generally,
the YOLO family models solve the detection problem as a regression problem.

Usually, objects in the images are of different size: small, medium and big (based on the
object’s size when compared to the image size). For indoor object detection it is important to
detect all objects whatever is the object’s size.

YOLOv3 [40] shows a better ability in detecting multi-scales objects. Indeed, the YOLOv3
adopted Features Pyramid Network (FPN-like) structures to detect objects with different
scales. FPN algorithm encompasses two data movements: a bottom-up and atop-down(cf.
Fig. 4).In bottom-up movement (image down sampling by 2) the semantic information (object
characteristics) increases but the precision of their localization decreases; in top-down move-
ment image up-sampling allows to increase the accuracy of the localization (using the
information provided by the additional lateral connections and generated in bottom-up
movement).

To perform the feature detection, the input image is subdivided into a grid of detection cells.

Fig. 3 Residual block architecture
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The multi-scale detection algorithm (top-down data movement) implements the following
three steps (cf. Fig. 5):

– Step 1 (big object detection): Prediction (localization) of the features of big objects using
the last feature map (of the top layer)

– Step 2 (medium object detection): merging the two corresponding feature maps of the
same size (one generated in bottom-up movement with the one which is up-sampled by 2
and generated in the top-down data movement); Convolution to the merged feature map
and prediction of the feature localizations for the objects of medium size.

– Step 3 (small object detection): up-sampling by 2 of the features maps of the convolution
layer in step 2; concatenation of the feature maps of two ad hoc layers: one generated in
bottom-up with the up-sampled map generated in top-down movement; convolution of the
resulting feature map and prediction of small size objects’ locations.

The prediction of an object localization (bounding box, localization) is performed by a
convolution layer with the grid of a shape of 1 × 1 (B x (4 + 1 + C)) where 1 × 1 is the
convolution layer, B is the number of rectangular bboxes that can be detected,“4” refers to
the bbox attributes (tx,ty,tw,th), “1” is the object confidence for each grid cell and C presents
the number of classes. In the proposed approach, 3 boxes for each grid cell and 16 indoor
classes are used. Therefore, an output shape of 1 × 1 (3 × 5 + 16). Where 1 × 1 is the convo-
lution layer, 3 is the small, medium and big object sizes, 5 refers to the four bbox attributes
plus 1 as object confidence score and 16 is the number of object class.

For each extracted bbox YOLO v3attributes the objectness scores. The objectness score
quantifies how likely an image window encompasses an object. The objectness score may be

Table 3 Performance comparison of Darknet-53 &ResNet backbones [40]

Backbone Top-1Accuracy (%) Top-51Accuracy (%) Bn Ops BFLOP/s FPS

ResNet-101[18] 77.1 93.7 19.7 1039 53
ResNet-152[18] 77.6 93.8 29.4 1090 37
Darknet-53 [40] 77.2 93.8 18.7 1457 78

Fig. 4 FPN- like Structure used in YOLOv3 architecture [40]
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calculated using the independent logistic classifier; the usage of such classifier reduces the
computation complexity of the processing.

A bbox is characterized by 4 coordinates (tx,ty,tw,th)(cf. Fig. 6) which should be predicted:
(tx,ty) are the image coordinates of the center of the bbox; tw (resp. th) is width (resp. height)
offset from the bbox center. Assuming (cx,cy) are the top left corner coordinates of a grid cell in
a features map, the final predicted bbox parameters are bx,by,bh,bw which are obtained by using
the following equations:

bx ¼ σ txð Þ þ cx
by ¼ σ ty

� �þ y
bw ¼ pwe

t
w

bh ¼ phe
t
h

Where:

Fig. 5 YOLOv3 model simplified Architecture [23]
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– pw, ph are the anchor coordinates of the bbox’ top-left corner (in a cell; 5 bbox can be
predicted at each cell of the output feature map);

– σ is the sigmoid function σ(x) = 1/(1 + e−x).

Since YOLO v 3 makes predictions at 3 different scales, and for each scale we have 3 or
5anchors it results in the use of 9 different anchor sizes.

For example, for an input image of 416 × 416 YOLOv3 predicts in 3 scales ((52 × 52) +
(26 × 26) + (13 × 13)) × 3 = 10,647 bboxes. This number is large. To reduce it:

– first bboxes are filtered considering the objectness scores (with a specific threshold);
– Secondly, the non-maximum (compared to the ground truth) are delayed (NMS).

5 Experiments and results

Indoor environment assistance navigation requires real-time object detection as well as height
detection. Good accuracy and better speed (comparing to other DCNN models) makes
YOLOv3 the best choice for real-time object detection for mobility assistive device design.
This paper takes a step further to address the indoor object detection using DCNN. This is not
only classifying objects but also providing the object localization in the current indoor scene.
All these are experimentally tested.

The experiments on “indoor object detection and recognition” were implemented with the
proposed indoor dataset Images in this dataset are taken in real interior environments. The
indoor dataset collected consist of 16 indoor landmark object classes highly present in any
indoor environment. The average precision of every indoor object present in the dataset is the
quality criterion of the proposed approach.

This section presents the training experiments (§5.1) and test experiments with the pro-
posed annotated dataset (§5.2).

Fig. 6 Object detection approach based on the bounding box technique used in YOLOv3 [40]
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5.1 Training experiments

Training a convolutional neural network requires a huge amount of data. For this purpose, we
used the proposed indoor object detection dataset to feed the DCNN.

The training step consists in finding a set of rules to best classify objects. This process
performs all tasks to train the indoor object classifier. During the training process, the
pretrained model is evaluated on multiple indoor images with multiple points of view, different
lighting conditions and complex backgrounds.

The proposed system runs on a HP workstation equipped with Intel Xeon E5–2683 v4
processor and Nvidia Quadro M4000 GPU with 8 GB of integrated memory.

Several steps were performed when training the DCNN model:

– First, network initialization with weights pretrained on COCO dataset [33];
– Second, the fine-tuning of the pretrained model on proposed collected dataset.

During the training step, the binary cross-entropy loss for class prediction was applied. 3
anchors are tested at each scale which gives a tensor of N x N * [3*(4 + 1 + 16)], where 4 is the
bounding boxes offset, 1 is the objectness prediction and 16 is the number of classes and N x N
is the grid dimension.

The proposed dataset was split into two subsets: one for training and the other for testing.
At the beginning of the training step, images were resized to the resolution of input images
(608 × 608).

For the training process, YOLO v3 uses the Stochastic Gradient Decent (SGD) [5] with
momentum as an optimizer for the loss function. SGD updates parameters at each training step.
But SGD performs updates with high variance which causes high oscillations of the objective
function. These high fluctuations enable the loss functions to reach the local minimum. For this
fact in YOLO v3 architecture, they use SGD with momentum. Momentum method enhances
the SGD by reducing oscillations and speeding up the convergence process. SGD is performed
as Eq. (1)

w ¼ w−η*∇w*J w; xi; yi
� � ð1Þ

Where w is models’ parameters (weights + bias)
∇w ∗ J(w) is the objective function
η is the learning rate

Momentum adds an γ fraction of the updated vector of the previous step to the current
updated vector. The momentum updates can be performed as Eq. (2).

Vt ¼ γVt−1 þ η∇w*J wð Þ ð2Þ

w ¼ w−Vt

As a result of adding the momentum method to the SGD, the model gains faster convergence
with fewer oscillations. But, because of the accumulated speed, the momentum optimizer can
miss the global or the minimum local.

Multimedia Tools and Applications (2020) 79:31645–3166231656



In the proposed experiments we used SGD with momentum. To solve the problem caused
by momentum optimizer, we propose to change it by the ADAM optimizer [28]. ADAM
optimizer behaves like momentum in the parameters updating speed by keeping an exponen-
tially decayed average of the past gradient mt (the first momentum of the gradient). In addition,
ADAM optimizer stores an exponentially decayed average of the past squared gradient VT (the
second momentum of the gradient). Moreover, it computes an adaptive learning rate for each
parameter. It also updates the learning parameters at each training step.

mt ¼ β1*mt−1 þ 1−β1ð Þ*gt ð3Þ

Vt ¼ β2*Vt−1 þ 1−β2ð Þ*gt2 ð4Þ
Where β1 and β2 are close to 1.

Adam performs a biases correction of the first and the second momentum. The biases
corrected first (bmt) and second (bvt) can be estimated as the following equations:

bmt ¼ mt

1−βt
1

ð5Þ

bvt ¼ vt
1−βt

2

ð6Þ

Then, Adam updates the network parameters using the corrected first and second moment as
Eq. (7).

wtþ1 ¼ wt−
ηffiffiffiffiffiffiffiffiffiffiffiffi

bvt þ ϵ

q *bmt ð7Þ

By using the ADAM optimizer to train the proposed detection system, we gained around 2%
in the mean average precision (mAP).

We trained the proposed detection system by using two optimizers: the momentum and the
ADAM. Table 4 reports the results in mAP obtained by using the two methods.

5.2 Test experiments

This section, describes the performed experiments and the obtained results for indoor object
detection. The mean average precision (mAP) was selected to evaluate performances of the
proposed detection system. The mAP is the precision average of all class queries present in the

Table 4 Comparison of mAP when using momentum and ADAM optimizers

Optimizer name mAP (%)

Momentum 71.35
ADAM 73.19
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collected dataset. The average precision (AP)presents the value of the detection accuracy of a
specific indoor object. The obtained detection performance on the considered test subset is
summarized in Table 5.

The proposed object detection system achieves a mean precision of 73.19% (mAP). Almost
perfect recognition was obtained for chair and table categories; good performances were
obtained in the detection of many other indoor classes such as electricity box, heating, elevator,
door, trash can.

The proposed detection system struggles in two indoor classes (smoke detector and light
switch). For the rest of the indoor object classes our detection system achieves good
performances.

To obtain information about the model’s performances we have to calculate true positive
(TP), false positive (FP) and false negative (FN) to calculate precision, recall and F1-score
(Table 6).

Precision ¼ TP
TP þ FP

ð8Þ

Recall ¼ TP
TP þ FN

ð9Þ

F1−score ¼ 2*
Precision*Recall
Precisionþ Recall

ð10Þ

As far as the VIP mobility is considered, the system should provide ahead data on upcoming
object. It is relevant to assume that:

Table 5 Average Precision (AP) results of different indoor objects classe

Class
name

Window Notice table elevator Door Electricity
box

Sign light Trash
can

AP (%) 53.61 79.38 85.04 85.55 91.28 63.79 64.03 81.88
Class

name
stairs Security

button
table Smoke

detector
Heating Fire

extinguish-
er

Light
switch

Chair

AP (%) 76.88 56.29 99.25 34.6 91.12 70.94 36.78 99.18

Table 6 Evaluation metrics used in the proposed detection system

Precision (mAP) 73.19%

True Positive 9995
False Positive 3823
False Negative 3558
Average IOU 55.64%
F1-score 0.71%
Recall 0.72%
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- The optimal distance between an indoor object and a VIP sufficient to warn him/her in
advance is about 5 m.

- The speed of the VIP is 1.4 m/s (speed of a normal person).
Consequently, the VIP will need 3.57 s to reach the indoor object. The temporal perfor-

mance of the system should achieve a processing speed of 83 millisecond/frame, or 2 FPS. The
proposed indoor object detection system achieves a processing speed of 12 FPS, therefore its
match the needs of a VIP mobility.

As mentioned in Table 7, our proposed indoor object detection system achieves better
results than the results obtained in [10] when using indoor dataset for the three classes. Also,
our work outperforms [10] work when using (indoor+FoV) dataset. We achieved higher
detection accuracies for chair and table classes. We note that we obtained better results despite
we trained and tested our proposed system on challenging conditions including high inter and
intra-class variation.

Figure 7 presents a detection example using images from the fully labeled indoor object
detection and recognition dataset. The figure shows that all indoor objects present in the input
image are detected in the considered image. Moreover, it can be observed that the door was
detected despite of the fact that it was opened and it was taken with a challenging angle. We
note that each of the two trash cans, very close one to one another, was detected by the
proposed system. We note also that despite the small size of the smoke detector and the light
switch in the input image, they were successfully detected by the proposed system.

Table 7 Comparison of results obtained by our method and those obtained in [10]

Indoor object
name

Method in [10] (indoor AP
%)

Method in [10] (indoor + FoV AP
%)

Ours (proposed dataset AP
%)

door 42.9 91.4 85.55
chair 72.6 94.0 99.18
table 46.2 91.6 99.25

Fig. 7 A Detection example of the proposed system

Multimedia Tools and Applications (2020) 79:31645–31662 31659



It is possible to conclude that the proposed indoor object detection system achieves high
recognition rate of objects of different sizes and respect the real-time constraints required by
the VIP mobility speed.

6 Conclusion

This paper presented a new indoor detection system designed for indoor assistance navigation
for visually impaired people.

The proposed indoor dataset provides a data that can be used by researchers in computer
vision field to develop new deep convolutional neural networks (DCNN), that can be included
in many indoor robotic navigation systems, natural mobility of humanoid robotics, and in any
system, which assists human being physical or virtual navigation.

The proposed indoor object detection and recognition (IODR) dataset present 8000 con-
taining 16 landmark objects categories. Indoor image provided in this dataset presenting
various challenging situations to make training and testing steps of the deep CNN robust for
any complex situation given during inference process.

The proposed dataset provides images that are highly relevant for VIP mobility. The
evaluation of the proposed system with the proposed new fully annotated lead to the detection
precision of 73,19% mAP. This encouraging accuracy may be increased by adding more data
during the DCNN model training.

A future work targets the system mAP improvement and integration of the proposed indoor
detection system in embedded devices such as intelligent cane.
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